621 lines
29 KiB
Python
621 lines
29 KiB
Python
|
import logging
|
||
|
import os
|
||
|
from packaging import version
|
||
|
from importlib import import_module
|
||
|
from typing import List, Callable, Union, Optional, Dict
|
||
|
|
||
|
import PIL.Image
|
||
|
import torch
|
||
|
import transformers
|
||
|
from torch import Tensor
|
||
|
from torch.nn import init
|
||
|
from torch.nn.functional import softmax, gumbel_softmax, pad
|
||
|
from transformers import PreTrainedModel, AutoModel, AutoTokenizer, AutoModelForCausalLM, AutoImageProcessor
|
||
|
from transformers import SiglipImageProcessor, SiglipVisionModel
|
||
|
from transformers.cache_utils import HybridCache
|
||
|
from transformers.generation.utils import GenerateOutput
|
||
|
|
||
|
from .configuration_ovis import BaseVisualTokenizerConfig, SiglipVisualTokenizerConfig
|
||
|
from .configuration_ovis import OvisConfig, ConversationFormatter
|
||
|
from .configuration_ovis import IGNORE_ID, IMAGE_ATOM_ID, IMAGE_INDICATOR_IDS, IMAGE_TOKEN_ID
|
||
|
|
||
|
|
||
|
# ----------------------------------------------------------------------
|
||
|
# Visual Tokenizer
|
||
|
# ----------------------------------------------------------------------
|
||
|
class BaseVisualTokenizer(PreTrainedModel):
|
||
|
base_model_prefix = "backbone"
|
||
|
main_input_name = None
|
||
|
_image_processor_class = None
|
||
|
_image_processor_kwargs = {}
|
||
|
_backbone_class = None
|
||
|
_backbone_name_or_path = None
|
||
|
|
||
|
def __init__(self, config: BaseVisualTokenizerConfig, *inputs, **kwargs):
|
||
|
super().__init__(config, *inputs, **kwargs)
|
||
|
self.image_processor = AutoImageProcessor.from_pretrained(kwargs['image_processor_name_or_path'])
|
||
|
self.backbone = AutoModel.from_config(self.config.backbone_config)
|
||
|
head_dim = self.config.vocab_size - len(IMAGE_INDICATOR_IDS) # reserved tokens for IMAGE_INDICATORS
|
||
|
self.head = torch.nn.Sequential(
|
||
|
torch.nn.Linear(
|
||
|
self.backbone.config.hidden_size * self.config.hidden_stride * self.config.hidden_stride, head_dim,
|
||
|
bias=False
|
||
|
),
|
||
|
torch.nn.LayerNorm(head_dim)
|
||
|
)
|
||
|
|
||
|
assert all((self.image_processor.do_resize,
|
||
|
not getattr(self.image_processor, 'do_center_crop', False),
|
||
|
self.image_processor.do_rescale,
|
||
|
self.image_processor.do_normalize
|
||
|
)), f"image_processor `{self.image_processor}` is not supported currently"
|
||
|
|
||
|
def get_backbone(self):
|
||
|
return self.backbone
|
||
|
|
||
|
def get_image_processor(self):
|
||
|
return self.image_processor
|
||
|
|
||
|
def mock_input(self):
|
||
|
height, width = self.get_image_size()
|
||
|
return torch.zeros(1, 3, height, width), self.construct_image_placeholders((1, 1))
|
||
|
|
||
|
def get_head(self):
|
||
|
return self.head
|
||
|
|
||
|
def get_image_size(self):
|
||
|
raise NotImplementedError
|
||
|
|
||
|
@staticmethod
|
||
|
def construct_image_placeholders(grid):
|
||
|
image_placeholders = [IMAGE_INDICATOR_IDS[0], IMAGE_ATOM_ID, IMAGE_INDICATOR_IDS[1]]
|
||
|
if grid[0] * grid[1] > 1:
|
||
|
for r in range(grid[0]):
|
||
|
for c in range(grid[1]):
|
||
|
image_placeholders.append(IMAGE_ATOM_ID)
|
||
|
if c < grid[1] - 1:
|
||
|
image_placeholders.append(IMAGE_INDICATOR_IDS[2])
|
||
|
if r < grid[0] - 1:
|
||
|
image_placeholders.append(IMAGE_INDICATOR_IDS[3])
|
||
|
image_placeholders.append(IMAGE_INDICATOR_IDS[4])
|
||
|
return image_placeholders
|
||
|
|
||
|
def preprocess_image(self, image: PIL.Image.Image, max_partition=9, covering_threshold=0.9, convert_to_rgb=True):
|
||
|
def _preprocess(img: PIL.Image.Image, side):
|
||
|
# first resize and preprocess
|
||
|
w, h = img.size
|
||
|
if w == h:
