first commit

This commit is contained in:
xxl 2024-11-13 14:56:37 +08:00
parent aa9e270f94
commit c27830e8a3
19 changed files with 96493 additions and 2 deletions

9
CODE_OF_CONDUCT.md Normal file
View File

@ -0,0 +1,9 @@
# Microsoft Open Source Code of Conduct
This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
Resources:
- [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/)
- [Microsoft Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/)
- Contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with questions or concerns

22
LICENSE Normal file
View File

@ -0,0 +1,22 @@
Microsoft.
Copyright (c) Microsoft Corporation.
MIT License
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

38
NOTICE.md Normal file
View File

@ -0,0 +1,38 @@
NOTICES AND INFORMATION
Do Not Translate or Localize
This software incorporates material from third parties.
**Component.** https://github.com/Dao-AILab/flash-attention
**Open Source License/Copyright Notice.**
BSD 3-Clause License
Copyright (c) 2022, the respective contributors, as shown by the AUTHORS file.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

378
README.md
View File

@ -1,3 +1,377 @@
# Phi-3.5-mini-instruct_a13581467109027840834600
---
license: mit
license_link: https://huggingface.co/microsoft/Phi-3.5-mini-instruct/resolve/main/LICENSE
language:
- multilingual
pipeline_tag: text-generation
tags:
- nlp
- code
widget:
- messages:
- role: user
content: Can you provide ways to eat combinations of bananas and dragonfruits?
library_name: transformers
---
Phi-3.5-mini-instruct
## Model Summary
Phi-3.5-mini is a lightweight, state-of-the-art open model built upon datasets used for Phi-3 - synthetic data and filtered publicly available websites - with a focus on very high-quality, reasoning dense data. The model belongs to the Phi-3 model family and supports 128K token context length. The model underwent a rigorous enhancement process, incorporating both supervised fine-tuning, proximal policy optimization, and direct preference optimization to ensure precise instruction adherence and robust safety measures.
🏡 [Phi-3 Portal](https://azure.microsoft.com/en-us/products/phi-3) <br>
📰 [Phi-3 Microsoft Blog](https://aka.ms/phi3.5-techblog) <br>
📖 [Phi-3 Technical Report](https://arxiv.org/abs/2404.14219) <br>
👩‍🍳 [Phi-3 Cookbook](https://github.com/microsoft/Phi-3CookBook) <br>
🖥️ [Try It](https://aka.ms/try-phi3.5mini) <br>
**Phi-3.5**: [[mini-instruct]](https://huggingface.co/microsoft/Phi-3.5-mini-instruct); [[MoE-instruct]](https://huggingface.co/microsoft/Phi-3.5-MoE-instruct) ; [[vision-instruct]](https://huggingface.co/microsoft/Phi-3.5-vision-instruct)
## Intended Uses
### Primary Use Cases
The model is intended for commercial and research use in multiple languages. The model provides uses for general purpose AI systems and applications which require:
1) Memory/compute constrained environments
2) Latency bound scenarios
3) Strong reasoning (especially code, math and logic)
Our model is designed to accelerate research on language and multimodal models, for use as a building block for generative AI powered features.
### Use Case Considerations
Our models are not specifically designed or evaluated for all downstream purposes. Developers should consider common limitations of language models as they select use cases, and evaluate and mitigate for accuracy, safety, and fariness before using within a specific downstream use case, particularly for high risk scenarios. Developers should be aware of and adhere to applicable laws or regulations (including privacy, trade compliance laws, etc.) that are relevant to their use case.
***Nothing contained in this Model Card should be interpreted as or deemed a restriction or modification to the license the model is released under.***
## Release Notes
This is an update over the June 2024 instruction-tuned Phi-3 Mini release based on valuable user feedback. The model used additional post-training data leading to substantial gains on multilingual, multi-turn conversation quality, and reasoning capability. We believe most use cases will benefit from this release, but we encourage users to test in their particular AI applications. We appreciate the enthusiastic adoption of the Phi-3 model family, and continue to welcome all feedback from the community.
### Multilingual
The table below highlights multilingual capability of the Phi-3.5 Mini on multilingual MMLU, MEGA, and multilingual MMLU-pro datasets. Overall, we observed that even with just 3.8B active parameters, the model is competitive on multilingual tasks in comparison to other models with a much bigger active parameters.
| Benchmark | Phi-3.5 Mini-Ins | Phi-3.1-Mini-128K-Ins | Mistral-7B-Instruct-v0.3 | Mistral-Nemo-12B-Ins-2407 | Llama-3.1-8B-Ins | Gemma-2-9B-Ins | Gemini 1.5 Flash | GPT-4o-mini-2024-07-18 (Chat) |
|----------------------------|------------------|-----------------------|--------------------------|---------------------------|------------------|----------------|------------------|-------------------------------|
| Multilingual MMLU | 55.4 | 51.08 | 47.4 | 58.9 | 56.2 | 63.8 | 77.2 | 72.9 |
| Multilingual MMLU-Pro | 30.9 | 30.21 | 15.0 | 34.0 | 21.4 | 43.0 | 57.9 | 53.2 |
| MGSM | 47.9 | 41.56 | 31.8 | 63.3 | 56.7 | 75.1 | 75.8 | 81.7 |
| MEGA MLQA | 61.7 | 55.5 | 43.9 | 61.2 | 45.2 | 54.4 | 61.6 | 70.0 |
| MEGA TyDi QA | 62.2 | 55.9 | 54.0 | 63.7 | 54.5 | 65.6 | 63.6 | 81.8 |
| MEGA UDPOS | 46.5 | 48.1 | 57.2 | 58.2 | 54.1 | 56.6 | 62.4 | 66.0 |
| MEGA XCOPA | 63.1 | 62.4 | 58.8 | 10.8 | 21.1 | 31.2 | 95.0 | 90.3 |
| MEGA XStoryCloze | 73.5 | 73.6 | 75.5 | 92.3 | 71.0 | 87.0 | 20.7 | 96.6 |
| **Average** | **55.2** | **52.3** | **47.9** | **55.3** | **47.5** | **59.6** | **64.3** | **76.6** |
The table below shows Multilingual MMLU scores in some of the supported languages. For more multi-lingual benchmarks and details, see [Appendix A](#appendix-a).
