204 lines
7.1 KiB
Python
204 lines
7.1 KiB
Python
# coding=utf-8
|
||
# Copyright 2025 The OpenBMB Team. All rights reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
|
||
import logging
|
||
import re
|
||
|
||
import librosa
|
||
import numpy as np
|
||
|
||
logger = logging.getLogger(__name__)
|
||
|
||
|
||
def is_silent(data):
|
||
if np.abs(data).max() < 3e-3:
|
||
return True
|
||
else:
|
||
return False
|
||
|
||
|
||
def sentence_end(txt):
|
||
for c in [".", "。", "!", "?", "!", "?"]:
|
||
if c in txt:
|
||
if c == ".": # check not number before it like 1.
|
||
idx = txt.find(c)
|
||
if idx > 0:
|
||
if txt[idx - 1].isdigit():
|
||
continue
|
||
return c
|
||
return ""
|
||
|
||
|
||
class NumberToTextConverter:
|
||
r"""
|
||
A helper class to ensure text-to-speech (TTS) systems read numeric digits
|
||
in the desired language (Chinese or English) digit-by-digit. It forcibly
|
||
replaces all numeric substrings in text with their language-specific
|
||
textual representations, thereby reducing the likelihood of TTS mistakes
|
||
on numbers.
|
||
Note: MiniCPM-o 2.6 only use this in streaming mode.
|
||
|
||
Attributes:
|
||
num_to_chinese (dict):
|
||
Mapping from digit (str) to its Chinese textual form (str).
|
||
num_to_english (dict):
|
||
Mapping from digit (str) to its English textual form (str).
|
||
|
||
Example:
|
||
>>> converter = NumberToTextConverter()
|
||
>>> converter.replace_numbers_with_text("我有2个苹果", language="chinese")
|
||
'我有两个苹果'
|
||
>>> converter.replace_numbers_with_text("I have 23 books", language="english")
|
||
'I have two three books'
|
||
"""
|
||
|
||
def __init__(self):
|
||
self.num_to_chinese = {
|
||
"0": "零",
|
||
"1": "一",
|
||
"2": "二",
|
||
"3": "三",
|
||
"4": "四",
|
||
"5": "五",
|
||
"6": "六",
|
||
"7": "七",
|
||
"8": "八",
|
||
"9": "九",
|
||
}
|
||
self.num_to_english = {
|
||
"0": "zero",
|
||
"1": "one",
|
||
"2": "two",
|
||
"3": "three",
|
||
"4": "four",
|
||
"5": "five",
|
||
"6": "six",
|
||
"7": "seven",
|
||
"8": "eight",
|
||
"9": "nine",
|
||
}
|
||
|
||
def number_to_chinese_digit_by_digit(self, num_str):
|
||
result = ""
|
||
for char in num_str:
|
||
if char in self.num_to_chinese:
|
||
result += self.num_to_chinese[char]
|
||
return result
|
||
|
||
def number_to_english_digit_by_digit(self, num_str):
|
||
result = []
|
||
for char in num_str:
|
||
if char in self.num_to_english:
|
||
result.append(self.num_to_english[char])
|
||
return " ".join(result)
|
||
|
||
def detect_language(self, text):
|
||
chinese_count = len(re.findall(r"[\u4e00-\u9fff]", text))
|
||
english_count = len(re.findall(r"[a-zA-Z]", text))
|
||
return "chinese" if chinese_count >= english_count else "english"
|
||
|
||
def replace_numbers_with_text(self, text, language=None):
|
||
if language is None:
|
||
language = self.detect_language(text)
|
||
numbers = re.findall(r"\d+", text)
|
||
|
||
for num in numbers:
|
||
if language == "chinese":
|
||
replacement = self.number_to_chinese_digit_by_digit(num)
|
||
else:
|
||
replacement = self.number_to_english_digit_by_digit(num)
|
||
text = text.replace(num, replacement, 1)
|
||
|
||
return text
|
||
|
||
|
||
class VoiceChecker:
|
||
r"""
|
||
A simple utility class to detect silence or low variation in consecutive audio chunks by comparing
|
||
the mel-spectrogram distances. It keeps track of consecutive zero-distance and low-distance chunks
|
||
to decide if the audio is considered "bad" (e.g., overly silent or not changing enough).