|
||
|
new_width = new_height = side
|
||
|
elif w > h:
|
||
|
new_width = side
|
||
|
new_height = int(h / w * new_width)
|
||
|
else:
|
||
|
new_height = side
|
||
|
new_width = int(w / h * new_height)
|
||
|
new_size = dict(height=new_height, width=new_width)
|
||
|
pixel_values = self.image_processor.preprocess(img, size=new_size, return_tensors='pt')['pixel_values']
|
||
|
|
||
|
# then pad to square
|
||
|
square_values = torch.zeros([1, 3, side, side], dtype=pixel_values.dtype, device=pixel_values.device)
|
||
|
new_height, new_width = pixel_values.shape[2:]
|
||
|
if new_height == new_width:
|
||
|
square_values[:, :, :, :] = pixel_values
|
||
|
elif new_height > new_width:
|
||
|
from_index = (side - new_width) // 2
|
||
|
square_values[:, :, :, from_index:from_index + new_width] = pixel_values
|
||
|
else:
|
||
|
from_index = (side - new_height) // 2
|
||
|
square_values[:, :, from_index:from_index + new_height, :] = pixel_values
|
||
|
|
||
|
return square_values
|
||
|
|
||
|
def _partition(img, grid):
|
||
|
w, h = img.size
|
||
|
row_height = h // grid[0]
|
||
|
col_width = w // grid[1]
|
||
|
|
||
|
partition = []
|
||
|
for row in range(grid[0]):
|
||
|
for col in range(grid[1]):
|
||
|
left = col * col_width
|
||
|
upper = row * row_height
|
||
|
right = w if col == grid[1] - 1 else (col + 1) * col_width
|
||
|
lower = h if row == grid[0] - 1 else (row + 1) * row_height
|
||
|
partition.append((left, upper, right, lower))
|
||
|
|
||
|
return partition
|
||
|
|
||
|
def _covering_area(left, upper, right, lower, side):
|
||
|
w = right - left
|
||
|
h = lower - upper
|
||
|
w, h = max(w, h), min(w, h)
|
||
|
if w > side:
|
||
|
h = h / w * side
|
||
|
w = side
|
||
|
return w * h
|
||
|
|
||
|
def _get_best_grid(img, side):
|
||
|
img_area = img.size[0] * img.size[1]
|
||
|
|
||
|
candidate_grids = []
|
||
|
for i in range(1, max_partition + 1):
|
||
|
for j in range(1, max_partition + 1):
|
||
|
if i * j <= max_partition:
|
||
|
candidate_grids.append((i, j))
|
||
|
|
||
|
all_grids = []
|
||
|
good_grids = []
|
||
|
for grid in candidate_grids:
|
||
|
partition = _partition(img, grid)
|
||
|
covering_ratio = sum([_covering_area(*p, side) for p in partition]) / img_area
|
||
|
assert covering_ratio <= 1.0
|
||
|
all_grids.append((grid, covering_ratio))
|
||
|
if covering_ratio > covering_threshold:
|
||
|
good_grids.append((grid, covering_ratio))
|
||
|
|
||
|
if len(good_grids) > 0:
|
||
|
# pick the good partition with minimum #sub_images and break the tie using covering_ratio
|
||
|
return sorted(good_grids, key=lambda x: (x[0][0] * x[0][1], -x[1]))[0][0]
|
||
|
else:
|
||
|
# pick the partition with maximum covering_ratio and break the tie using #sub_images
|
||
|
return sorted(all_grids, key=lambda x: (-x[1], x[0][0] * x[0][1]))[0][0]
|
||
|
|
||
|
if convert_to_rgb and image.mode != 'RGB':
|
||
|
image = image.convert('RGB')
|
||
|
|
||
|
sides = self.get_image_size()
|
||
|
if sides[0] != sides[1]:
|
||
|
raise ValueError('get_image_size() returns non-square size')
|
||
|
side = sides[0]
|
||
|
grid = _get_best_grid(image, side)
|
||
|
partition = _partition(image, grid)
|
||
|
crops = [image.crop(p) for p in partition]
|
||
|
if len(crops) > 1:
|
||
|
crops.insert(0, image)
|
||
|
pixel_values = torch.cat([_preprocess(crop, side) for crop in crops], dim=0)
|
||
|
image_placeholders = self.construct_image_placeholders(grid)
|
||
|
return pixel_values, image_placeholders
|
||
|
|
||
|
def tokenize(self, logits):
|
||
|
def st_argmax(y_soft, dim): # straight-through softmax
|
||
|
index = y_soft.max(dim, keepdim=True)[1]
|
||
|
y_hard = torch.zeros_like(y_soft, memory_format=torch.legacy_contiguous_format).scatter_(dim, index, 1.0)