| Benchmark | Phi-3.5 Mini-Ins | Phi-3.1-Mini-128K-Ins | Mistral-7B-Instruct-v0.3 | Mistral-Nemo-12B-Ins-2407 | Llama-3.1-8B-Ins | Gemma-2-9B-Ins | Gemini 1.5 Flash | GPT-4o-mini-2024-07-18 (Chat) |
|-----------|------------------|-----------------------|--------------------------|---------------------------|------------------|----------------|------------------|-------------------------------|
| Arabic | 44.2 | 35.4 | 33.7 | 45.3 | 49.1 | 56.3 | 73.6 | 67.1 |
| Chinese | 52.6 | 46.9 | 45.9 | 58.2 | 54.4 | 62.7 | 66.7 | 70.8 |
| Dutch | 57.7 | 48.0 | 51.3 | 60.1 | 55.9 | 66.7 | 80.6 | 74.2 |
| French | 61.1 | 61.7 | 53.0 | 63.8 | 62.8 | 67.0 | 82.9 | 75.6 |
| German | 62.4 | 61.3 | 50.1 | 64.5 | 59.9 | 65.7 | 79.5 | 74.3 |
| Italian | 62.8 | 63.1 | 52.5 | 64.1 | 55.9 | 65.7 | 82.6 | 75.9 |
| Russian | 50.4 | 45.3 | 48.9 | 59.0 | 57.4 | 63.2 | 78.7 | 72.6 |
| Spanish | 62.6 | 61.3 | 53.9 | 64.3 | 62.6 | 66.0 | 80.0 | 75.5 |
| Ukrainian | 45.2 | 36.7 | 46.9 | 56.6 | 52.9 | 62.0 | 77.4 | 72.6 |
### Long Context
Phi-3.5-mini supports 128K context length, therefore the model is capable of several long context tasks including long document/meeting summarization, long document QA, long document information retrieval. We see that Phi-3.5-mini is clearly better than Gemma-2 family which only supports 8K context length. Phi-3.5-mini is competitive with other much larger open-weight models such as Llama-3.1-8B-instruct, Mistral-7B-instruct-v0.3, and Mistral-Nemo-12B-instruct-2407.
| Benchmark | Phi-3.5-mini-instruct | Llama-3.1-8B-instruct | Mistral-7B-instruct-v0.3 | Mistral-Nemo-12B-instruct-2407 | Gemini-1.5-Flash | GPT-4o-mini-2024-07-18 (Chat) |
|--|--|--|--|--|--|--|
| GovReport | 25.9 | 25.1 | 26.0 | 25.6 | 27.8 | 24.8 |
| QMSum | 21.3 | 21.6 | 21.3 | 22.1 | 24.0 | 21.7 |
| Qasper | 41.9 | 37.2 | 31.4 | 30.7 | 43.5 | 39.8 |
| SQuALITY | 25.3 | 26.2 | 25.9 | 25.8 | 23.5 | 23.8 |
| SummScreenFD | 16.0 | 17.6 | 17.5 | 18.2 | 16.3 | 17.0 |
| **Average** | **26.1** | **25.5** | **24.4** | **24.5** | **27.0** | **25.4** |
RULER: a retrieval-based benchmark for long context understanding
| Model | 4K | 8K | 16K | 32K | 64K | 128K | Average |
|--|--|--|--|--|--|--|--|
| **Phi-3.5-mini-instruct** | 94.3 | 91.1 | 90.7 | 87.1 | 78.0 | 63.6 | **84.1** |
| **Llama-3.1-8B-instruct** | 95.5 | 93.8 | 91.6 | 87.4 | 84.7 | 77.0 | **88.3** |
| **Mistral-Nemo-12B-instruct-2407** | 87.8 | 87.2 | 87.7 | 69.0 | 46.8 | 19.0 | **66.2** |
RepoQA: a benchmark for long context code understanding
| Model | Python | C++ | Rust | Java | TypeScript | Average |
|--|--|--|--|--|--|--|
| **Phi-3.5-mini-instruct** | 86 | 67 | 73 | 77 | 82 | **77** |
| **Llama-3.1-8B-instruct** | 80 | 65 | 73 | 76 | 63 | **71** |
| **Mistral-7B-instruct-v0.3** | 61 | 57 | 51 | 61 | 80 | **62** |
## Usage
### Requirements
Phi-3 family has been integrated in the `4.43.0` version of `transformers`. The current `transformers` version can be verified with: `pip list | grep transformers`.
Examples of required packages:
```
flash_attn==2.5.8
torch==2.3.1
accelerate==0.31.0
transformers==4.43.0
```
Phi-3.5-mini-instruct is also available in [Azure AI Studio](https://aka.ms/try-phi3.5mini)
### Tokenizer
Phi-3.5-mini-Instruct supports a vocabulary size of up to `32064` tokens. The [tokenizer files](https://huggingface.co/microsoft/Phi-3.5-mini-instruct/blob/main/added_tokens.json) already provide placeholder tokens that can be used for downstream fine-tuning, but they can also be extended up to the model's vocabulary size.
### Input Formats
Given the nature of the training data, the Phi-3.5-mini-instruct model is best suited for prompts using the chat format as follows:
```
<|system|>
You are a helpful assistant.<|end|>
<|user|>
How to explain Internet for a medieval knight?<|end|>
<|assistant|>
```
### Loading the model locally
After obtaining the Phi-3.5-mini-instruct model checkpoint, users can use this sample code for inference.
```python
import torch
from modelscope import AutoModelForCausalLM, AutoTokenizer
from transformers import pipeline
torch.random.manual_seed(0)
model = AutoModelForCausalLM.from_pretrained(
"LLM-Research/Phi-3.5-mini-instruct",
device_map="cuda",
torch_dtype="auto",
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained("LLM-Research/Phi-3.5-mini-instruct")
messages = [
{"role": "system", "content": "You are a helpful AI assistant."},
{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"},
{"role": "assistant", "content": "Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey."},
{"role": "user", "content": "What about solving an 2x + 3 = 7 equation?"},
]
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
)
generation_args = {
"max_new_tokens": 500,
"return_full_text": False,
"temperature": 0.0,
"do_sample": False,
}
output = pipe(messages, **generation_args)
print(output[0]['generated_text'])
```
Notes: If you want to use flash attention, call _AutoModelForCausalLM.from_pretrained()_ with _attn_implementation="flash_attention_2"_
## Responsible AI Considerations
Like other language models, the Phi family of models can potentially behave in ways that are unfair, unreliable, or offensive. Some of the limiting behaviors to be aware of include:
+ Quality of Service: The Phi models are trained primarily on English text and some additional multilingual text. Languages other than English will experience worse performance as well as performance disparities across non-English. English language varieties with less representation in the training data might experience worse performance than standard American English.
+ Multilingual performance and safety gaps: We believe it is important to make language models more widely available across different languages, but the Phi 3 models still exhibit challenges common across multilingual releases. As with any deployment of LLMs, developers will be better positioned to test for performance or safety gaps for their linguistic and cultural context and customize the model with additional fine-tuning and appropriate safeguards.