|
||
|
||
Attributes:
|
||
previous_mel (`np.ndarray` or `None`):
|
||
Holds the previously observed mel-spectrogram in decibel scale. Used to compute
|
||
the next distance; reset via :meth:`reset`.
|
||
consecutive_zeros (`int`):
|
||
The number of consecutive chunks that were detected as silent (distance = 0).
|
||
consecutive_low_distance (`int`):
|
||
The number of consecutive chunks whose distance was below the threshold.
|
||
|
||
Example:
|
||
>>> checker = VoiceChecker()
|
||
>>> # Suppose we have audio_wav (list or np.ndarray) and mel_spec (np.ndarray)
|
||
>>> # We split them into chunks and call checker.is_bad(...)
|
||
>>> is_audio_bad = checker.is_bad(audio_wav, mel_spec, chunk_size=2560, thresh=100.0)
|
||
>>> if is_audio_bad:
|
||
... print("Audio deemed bad!")
|
||
>>> # Reset states if needed
|
||
>>> checker.reset()
|
||
"""
|
||
|
||
def __init__(self):
|
||
self.previous_mel = None
|
||
self.consecutive_zeros = 0
|
||
self.consecutive_low_distance = 0
|
||
|
||
def compute_distance(self, audio_chunk, mel_spec):
|
||
if is_silent(audio_chunk):
|
||
return 0.0 # 检查是否为空白片段
|
||
|
||
mel_db = librosa.power_to_db(mel_spec)
|
||
if self.previous_mel is None:
|
||
self.previous_mel = mel_db
|
||
return -1.0
|
||
|
||
distance = np.linalg.norm(np.mean(mel_db, axis=1) - np.mean(self.previous_mel, axis=1))
|
||
self.previous_mel = mel_db
|
||
return distance
|
||
|
||
def is_bad(self, audio_wav, mel_spec, chunk_size=2560, thresh=100.0):
|
||
num_chunks = len(audio_wav) // chunk_size
|
||
mel_chunk_size = mel_spec.shape[-1] // num_chunks
|
||
for i in range(num_chunks):
|
||
audio_chunk = audio_wav[i * chunk_size : (i + 1) * chunk_size]
|
||
mel_spec_chunk = mel_spec[:, i * mel_chunk_size : (i + 1) * mel_chunk_size]
|
||
|
||
distance = self.compute_distance(audio_chunk, mel_spec_chunk)
|
||
logger.warning(
|
||
f"mel dist: {distance:.1f}, zero: {self.consecutive_zeros}, low: {self.consecutive_low_distance}"
|
||
)
|
||
if distance == 0:
|
||
self.consecutive_low_distance = 0 # reset
|
||
self.consecutive_zeros += 1
|
||
if self.consecutive_zeros >= 12:
|
||
logger.warning("VoiceChecker detected 1.2 s silent. Marking as failed.")
|
||
return True
|
||
elif distance < thresh:
|
||
self.consecutive_zeros = 0
|
||
self.consecutive_low_distance += 1
|
||
if self.consecutive_low_distance >= 5:
|
||
logger.warning("VoiceChecker detected 5 consecutive low distance chunks. Marking as failed.")
|
||
return True
|
||
else:
|
||
self.consecutive_low_distance = 0
|
||
self.consecutive_zeros = 0
|
||
|
||
return False
|
||
|
||
def reset(self):
|
||
self.previous_mel = None
|
||
self.consecutive_zeros = 0
|
||
self.consecutive_low_distance = 0
|