|
||
|
ret = y_hard - y_soft.detach() + y_soft
|
||
|
return ret
|
||
|
|
||
|
if self.config.tokenize_function == 'softmax':
|
||
|
tokens = softmax(logits, dim=-1)
|
||
|
elif self.config.tokenize_function == 'gumbel_argmax':
|
||
|
tokens = gumbel_softmax(logits, tau=self.config.tau, hard=True)
|
||
|
elif self.config.tokenize_function == 'st_argmax':
|
||
|
tokens = st_argmax(logits, dim=-1)
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
f'Invalid `max_type`, expected softmax or gumbel_argmax or st_argmax, but got {self.config.tokenize_function}')
|
||
|
return tokens
|
||
|
|
||
|
def encode(self, pixel_values):
|
||
|
output = self.backbone(pixel_values, output_hidden_states=True, return_dict=True)
|
||
|
features = output.hidden_states[-1]
|
||
|
if self.config.drop_cls_token:
|
||
|
features = features[:, 1:, :]
|
||
|
|
||
|
# merge number of `hidden_stride * hidden_stride` hidden states together to reduce token sequence length
|
||
|
# e.g., for hidden_stride=3, this leads to a token length reduction: 729 -> 81 for siglip
|
||
|
if self.config.hidden_stride > 1:
|
||
|
n, l, d = features.shape # this `d` maybe different from the above `d
|
||
|
sqrt_l = int(l ** 0.5)
|
||
|
assert sqrt_l ** 2 == l, "The token sequence length should be a perfect square."
|
||
|
features = features.reshape(n, sqrt_l, sqrt_l, d)
|
||
|
pl = (self.config.hidden_stride - (sqrt_l % self.config.hidden_stride)) % self.config.hidden_stride
|
||
|
features = pad(features, (0, 0, 0, pl, 0, pl), "constant", 0)
|
||
|
sqrt_l += pl
|
||
|
features = features.reshape(n, sqrt_l // self.config.hidden_stride, self.config.hidden_stride,
|
||
|
sqrt_l // self.config.hidden_stride, self.config.hidden_stride, d)
|
||
|
features = features.permute(0, 1, 3, 2, 4, 5) # [n, sqrt_l/hs, sqrt_l/hs, hs, hs, d]
|
||
|
features = features.flatten(3) # [n, sqrt_l/hs, sqrt_l/hs, hs*hs*d]
|
||
|
features = features.reshape(
|
||
|
n, -1, self.config.hidden_stride * self.config.hidden_stride * d)
|
||
|
|
||
|
return features
|
||
|
|
||
|
def forward(self, pixel_values) -> torch.Tensor: # [BatchSize, ImageShape] -> [BatchSize, #Token, VocabSize]
|
||
|
features = self.encode(pixel_values)
|
||
|
logits = self.head(features)
|
||
|
tokens = self.tokenize(logits)
|
||
|
# tokens' shape is [BatchSize, #Token, VocabSize-5], so padding with [BatchSize, #Token, 5], after
|
||
|
# which, tokens' shape should become [BatchSize, #Token, VocabSize]
|
||
|
batch_size, token_len, _ = tokens.shape
|
||
|
padding_tensor = torch.zeros(size=(batch_size, token_len, len(IMAGE_INDICATOR_IDS)),
|
||
|
dtype=tokens.dtype,
|
||
|
device=tokens.device,
|
||
|
layout=tokens.layout,
|
||
|
requires_grad=False)
|
||
|
tokens = torch.cat((tokens, padding_tensor), dim=2)
|
||
|
return tokens
|
||
|
|
||
|
|
||
|
class SiglipVisualTokenizer(BaseVisualTokenizer):
|
||
|
config_class = SiglipVisualTokenizerConfig
|
||
|
supports_gradient_checkpointing = True
|
||
|
_no_split_modules = ["SiglipVisionTransformer"]
|
||
|
_image_processor_class = SiglipImageProcessor
|
||
|
_image_processor_kwargs = {}
|
||
|
_backbone_class = SiglipVisionModel
|
||
|
_backbone_name_or_path = "google/siglip-so400m-patch14-384"
|
||
|
|
||
|
def get_image_size(self):
|
||
|
height = self.image_processor.size["height"]
|
||
|
width = self.image_processor.size["width"]
|
||
|
return height, width
|
||
|
|
||
|
|
||
|
AutoModel.register(SiglipVisualTokenizerConfig, SiglipVisualTokenizer)
|
||
|
|
||
|
|
||
|
# ----------------------------------------------------------------------
|
||
|
# Ovis
|
||
|
# ----------------------------------------------------------------------
|
||
|
class VisualEmbedding(torch.nn.Embedding):