+ Representation of Harms & Perpetuation of Stereotypes: These models can over- or under-represent groups of people, erase representation of some groups, or reinforce demeaning or negative stereotypes. Despite safety post-training, these limitations may still be present due to differing levels of representation of different groups, cultural contexts, or prevalence of examples of negative stereotypes in training data that reflect real-world patterns and societal biases.
+ Inappropriate or Offensive Content: These models may produce other types of inappropriate or offensive content, which may make it inappropriate to deploy for sensitive contexts without additional mitigations that are specific to the case.
+ Information Reliability: Language models can generate nonsensical content or fabricate content that might sound reasonable but is inaccurate or outdated.
+ Limited Scope for Code: Majority of Phi-3 training data is based in Python and use common packages such as "typing, math, random, collections, datetime, itertools". If the model generates Python scripts that utilize other packages or scripts in other languages, we strongly recommend users manually verify all API uses.
+ Long Conversation: Phi-3 models, like other models, can in some cases generate responses that are repetitive, unhelpful, or inconsistent in very long chat sessions in both English and non-English languages. Developers are encouraged to place appropriate mitigations, like limiting conversation turns to account for the possible conversational drift
Developers should apply responsible AI best practices, including mapping, measuring, and mitigating risks associated with their specific use case and cultural, linguistic context. Phi-3 family of models are general purpose models. As developers plan to deploy these models for specific use cases, they are encouraged to fine-tune the models for their use case and leverage the models as part of broader AI systems with language-specific safeguards in place. Important areas for consideration include:
+ Allocation: Models may not be suitable for scenarios that could have consequential impact on legal status or the allocation of resources or life opportunities (ex: housing, employment, credit, etc.) without further assessments and additional debiasing techniques.
+ High-Risk Scenarios: Developers should assess the suitability of using models in high-risk scenarios where unfair, unreliable or offensive outputs might be extremely costly or lead to harm. This includes providing advice in sensitive or expert domains where accuracy and reliability are critical (ex: legal or health advice). Additional safeguards should be implemented at the application level according to the deployment context.
+ Misinformation: Models may produce inaccurate information. Developers should follow transparency best practices and inform end-users they are interacting with an AI system. At the application level, developers can build feedback mechanisms and pipelines to ground responses in use-case specific, contextual information, a technique known as Retrieval Augmented Generation (RAG).
+ Generation of Harmful Content: Developers should assess outputs for their context and use available safety classifiers or custom solutions appropriate for their use case.
+ Misuse: Other forms of misuse such as fraud, spam, or malware production may be possible, and developers should ensure that their applications do not violate applicable laws and regulations.
## Training
### Model
**Architecture:** Phi-3.5-mini has 3.8B parameters and is a dense decoder-only Transformer model using the same tokenizer as Phi-3 Mini.<br>
**Inputs:** Text. It is best suited for prompts using chat format.<br>
**Context length:** 128K tokens<br>
**GPUs:** 512 H100-80G<br>
**Training time:** 10 days<br>
**Training data:** 3.4T tokens<br>
**Outputs:** Generated text in response to the input<br>
**Dates:** Trained between June and August 2024<br>
**Status:** This is a static model trained on an offline dataset with cutoff date October 2023 for publicly available data. Future versions of the tuned models may be released as we improve models.<br>
**Supported languages:** Arabic, Chinese, Czech, Danish, Dutch, English, Finnish, French, German, Hebrew, Hungarian, Italian, Japanese, Korean, Norwegian, Polish, Portuguese, Russian, Spanish, Swedish, Thai, Turkish, Ukrainian<br>
**Release date:** August 2024<br>
### Training Datasets
Our training data includes a wide variety of sources, totaling 3.4 trillion tokens, and is a combination of
1) publicly available documents filtered rigorously for quality, selected high-quality educational data, and code;
2) newly created synthetic, “textbook-like” data for the purpose of teaching math, coding, common sense reasoning, general knowledge of the world (science, daily activities, theory of mind, etc.);
3) high quality chat format supervised data covering various topics to reflect human preferences on different aspects such as instruct-following, truthfulness, honesty and helpfulness.
We are focusing on the quality of data that could potentially improve the reasoning ability for the model, and we filter the publicly available documents to contain the correct level of knowledge. As an example, the result of a game in premier league in a particular day might be good training data for frontier models, but we need to remove such information to leave more model capacity for reasoning for the small size models. More details about data can be found in the [Phi-3 Technical Report](https://arxiv.org/pdf/2404.14219).
### Fine-tuning
A basic example of multi-GPUs supervised fine-tuning (SFT) with TRL and Accelerate modules is provided [here](https://huggingface.co/microsoft/Phi-3.5-mini-instruct/resolve/main/sample_finetune.py).