|
||
|
def forward(self, visual_tokens: Tensor) -> Tensor:
|
||
|
if visual_tokens.dtype in [torch.int8, torch.int16, torch.int32, torch.int64, torch.long]:
|
||
|
return super().forward(visual_tokens)
|
||
|
return torch.matmul(visual_tokens, self.weight)
|
||
|
|
||
|
def reset_parameters(self, mean=0., std=1.) -> None:
|
||
|
init.normal_(self.weight, mean=mean, std=std)
|
||
|
self._fill_padding_idx_with_zero()
|
||
|
|
||
|
|
||
|
class OvisPreTrainedModel(PreTrainedModel):
|
||
|
config_class = OvisConfig
|
||
|
base_model_prefix = "ovis"
|
||
|
|
||
|
|
||
|
class Ovis(OvisPreTrainedModel):
|
||
|
|
||
|
def __init__(self, config: OvisConfig, *inputs, **kwargs):
|
||
|
super().__init__(config, *inputs, **kwargs)
|
||
|
attn_kwargs = dict()
|
||
|
if self.config.llm_attn_implementation:
|
||
|
attn_kwargs['attn_implementation'] = self.config.llm_attn_implementation
|
||
|
self.llm = AutoModelForCausalLM.from_config(self.config.llm_config, **attn_kwargs)
|
||
|
assert self.config.hidden_size == self.llm.config.hidden_size, "hidden size mismatch"
|
||
|
self.text_tokenizer = AutoTokenizer.from_pretrained(self.config.name_or_path)
|
||
|
self.visual_tokenizer = AutoModel.from_config(self.config.visual_tokenizer_config,
|
||
|
image_processor_name_or_path=self.config.name_or_path)
|
||
|
self.vte = VisualEmbedding(
|
||
|
self.config.visual_tokenizer_config.vocab_size,
|
||
|
self.config.hidden_size,
|
||
|
device=self.visual_tokenizer.device,
|
||
|
dtype=self.visual_tokenizer.dtype
|
||
|
)
|
||
|
|
||
|
def _merge_modules(modules_list: tuple):
|
||
|
merged_modules = []
|
||
|
for modules in modules_list:
|
||
|
merged_modules.extend(modules if modules else [])
|
||
|
return merged_modules
|
||
|
|
||
|
self._no_split_modules = _merge_modules((self.llm._no_split_modules, self.visual_tokenizer._no_split_modules))
|
||
|
self._skip_keys_device_placement = self.llm._skip_keys_device_placement
|
||
|
self._keep_in_fp32_modules = _merge_modules(
|
||
|
(self.llm._keep_in_fp32_modules, self.visual_tokenizer._keep_in_fp32_modules))
|
||
|
self.is_parallelizable = all((self.llm.is_parallelizable, self.visual_tokenizer.is_parallelizable))
|
||
|
self.supports_gradient_checkpointing = all(
|
||
|
(self.llm.supports_gradient_checkpointing, self.visual_tokenizer.supports_gradient_checkpointing))
|
||
|
self._supports_flash_attn_2 = all(
|
||
|
(self.llm._supports_flash_attn_2, self.visual_tokenizer._supports_flash_attn_2))
|
||
|
self._supports_sdpa = all((self.llm._supports_sdpa, self.visual_tokenizer._supports_sdpa))
|
||
|
|
||
|
def get_text_tokenizer(self):
|
||
|
return self.text_tokenizer
|
||
|
|
||
|
def get_visual_tokenizer(self):
|
||
|
return self.visual_tokenizer
|
||
|
|
||
|
def tie_weights(self):
|
||
|
if not self.config.disable_tie_weight:
|
||
|
self.get_llm().tie_weights()
|
||
|
|
||
|
def get_llm(self):
|
||
|
return self.llm
|
||
|
|
||
|
def get_vte(self):
|
||
|
return self.vte
|
||
|
|
||
|
def get_wte(self):
|
||
|
return self.llm.get_input_embeddings()
|
||
|
|
||
|
def get_conversation_formatter(self) -> ConversationFormatter:
|
||
|
if getattr(self, 'conversation_formatter', None) is None:
|
||
|
self.conversation_formatter = getattr(import_module(".configuration_ovis", __package__),
|
||
|
self.config.conversation_formatter_class)(self.text_tokenizer)
|
||
|
return self.conversation_formatter
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: torch.Tensor,
|
||
|
attention_mask: torch.Tensor,
|
||
|
labels: Optional[torch.Tensor],
|
||
|
pixel_values: List[Optional[torch.Tensor]],
|
||
|
**kwargs
|
||
|
):
|
||
|
assert self.training, "`forward` can only be used in training. For inference, use `generate`."
|
||
|
_, inputs_embeds, labels, attention_mask = self.merge_multimodal(
|
||
|
text_input_ids=input_ids,
|
||
|
text_attention_masks=attention_mask,
|
||
|
text_labels=labels,
|
||
|
pixel_values=pixel_values
|
||
|
)
|
||
|
return self.llm(inputs_embeds=inputs_embeds, labels=labels, attention_mask=attention_mask, **kwargs)
|
||
|
|
||
|
def merge_multimodal(
|
||
|
self,
|
||
|
text_input_ids: torch.Tensor,
|
||
|
text_attention_masks: torch.Tensor,
|
||
|
text_labels: Optional[torch.Tensor],
|
||
|
pixel_values: List[Optional[torch.Tensor]],
|
||
|
left_padding: bool = False
|
||
|
):
|
||
|
input_device = text_input_ids.device
|
||
|
visual_vocab_szie = self.get_visual_tokenizer().config.vocab_size
|
||
|
visual_indicator_embeds = self.get_vte()(
|
||
|
torch.tensor(
|
||
|
list(range(visual_vocab_szie - 5, visual_vocab_szie)),
|
||
|
dtype=torch.long,
|
||
|
device=self.get_visual_tokenizer().device
|
||
|
)
|
||
|
).to(device=input_device)
|
||
|
|
||
|
if self.training:
|
||
|
# When training, to be compatible with deepspeed zero, each sample has to include pixel_value tensor.
|
||
|
# For text-only sample, one can simply use a full zero tensor as pixel_value, which will be ignored
|
||
|
# (see below in this function); so, the gradient will not be affected.
|
||
|
num_images = [x.shape[0] for x in pixel_values]
|
||
|
visual_tokens = self.visual_tokenizer(torch.cat([x for x in pixel_values], dim=0))
|
||
|
visual_embeds = torch.split(self.get_vte()(visual_tokens).to(dtype=self.dtype, device=input_device),
|
||
|
split_size_or_sections=num_images, dim=0)
|
||
|
visual_input_ids = torch.split(torch.argmax(visual_tokens, dim=-1).to(device=input_device),
|
||
|
split_size_or_sections=num_images, dim=0)
|
||
|
visual_labels = [torch.full(x.shape, IGNORE_ID, dtype=torch.long, device=input_device) for x in
|
||
|
visual_input_ids]
|
||
|
else:
|
||
|
# When inference, sample can include only text with `None` pixel_value
|
||
|
num_images = [x.shape[0] if x is not None else 0 for x in pixel_values]
|
||
|
if sum(num_images) > 0:
|
||
|
visual_tokens = self.visual_tokenizer(torch.cat([x for x in pixel_values if x is not None], dim=0))
|
||
|
visual_embeds = torch.split(self.get_vte()(visual_tokens).to(dtype=self.dtype, device=input_device),
|
||
|
split_size_or_sections=num_images, dim=0)
|
||
|
visual_input_ids = torch.split(torch.argmax(visual_tokens, dim=-1).to(device=input_device),
|
||
|
split_size_or_sections=num_images, dim=0)
|
||
|