## Benchmarks
We report the results under completion format for Phi-3.5-mini on standard open-source benchmarks measuring the model's reasoning ability (both common sense reasoning and logical reasoning). We compare to Mistral-7B-Instruct-v0.3, Mistral-Nemo-12B-Ins-2407, Llama-3.1-8B-Ins, Gemma-2-9B-Ins, Gemini 1.5 Flash, and GPT-4o-mini-2024-07-18 (Chat).
All the reported numbers are produced with the exact same pipeline to ensure that the numbers are comparable. These numbers might differ from other published numbers due to slightly different choices in the evaluation.
As is now standard, we use few-shot prompts to evaluate the models, at temperature 0.
The prompts and number of shots are part of a Microsoft internal tool to evaluate language models, and in particular we did no optimization to the pipeline for Phi-3.
More specifically, we do not change prompts, pick different few-shot examples, change prompt format, or do any other form of optimization for the model.
The number of kshot examples is listed per-benchmark. At the high-level overview of the model quality on representative benchmarks:
| Category | Benchmark | Phi-3.5 Mini-Ins | Mistral-7B-Instruct-v0.3 | Mistral-Nemo-12B-Ins-2407 | Llama-3.1-8B-Ins | Gemma-2-9B-Ins | Gemini 1.5 Flash | GPT-4o-mini-2024-07-18 (Chat) |
|----------------|--------------------------|------------------|--------------------------|---------------------------|------------------|----------------|------------------|------------------------------|
| Popular aggregated benchmark | Arena Hard | 37 | 18.1 | 39.4 | 25.7 | 42 | 55.2 | 75 |
| | BigBench Hard CoT (0-shot) | 69 | 33.4 | 60.2 | 63.4 | 63.5 | 66.7 | 80.4 |
| | MMLU (5-shot) | 69 | 60.3 | 67.2 | 68.1 | 71.3 | 78.7 | 77.2 |
| | MMLU-Pro (0-shot, CoT) | 47.4 | 18 | 40.7 | 44 | 50.1 | 57.2 | 62.8 |
| Reasoning | ARC Challenge (10-shot) | 84.6 | 77.9 | 84.8 | 83.1 | 89.8 | 92.8 | 93.5 |
| | BoolQ (2-shot) | 78 | 80.5 | 82.5 | 82.8 | 85.7 | 85.8 | 88.7 |
| | GPQA (0-shot, CoT) | 30.4 | 15.6 | 28.6 | 26.3 | 29.2 | 37.5 | 41.1 |
| | HellaSwag (5-shot) | 69.4 | 71.6 | 76.7 | 73.5 | 80.9 | 67.5 | 87.1 |
| | OpenBookQA (10-shot) | 79.2 | 78 | 84.4 | 84.8 | 89.6 | 89 | 90 |
| | PIQA (5-shot) | 81 | 73.4 | 83.5 | 81.2 | 83.7 | 87.5 | 88.7 |
| | Social IQA (5-shot) | 74.7 | 73 | 75.3 | 71.8 | 74.7 | 77.8 | 82.9 |
| | TruthfulQA (MC2) (10-shot) | 64 | 64.7 | 68.1 | 69.2 | 76.6 | 76.6 | 78.2 |
| | WinoGrande (5-shot) | 68.5 | 58.1 | 70.4 | 64.7 | 74 | 74.7 | 76.9 |
| Multilingual | Multilingual MMLU (5-shot) | 55.4 | 47.4 | 58.9 | 56.2 | 63.8 | 77.2 | 72.9 |
| | MGSM (0-shot CoT) | 47.9 | 31.8 | 63.3 | 56.7 | 76.4 | 75.8 | 81.7 |
| Math | GSM8K (8-shot, CoT) | 86.2 | 54.4 | 84.2 | 82.4 | 84.9 | 82.4 | 91.3 |
| | MATH (0-shot, CoT) | 48.5 | 19 | 31.2 | 47.6 | 50.9 | 38 | 70.2 |
| Long context | Qasper | 41.9 | 31.4 | 30.7 | 37.2 | 13.9 | 43.5 | 39.8 |
| | SQuALITY | 24.3 | 25.9 | 25.8 | 26.2 | 0 | 23.5 | 23.8 |
| Code Generation| HumanEval (0-shot) | 62.8 | 35.4 | 63.4 | 66.5 | 61 | 74.4 | 86.6 |
| | MBPP (3-shot) | 69.6 | 50.4 | 68.1 | 69.4 | 69.3 | 77.5 | 84.1 |
| **Average** | | **61.4** | **48.5** | **61.3** | **61.0** | **63.3** | **68.5** | **74.9** |
We take a closer look at different categories across public benchmark datasets at the table below:
| Category | Phi-3.5 Mini-Ins | Mistral-7B-Instruct-v0.3 | Mistral-Nemo-12B-Ins-2407 | Llama-3.1-8B-Ins | Gemma-2-9B-Ins | Gemini 1.5 Flash | GPT-4o-mini-2024-07-18 (Chat) |
|----------------------------|------------------|--------------------------|---------------------------|------------------|----------------|------------------|------------------------------|
| Popular aggregated benchmark | 55.6 | 32.5 | 51.9 | 50.3 | 56.7 | 64.5 | 73.9 |
| Reasoning | 70.1 | 65.2 | 72.2 | 70.5 | 75.4 | 77.7 | 80 |
| Language understanding | 62.6 | 62.8 | 67 | 62.9 | 72.8 | 66.6 | 76.8 |
| Robustness | 59.7 | 53.4 | 65.2 | 59.8 | 64.7 | 68.9 | 77.5 |
| Long context | 26.1 | 25.5 | 24.4 | 24.5 | 0 | 27 | 25.4 |
| Math | 67.4 | 36.7 | 57.7 | 65 | 67.9 | 60.2 | 80.8 |
| Code generation | 62 | 43.1 | 56.9 | 65.8 | 58.3 | 66.8 | 69.9 |
| Multilingual | 55.2 | 47.9 | 55.3 | 47.5 | 59.6 | 64.3 | 76.6 |
Overall, the model with only 3.8B-param achieves a similar level of multilingual language understanding and reasoning ability as much larger models.
However, it is still fundamentally limited by its size for certain tasks.
The model simply does not have the capacity to store too much factual knowledge, therefore, users may experience factual incorrectness.
However, we believe such weakness can be resolved by augmenting Phi-3.5 with a search engine, particularly when using the model under RAG settings.
## Safety Evaluation and Red-Teaming
We leveraged various evaluation techniques including red teaming, adversarial conversation simulations, and multilingual safety evaluation benchmark datasets to
evaluate Phi-3.5 models' propensity to produce undesirable outputs across multiple languages and risk categories.
Several approaches were used to compensate for the limitations of one approach alone. Findings across the various evaluation methods indicate that safety
post-training that was done as detailed in the [Phi-3 Safety Post-Training paper](https://arxiv.org/pdf/2407.13833) had a positive impact across multiple languages and risk categories as observed by
refusal rates (refusal to output undesirable outputs) and robustness to jailbreak techniques. Note, however, while comprehensive red team evaluations were conducted
across all models in the prior release of Phi models, red teaming was largely focused on Phi-3.5 MOE across multiple languages and risk categories for this release as
it is the largest and more capable model of the three models. Details on prior red team evaluations across Phi models can be found in the [Phi-3 Safety Post-Training paper](https://arxiv.org/pdf/2407.13833).