visual_labels = [torch.full(x.shape, IGNORE_ID, dtype=torch.long, device=input_device) for x in
|
||
|
visual_input_ids]
|
||
|
else:
|
||
|
# just placeholders
|
||
|
visual_embeds = [None] * len(num_images)
|
||
|
visual_input_ids = [None] * len(num_images)
|
||
|
visual_labels = [None] * len(num_images)
|
||
|
if text_labels is None:
|
||
|
text_labels = torch.full(text_input_ids.shape, IGNORE_ID, dtype=torch.long, device=input_device)
|
||
|
|
||
|
input_embeds = []
|
||
|
attention_masks = []
|
||
|
labels = []
|
||
|
for text_input_id, text_label, text_attention_mask, visual_embed, visual_input_id, visual_label in zip(
|
||
|
text_input_ids, text_labels, text_attention_masks, visual_embeds, visual_input_ids, visual_labels
|
||
|
):
|
||
|
placeholder_token_mask = torch.lt(text_input_id, 0)
|
||
|
text_embed = self.get_wte()(torch.masked_fill(text_input_id, placeholder_token_mask, 0))
|
||
|
for i, indicator_id in enumerate(IMAGE_INDICATOR_IDS):
|
||
|
text_embed[text_input_id == indicator_id] = visual_indicator_embeds[i]
|
||
|
image_atom_positions = torch.where(torch.eq(text_input_id, IMAGE_ATOM_ID))[0].tolist()
|
||
|
if len(image_atom_positions) > 0:
|
||
|
input_embed_parts = []
|
||
|
attention_mask_parts = []
|
||
|
label_parts = []
|
||
|
prev_image_atom_position = -1
|
||
|
for index, image_atom_position in enumerate(image_atom_positions):
|
||
|
input_embed_parts.append(
|
||
|
text_embed[prev_image_atom_position + 1:image_atom_position, :])
|
||
|
label_parts.append(
|
||
|
text_label[prev_image_atom_position + 1:image_atom_position])
|
||
|
attention_mask_parts.append(
|
||
|
text_attention_mask[prev_image_atom_position + 1:image_atom_position])
|
||
|
input_embed_parts.append(visual_embed[index])
|
||
|
attention_mask_parts.append(
|
||
|
torch.ones_like(visual_label[index], dtype=torch.bool))
|
||
|
label_parts.append(visual_label[index])
|
||
|
prev_image_atom_position = image_atom_position
|
||
|
if prev_image_atom_position + 1 < text_input_id.shape[0]:
|
||
|
input_embed_parts.append(
|
||
|
text_embed[prev_image_atom_position + 1:, :])
|
||
|
attention_mask_parts.append(
|
||
|
text_attention_mask[prev_image_atom_position + 1:])
|
||
|
label_parts.append(
|
||
|
text_label[prev_image_atom_position + 1:])
|
||
|
input_embed = torch.cat(input_embed_parts, dim=0)
|
||
|
attention_mask = torch.cat(attention_mask_parts, dim=0)
|
||
|
label = torch.cat(label_parts, dim=0)
|
||
|
else:
|
||
|
input_embed = text_embed
|
||
|
attention_mask = text_attention_mask
|
||
|
label = text_label
|
||
|
if self.training:
|
||
|
# Make visual_embed & visual_indicator_embeds involved in the backward graph,
|
||
|
# to be compatible with deepspeed zero and ddp.
|
||
|
input_embed += torch.sum(visual_embed * 0.0) + torch.sum(visual_indicator_embeds * 0.0)
|
||
|
input_embeds.append(input_embed)
|
||
|
attention_masks.append(attention_mask)
|
||
|
labels.append(label)
|
||
|
|
||
|
if self.training: # padding to self.config.multimodal_max_length for increased training speed
|
||
|
padding_size = max(0, self.config.multimodal_max_length - len(input_embeds[0]))
|
||
|
input_embeds[0] = torch.nn.ConstantPad2d((0, 0, 0, padding_size), 0.0)(input_embeds[0])
|
||
|
attention_masks[0] = torch.nn.ConstantPad1d((0, padding_size), False)(attention_masks[0])
|
||
|
labels[0] = torch.nn.ConstantPad1d((0, padding_size), IGNORE_ID)(labels[0])
|
||
|
batch_input_embeds = self.pad_truncate_sequence(input_embeds, batch_first=True, padding_value=0.0, left_padding=left_padding)
|
||
|
batch_attention_mask = self.pad_truncate_sequence(attention_masks, batch_first=True, padding_value=False, left_padding=left_padding)
|
||
|
batch_labels = self.pad_truncate_sequence(labels, batch_first=True, padding_value=IGNORE_ID, left_padding=left_padding)
|
||
|
|
||
|
return visual_input_ids, batch_input_embeds, batch_labels, batch_attention_mask
|
||
|
|
||
|
def pad_truncate_sequence(self, sequences: List[torch.Tensor], batch_first: bool = True, padding_value: float = 0.0, left_padding: bool = False) -> torch.Tensor:
|
||
|
if left_padding == False:
|
||
|
pad_sequence = torch.nn.utils.rnn.pad_sequence(sequences, batch_first=batch_first, padding_value=padding_value)
|
||
|
return pad_sequence[:,:self.config.multimodal_max_length]
|
||
|
else:
|
||
|
pad_sequence = torch.nn.utils.rnn.pad_sequence([i.flip(dims=[0]) for i in sequences],batch_first=True, padding_value=padding_value).flip(dims=[1])
|
||
|
return pad_sequence[:,-self.config.multimodal_max_length:]
|
||
|
|
||
|
def preprocess_inputs(
|
||
|
self,
|
||
|
text_or_conversations: Union[List[Dict], str],
|
||
|
images: Optional[List[PIL.Image.Image]],
|
||
|
max_partition=9,
|
||
|
generation_preface='',
|
||
|
return_labels=False,
|
||
|
propagate_exception=True
|
||
|
):
|
||
|
# convert text to conversations
|
||
|
if isinstance(text_or_conversations, str):
|
||
|
conversations = [{
|
||
|
"from": "human",
|
||
|
"value": text_or_conversations
|
||
|
}]
|
||
|
elif isinstance(text_or_conversations, list):
|
||
|
conversations = text_or_conversations
|
||
|
else:
|
||
|
raise ValueError(f'Invalid type of `text_or_conversations`, expected `List[Dict]` or `str`,'
|
||
|
f' but got {type(text_or_conversations)}')
|
||
|
|
||
|
# format conversations
|
||
|
prompt, raw_input_ids, raw_labels = self.get_conversation_formatter().format(
|
||
|
conversations, generation_preface=generation_preface)
|
||
|
|
||
|
# place image placeholders
|
||
|
input_ids = []
|
||
|
labels = []
|
||
|
pixel_values = []
|
||
|
invalidate_label = False
|
||
|
image_token_indices = [i for i, v in enumerate(raw_input_ids) if v == IMAGE_TOKEN_ID]
|
||
|
last_image_token_index = -1
|
||
|
for i in range(len(image_token_indices)):
|
||
|
head = 0 if i == 0 else image_token_indices[i - 1] + 1
|
||
|
tail = image_token_indices[i]
|
||
|
last_image_token_index = tail
|
||
|
input_ids.extend(raw_input_ids[head:tail])
|
||
|
labels.extend(raw_labels[head:tail])
|
||
|
try:
|
||
|
image = images[i]
|
||
|
raw_pixel_values, image_placeholders = self.visual_tokenizer.preprocess_image(
|
||
|
image, max_partition=max_partition)
|
||
|
except Exception as e:
|
||
|
if propagate_exception:
|
||
|
raise e
|
||
|
logging.exception(e)
|
||
|
invalidate_label = True
|
||
|
raw_pixel_values, image_placeholders = self.visual_tokenizer.mock_input()
|
||
|
input_ids.extend(image_placeholders)
|
||
|