For this release, insights from red teaming indicate that the models may refuse to generate undesirable outputs in English, even when the request for undesirable output
is in another language. Models may also be more susceptible to longer multi-turn jailbreak techniques across both English and non-English languages. These findings
highlight the need for industry-wide investment in the development of high-quality safety evaluation datasets across multiple languages, including low resource languages,
and risk areas that account for cultural nuances where those languages are spoken.
## Software
* [PyTorch](https://github.com/pytorch/pytorch)
* [Transformers](https://github.com/huggingface/transformers)
* [Flash-Attention](https://github.com/HazyResearch/flash-attention)
## Hardware
Note that by default, the Phi-3.5-mini-instruct model uses flash attention, which requires certain types of GPU hardware to run. We have tested on the following GPU types:
* NVIDIA A100
* NVIDIA A6000
* NVIDIA H100
If you want to run the model on:
* NVIDIA V100 or earlier generation GPUs: call AutoModelForCausalLM.from_pretrained() with attn_implementation="eager"
## License
The model is licensed under the [MIT license](./LICENSE).
## Trademarks
This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow[Microsofts Trademark & Brand Guidelines](https://www.microsoft.com/en-us/legal/intellectualproperty/trademarks). Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-partys policies.
## Appendix A
#### MGSM
| Languages | Phi-3.5-Mini-Instruct | Phi-3.0-Mini-128k-Instruct (June2024) | Mistral-7B-Instruct-v0.3 | Mistral-Nemo-12B-Ins-2407 | Llama-3.1-8B-Ins | Gemma-2-9B-Ins | Gemini 1.5 Flash | GPT-4o-mini-2024-07-18 (Chat) |
|-----------|------------------------|---------------------------------------|--------------------------|---------------------------|------------------|----------------|------------------|-------------------------------|
| German | 69.6 | 65.2 | 42.4 | 74.4 | 68.4 | 76.8 | 81.6 | 82.8 |
| English | 85.2 | 83.2 | 60.0 | 86.0 | 81.2 | 88.8 | 90.8 | 90.8 |
| Spanish | 79.2 | 77.6 | 46.4 | 75.6 | 66.4 | 82.4 | 84.8 | 86.8 |
| French | 71.6 | 72.8 | 47.2 | 70.4 | 66.8 | 74.4 | 77.2 | 81.6 |
| Japanese | 50.0 | 35.2 | 22.8 | 62.4 | 49.2 | 67.6 | 77.6 | 80.4 |
| Russian | 67.2 | 51.6 | 43.2 | 73.6 | 67.2 | 78.4 | 84.8 | 86.4 |
| Thai | 29.6 | 6.4 | 18.4 | 53.2 | 56.0 | 76.8 | 87.6 | 81.6 |
| Chinese | 60.0 | 52.8 | 42.4 | 66.4 | 68.0 | 72.8 | 82.0 | 82.0 |
#### Multilingual MMLU-pro
| Languages | Phi-3.5-Mini-Instruct | Phi-3.0-Mini-128k-Instruct (June2024) | Mistral-7B-Instruct-v0.3 | Mistral-Nemo-12B-Ins-2407 | Llama-3.1-8B-Ins | Gemma-2-9B-Ins | Gemini 1.5 Flash | GPT-4o-mini-2024-07-18 (Chat) |
|------------|-----------------------|---------------------------------------|--------------------------|---------------------------|------------------|----------------|------------------|-------------------------------|
| Czech | 24.9 | 26.3 | 14.6 | 30.6 | 23.0 | 40.5 | 59.0 | 40.9 |
| English | 47.7 | 46.2 | 17.7 | 39.8 | 43.1 | 49.0 | 66.1 | 62.7 |
| Finnish | 22.3 | 20.5 | 11.5 | 30.4 | 9.7 | 37.5 | 54.5 | 50.1 |
| Norwegian | 29.9 | 27.8 | 14.4 | 33.2 | 22.2 | 44.4 | 60.7 | 59.1 |
| Polish | 25.7 | 26.4 | 16.3 | 33.6 | 9.2 | 41.7 | 53.9 | 42.8 |
| Portuguese | 38.7 | 37.6 | 15.3 | 36.0 | 29.3 | 43.5 | 54.0 | 56.9 |
| Swedish | 30.7 | 28.1 | 15.5 | 34.3 | 16.9 | 42.6 | 57.7 | 55.5 |
#### MEGA
##### MLQA
| Languages | Phi-3.5-Mini-Instruct | Phi-3.0-Mini-128k-Instruct (June2024) | Mistral-7B-Instruct-v0.3 | Mistral-Nemo-12B-Ins-2407 | Llama-3.1-8B-Ins | Gemma-2-9B-Ins | Gemini 1.5 Flash | GPT-4o-mini-2024-07-18 (Chat) |
|-----------|-----------------------|---------------------------------------|--------------------------|---------------------------|------------------|----------------|------------------|-------------------------------|
| Arabic | 54.3 | 32.7 | 23.5 | 31.4 | 31.5 | 57.4 | 63.8 | 64.0 |
| Chinese | 36.1 | 31.8 | 22.4 | 27.4 | 18.6 | 45.4 | 38.1 | 38.9 |
| English | 80.3 | 78.9 | 68.2 | 75.5 | 67.2 | 82.9 | 69.5 | 82.2 |
| German | 61.8 | 59.1 | 49.0 | 57.8 | 38.9 | 63.8 | 55.9 | 64.1 |
| Spanish | 68.8 | 67.0 | 50.3 | 63.6 | 52.7 | 72.8 | 59.6 | 70.1 |
##### TyDi QA
| Languages | Phi-3.5-Mini-Instruct | Phi-3.0-Mini-128k-Instruct (June2024) | Mistral-7B-Instruct-v0.3 | Mistral-Nemo-12B-Ins-2407 | Llama-3.1-8B-Ins | Gemma-2-9B-Ins | Gemini 1.5 Flash | GPT-4o-mini-2024-07-18 (Chat) |
|-----------|-----------------------|---------------------------------------|--------------------------|---------------------------|------------------|----------------|------------------|-------------------------------|
| Arabic | 69.7 | 54.4 | 52.5 | 49.8 | 33.7 | 81.1 | 78.8 | 84.9 |
| English | 82.0 | 82.0 | 60.5 | 77.3 | 65.1 | 82.4 | 60.9 | 81.8 |
| Finnish | 70.3 | 64.3 | 68.6 | 57.1 | 74.4 | 85.7 | 73.5 | 84.8 |
| Japanese | 65.4 | 56.7 | 45.3 | 54.8 | 34.1 | 74.6 | 59.7 | 73.3 |
| Korean | 74.0 | 60.4 | 54.5 | 54.2 | 54.9 | 83.8 | 60.7 | 82.3 |
| Russian | 63.5 | 62.7 | 52.3 | 55.7 | 27.4 | 69.8 | 60.1 | 72.5 |
| Thai | 64.4 | 49.0 | 51.8 | 43.5 | 48.5 | 81.4 | 71.6 | 78.2 |
##### XCOPA
| Languages | Phi-3.5-Mini-Instruct | Phi-3.0-Mini-128k-Instruct (June2024) | Mistral-7B-Instruct-v0.3 | Mistral-Nemo-12B-Ins-2407 | Llama-3.1-8B-Ins | Gemma-2-9B-Ins | Gemini 1.5 Flash | GPT-4o-mini-2024-07-18 (Chat) |
|-----------|-----------------------|---------------------------------------|--------------------------|---------------------------|------------------|----------------|------------------|-------------------------------|
| English | 94.6 | 94.6 | 85.6 | 94.4 | 37.6 | 63.8 | 92.0 | 98.2 |
| Italian | 86.8 | 84.8 | 76.8 | 83.2 | 16.2 | 37.2 | 85.6 | 97.6 |
| Turkish | 58.6 | 57.2 | 61.6 | 56.6 | 38.4 | 60.2 | 91.4 | 94.6 |

41
SECURITY.md Normal file
View File

@ -0,0 +1,41 @@
<!-- BEGIN MICROSOFT SECURITY.MD V0.0.9 BLOCK -->
## Security
Microsoft takes the security of our software products and services seriously, which includes all source code repositories managed through our GitHub organizations, which include [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet) and [Xamarin](https://github.com/xamarin).
If you believe you have found a security vulnerability in any Microsoft-owned repository that meets [Microsoft's definition of a security vulnerability](https://aka.ms/security.md/definition), please report it to us as described below.
## Reporting Security Issues
**Please do not report security vulnerabilities through public GitHub issues.**
Instead, please report them to the Microsoft Security Response Center (MSRC) at [https://msrc.microsoft.com/create-report](https://aka.ms/security.md/msrc/create-report).
If you prefer to submit without logging in, send email to [secure@microsoft.com](mailto:secure@microsoft.com). If possible, encrypt your message with our PGP key; please download it from the [Microsoft Security Response Center PGP Key page](https://aka.ms/security.md/msrc/pgp).
You should receive a response within 24 hours. If for some reason you do not, please follow up via email to ensure we received your original message. Additional information can be found at [microsoft.com/msrc](https://www.microsoft.com/msrc).
Please include the requested information listed below (as much as you can provide) to help us better understand the nature and scope of the possible issue:
* Type of issue (e.g. buffer overflow, SQL injection, cross-site scripting, etc.)
* Full paths of source file(s) related to the manifestation of the issue
* The location of the affected source code (tag/branch/commit or direct URL)
* Any special configuration required to reproduce the issue
* Step-by-step instructions to reproduce the issue
* Proof-of-concept or exploit code (if possible)
* Impact of the issue, including how an attacker might exploit the issue
This information will help us triage your report more quickly.
If you are reporting for a bug bounty, more complete reports can contribute to a higher bounty award. Please visit our [Microsoft Bug Bounty Program](https://aka.ms/security.md/msrc/bounty) page for more details about our active programs.
## Preferred Languages
We prefer all communications to be in English.
## Policy
Microsoft follows the principle of [Coordinated Vulnerability Disclosure](https://aka.ms/security.md/cvd).
<!-- END MICROSOFT SECURITY.MD BLOCK -->

13
added_tokens.json Normal file
View File

@ -0,0 +1,13 @@
{
"<|endoftext|>": 32000,
"<|assistant|>": 32001,
"<|placeholder1|>": 32002,
"<|placeholder2|>": 32003,
"<|placeholder3|>": 32004,
"<|placeholder4|>": 32005,
"<|system|>": 32006,
"<|end|>": 32007,
"<|placeholder5|>": 32008,
"<|placeholder6|>": 32009,
"<|user|>": 32010
}