labels.extend([IGNORE_ID] * len(image_placeholders))
|
||
|
pixel_values.append(raw_pixel_values)
|
||
|
input_ids.extend(raw_input_ids[last_image_token_index + 1:])
|
||
|
labels.extend(raw_labels[last_image_token_index + 1:])
|
||
|
|
||
|
# return tensors
|
||
|
input_ids = torch.tensor(input_ids, dtype=torch.long)
|
||
|
labels = torch.tensor([IGNORE_ID] * len(labels) if invalidate_label else labels, dtype=torch.long)
|
||
|
pixel_values = torch.cat(pixel_values, dim=0) if len(pixel_values) > 0 else None
|
||
|
|
||
|
if return_labels:
|
||
|
return prompt, input_ids, pixel_values, labels
|
||
|
else:
|
||
|
return prompt, input_ids, pixel_values
|
||
|
|
||
|
def save_pretrained(
|
||
|
self,
|
||
|
save_directory: Union[str, os.PathLike],
|
||
|
is_main_process: bool = True,
|
||
|
state_dict: Optional[dict] = None,
|
||
|
save_function: Callable = torch.save,
|
||
|
push_to_hub: bool = False,
|
||
|
max_shard_size: Union[int, str] = "5GB",
|
||
|
safe_serialization: bool = True,
|
||
|
variant: Optional[str] = None,
|
||
|
token: Optional[Union[str, bool]] = None,
|
||
|
save_peft_format: bool = True,
|
||
|
**kwargs
|
||
|
):
|
||
|
super().save_pretrained(save_directory,
|
||
|
is_main_process=is_main_process,
|
||
|
state_dict=state_dict,
|
||
|
save_function=save_function,
|
||
|
safe_serialization=safe_serialization)
|
||
|
self.get_text_tokenizer().save_pretrained(save_directory)
|
||
|
self.get_visual_tokenizer().get_image_processor().save_pretrained(save_directory)
|
||
|
|
||
|
def _get_hybrid_cache_for_llm(self, batch_size: int, max_cache_len: int):
|
||
|
cache_cls = HybridCache
|
||
|
llm = self.get_llm()
|
||
|
|
||
|
if version.parse(transformers.__version__) >= version.parse("4.46.0"):
|
||
|
need_new_cache = (
|
||
|
not hasattr(llm, "_cache")
|
||
|
or (not isinstance(llm._cache, cache_cls))
|
||
|
or llm._cache.batch_size != batch_size
|
||
|
or llm._cache.max_cache_len < max_cache_len
|
||
|
)
|
||
|
else:
|
||
|
need_new_cache = (
|
||
|
not hasattr(llm, "_cache")
|
||
|
or (not isinstance(llm._cache, cache_cls))
|
||
|
or llm._cache.max_batch_size != batch_size
|
||
|
or llm._cache.max_cache_len < max_cache_len
|
||
|
)
|
||
|
|
||
|
if need_new_cache:
|
||
|
if hasattr(llm.config, "_pre_quantization_dtype"):
|
||
|
cache_dtype = llm.config._pre_quantization_dtype
|
||
|
else:
|
||
|
cache_dtype = llm.dtype
|
||
|
if version.parse(transformers.__version__) >= version.parse("4.46.0"):
|
||
|
llm._cache = cache_cls(
|
||
|
config=llm.config,
|
||
|
batch_size=batch_size,
|
||
|
max_cache_len=max_cache_len,
|
||
|
device=llm.device,
|
||
|
dtype=cache_dtype,
|
||
|
)
|
||
|
else:
|
||
|
llm._cache = cache_cls(
|
||
|
config=llm.config,
|
||
|
max_batch_size=batch_size,
|
||
|
max_cache_len=max_cache_len,
|
||
|
device=llm.device,
|
||
|
dtype=cache_dtype,
|
||
|
)
|
||
|
else:
|
||
|
llm._cache.reset()
|
||
|
return llm._cache
|
||
|
|
||
|
# TODO: support batch generation
|
||
|
def generate(
|
||
|
self,
|
||
|
inputs: Optional[torch.Tensor] = None,
|
||
|
**kwargs
|
||
|
) -> Union[GenerateOutput, torch.LongTensor]:
|
||
|
_, inputs_embeds, labels, attention_mask = self.merge_multimodal(
|
||
|
text_input_ids=inputs,
|
||
|
text_attention_masks=kwargs.pop('attention_mask'),
|
||
|
text_labels=None,
|
||
|
pixel_values=kwargs.pop('pixel_values'),
|
||
|
left_padding=True
|
||
|
)
|
||
|
if getattr(self.generation_config, 'cache_implementation') == 'hybrid': # mainly for Gemma2
|
||
|
kwargs['past_key_values'] = self._get_hybrid_cache_for_llm(
|
||
|
getattr(kwargs, "num_beams", inputs_embeds.shape[0]), kwargs['max_new_tokens'] + inputs_embeds.shape[-2])
|
||
|
self.get_llm()._supports_cache_class = True
|
||
|
kwargs['cache_implementation'] = None
|
||
|
|
||
|
return self.llm.generate(inputs=None, inputs_embeds=inputs_embeds, attention_mask=attention_mask, **kwargs)
|