138
config.json Normal file
View File

@ -0,0 +1,138 @@
{
"_name_or_path": "Phi-3.5-mini-instruct",
"architectures": [
"Phi3ForCausalLM"
],
"attention_dropout": 0.0,
"auto_map": {
"AutoConfig": "configuration_phi3.Phi3Config",
"AutoModelForCausalLM": "modeling_phi3.Phi3ForCausalLM"
},
"bos_token_id": 1,
"embd_pdrop": 0.0,
"eos_token_id": 32000,
"hidden_act": "silu",
"hidden_size": 3072,
"initializer_range": 0.02,
"intermediate_size": 8192,
"max_position_embeddings": 131072,
"model_type": "phi3",
"num_attention_heads": 32,
"num_hidden_layers": 32,
"num_key_value_heads": 32,
"original_max_position_embeddings": 4096,
"pad_token_id": 32000,
"resid_pdrop": 0.0,
"rms_norm_eps": 1e-05,
"rope_scaling": {
"long_factor": [
1.0800000429153442,
1.1100000143051147,
1.1399999856948853,
1.340000033378601,
1.5899999141693115,
1.600000023841858,
1.6200000047683716,
2.620000123977661,
3.2300000190734863,
3.2300000190734863,
4.789999961853027,
7.400000095367432,
7.700000286102295,
9.09000015258789,
12.199999809265137,
17.670000076293945,
24.46000099182129,
28.57000160217285,
30.420001983642578,
30.840002059936523,
32.590003967285156,
32.93000411987305,
42.320003509521484,
44.96000289916992,
50.340003967285156,
50.45000457763672,
57.55000305175781,
57.93000411987305,
58.21000289916992,
60.1400032043457,
62.61000442504883,
62.62000274658203,
62.71000289916992,
63.1400032043457,
63.1400032043457,
63.77000427246094,
63.93000411987305,
63.96000289916992,
63.970001220703125,
64.02999877929688,
64.06999969482422,
64.08000183105469,
64.12000274658203,
64.41000366210938,
64.4800033569336,
64.51000213623047,
64.52999877929688,
64.83999633789062
],
"short_factor": [
1.0,
1.0199999809265137,
1.0299999713897705,
1.0299999713897705,
1.0499999523162842,
1.0499999523162842,
1.0499999523162842,
1.0499999523162842,
1.0499999523162842,
1.0699999332427979,
1.0999999046325684,
1.1099998950958252,
1.1599998474121094,
1.1599998474121094,
1.1699998378753662,
1.2899998426437378,
1.339999794960022,
1.679999828338623,
1.7899998426437378,
1.8199998140335083,
1.8499997854232788,
1.8799997568130493,
1.9099997282028198,
1.9399996995925903,
1.9899996519088745,
2.0199997425079346,
2.0199997425079346,
2.0199997425079346,
2.0199997425079346,
2.0199997425079346,
2.0199997425079346,
2.0299997329711914,
2.0299997329711914,
2.0299997329711914,
2.0299997329711914,
2.0299997329711914,
2.0299997329711914,
2.0299997329711914,
2.0299997329711914,
2.0299997329711914,
2.0799996852874756,
2.0899996757507324,
2.189999580383301,
2.2199995517730713,
2.5899994373321533,
2.729999542236328,
2.749999523162842,
2.8399994373321533
],
"type": "longrope"
},
"rope_theta": 10000.0,
"sliding_window": 262144,
"tie_word_embeddings": false,
"torch_dtype": "bfloat16",
"transformers_version": "4.43.3",
"use_cache": true,
"attention_bias": false,
"vocab_size": 32064
}

1
configuration.json Normal file
View File

@ -0,0 +1 @@
{"framework": "pytorch", "task": "text-generation", "allow_remote": true}

227
configuration_phi3.py Normal file
View File

@ -0,0 +1,227 @@
# coding=utf-8
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Phi-3 model configuration"""
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
PHI3_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"microsoft/Phi-3-mini-4k-instruct": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/resolve/main/config.json",
"microsoft/Phi-3-mini-128k-instruct": "https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/config.json",
}
class Phi3Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the
[microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32064):
Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Phi3Model`].
hidden_size (`int`, *optional*, defaults to 3072):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 8192):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
resid_pdrop (`float`, *optional*, defaults to 0.0):
Dropout probability for mlp outputs.
embd_pdrop (`int`, *optional*, defaults to 0.0):
The dropout ratio for the embeddings.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio after computing the attention scores.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 4096):
The maximum sequence length that this model might ever be used with.
original_max_position_embeddings (`int`, *optional*, defaults to 4096):
The maximum sequence length that this model was trained with. This is used to determine the size of the
original RoPE embeddings when using long scaling.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon value used for the RMSNorm.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`dict`, *optional*):
The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be `longrope` and
the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
divided by the number of attention heads divided by 2.
bos_token_id (`int`, *optional*, defaults to 1):
The id of the "beginning-of-sequence" token.
eos_token_id (`int`, *optional*, defaults to 32000):
The id of the "end-of-sequence" token.
pad_token_id (`int`, *optional*, defaults to 32000):
The id of the padding token.
sliding_window (`int`, *optional*):
Sliding window attention window size. If `None`, no sliding window is applied.
Example:
```python
>>> from transformers import Phi3Model, Phi3Config
>>> # Initializing a Phi-3 style configuration
>>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
>>> # Initializing a model from the configuration
>>> model = Phi3Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "phi3"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=32064,
hidden_size=3072,
intermediate_size=8192,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=None,
resid_pdrop=0.0,
embd_pdrop=0.0,
attention_dropout=0.0,
hidden_act="silu",
max_position_embeddings=4096,
original_max_position_embeddings=4096,
initializer_range=0.02,
rms_norm_eps=1e-5,
use_cache=True,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
bos_token_id=1,
eos_token_id=32000,
pad_token_id=32000,
sliding_window=None,
**kwargs,
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.resid_pdrop = resid_pdrop
self.embd_pdrop = embd_pdrop
self.attention_dropout = attention_dropout
self.hidden_act = hidden_act
self.max_position_embeddings = max_position_embeddings
self.original_max_position_embeddings = original_max_position_embeddings
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self._rope_scaling_adjustment()
self._rope_scaling_validation()
self.sliding_window = sliding_window
super().__init__(
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
pad_token_id=pad_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
def _rope_scaling_adjustment(self):
"""
Adjust the `type` of the `rope_scaling` configuration for backward compatibility.
"""
if self.rope_scaling is None:
return
rope_scaling_type = self.rope_scaling.get("type", None)
# For backward compatibility if previous version used "su" or "yarn"
if rope_scaling_type is not None and rope_scaling_type in ["su", "yarn"]:
self.rope_scaling["type"] = "longrope"
def _rope_scaling_validation(self):
"""
Validate the `rope_scaling` configuration.
"""
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
raise ValueError(
"`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, "
f"got {self.rope_scaling}"
)
rope_scaling_type = self.rope_scaling.get("type", None)
rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
if rope_scaling_type is None or rope_scaling_type not in ["longrope"]:
raise ValueError(f"`rope_scaling`'s type field must be one of ['longrope'], got {rope_scaling_type}")
if not (
isinstance(rope_scaling_short_factor, list)
and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
):
raise ValueError(
f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
)
if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2:
raise ValueError(
f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}"
)
if not (
isinstance(rope_scaling_long_factor, list)
and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
):
raise ValueError(
f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
)
if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2:
raise ValueError(
f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}"
)

11
generation_config.json Normal file
View File

@ -0,0 +1,11 @@
{
"_from_model_config": true,
"bos_token_id": 1,
"eos_token_id": [
32007,
32001,
32000
],
"pad_token_id": 32000,
"transformers_version": "4.43.3"
}

BIN
model-00001-of-00002.safetensors (Stored with Git LFS) Normal file

Binary file not shown.

BIN
model-00002-of-00002.safetensors (Stored with Git LFS) Normal file

Binary file not shown.

View File

@ -0,0 +1,202 @@
{
"metadata": {
"total_size": 7642159104
},
"weight_map": {
"lm_head.weight": "model-00002-of-00002.safetensors",
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.0.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.0.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.1.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.1.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.10.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.10.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.11.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.11.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.12.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.12.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.13.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.13.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.14.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.14.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.15.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.15.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.16.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.16.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.17.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.17.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.18.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.18.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.19.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.19.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.2.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.2.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.20.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.20.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.21.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.21.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.22.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.22.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.23.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.23.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.24.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.24.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.25.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.25.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.26.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.26.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.27.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.27.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.28.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.28.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.29.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.29.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.3.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.3.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.30.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.30.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.31.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.31.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.4.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.4.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.5.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.5.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.6.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.6.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.7.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.7.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.8.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.8.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.9.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.9.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
"model.norm.weight": "model-00002-of-00002.safetensors"
}
}

1570
modeling_phi3.py Normal file

File diff suppressed because it is too large Load Diff

214
sample_finetune.py Normal file
View File

@ -0,0 +1,214 @@
import sys
import logging
import datasets
from datasets import load_dataset
from peft import LoraConfig
import torch
import transformers
from trl import SFTTrainer
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, BitsAndBytesConfig
"""
A simple example on using SFTTrainer and Accelerate to finetune Phi-3 models. For
a more advanced example, please follow HF alignment-handbook/scripts/run_sft.py.
This example has utilized DeepSpeed ZeRO3 offload to reduce the memory usage. The
script can be run on V100 or later generation GPUs. Here are some suggestions on
futher reducing memory consumption:
- reduce batch size
- decrease lora dimension
- restrict lora target modules
Please follow these steps to run the script:
1. Install dependencies:
conda install -c conda-forge accelerate
pip3 install -i https://pypi.org/simple/ bitsandbytes
pip3 install peft transformers trl datasets
pip3 install deepspeed
2. Setup accelerate and deepspeed config based on the machine used:
accelerate config
Here is a sample config for deepspeed zero3:
compute_environment: LOCAL_MACHINE
debug: false
deepspeed_config:
gradient_accumulation_steps: 1
offload_optimizer_device: none
offload_param_device: none
zero3_init_flag: true
zero3_save_16bit_model: true
zero_stage: 3
distributed_type: DEEPSPEED
downcast_bf16: 'no'
enable_cpu_affinity: false
machine_rank: 0
main_training_function: main
mixed_precision: bf16
num_machines: 1
num_processes: 4
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false
3. check accelerate config:
accelerate env
4. Run the code:
accelerate launch sample_finetune.py
"""
logger = logging.getLogger(__name__)
###################
# Hyper-parameters
###################
training_config = {
"bf16": True,
"do_eval": False,
"learning_rate": 5.0e-06,
"log_level": "info",
"logging_steps": 20,
"logging_strategy": "steps",
"lr_scheduler_type": "cosine",
"num_train_epochs": 1,
"max_steps": -1,
"output_dir": "./checkpoint_dir",
"overwrite_output_dir": True,
"per_device_eval_batch_size": 4,
"per_device_train_batch_size": 4,
"remove_unused_columns": True,
"save_steps": 100,
"save_total_limit": 1,
"seed": 0,
"gradient_checkpointing": True,
"gradient_checkpointing_kwargs":{"use_reentrant": False},
"gradient_accumulation_steps": 1,
"warmup_ratio": 0.2,
}
peft_config = {
"r": 16,
"lora_alpha": 32,
"lora_dropout": 0.05,
"bias": "none",
"task_type": "CAUSAL_LM",
"target_modules": "all-linear",
"modules_to_save": None,
}
train_conf = TrainingArguments(**training_config)
peft_conf = LoraConfig(**peft_config)
###############
# Setup logging
###############
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = train_conf.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process a small summary
logger.warning(
f"Process rank: {train_conf.local_rank}, device: {train_conf.device}, n_gpu: {train_conf.n_gpu}"
+ f" distributed training: {bool(train_conf.local_rank != -1)}, 16-bits training: {train_conf.fp16}"
)
logger.info(f"Training/evaluation parameters {train_conf}")
logger.info(f"PEFT parameters {peft_conf}")
################
# Model Loading
################
checkpoint_path = "microsoft/Phi-3.5-mini-instruct"
model_kwargs = dict(
use_cache=False,
trust_remote_code=True,
attn_implementation="flash_attention_2", # loading the model with flash-attenstion support
torch_dtype=torch.bfloat16,
device_map=None
)
model = AutoModelForCausalLM.from_pretrained(checkpoint_path, **model_kwargs)
tokenizer = AutoTokenizer.from_pretrained(checkpoint_path)
tokenizer.model_max_length = 2048
tokenizer.pad_token = tokenizer.unk_token # use unk rather than eos token to prevent endless generation
tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)
tokenizer.padding_side = 'right'
##################
# Data Processing
##################
def apply_chat_template(
example,
tokenizer,
):
messages = example["messages"]
example["text"] = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=False)
return example
raw_dataset = load_dataset("HuggingFaceH4/ultrachat_200k")
train_dataset = raw_dataset["train_sft"]
test_dataset = raw_dataset["test_sft"]
column_names = list(train_dataset.features)
processed_train_dataset = train_dataset.map(
apply_chat_template,
fn_kwargs={"tokenizer": tokenizer},
num_proc=10,
remove_columns=column_names,
desc="Applying chat template to train_sft",
)
processed_test_dataset = test_dataset.map(
apply_chat_template,
fn_kwargs={"tokenizer": tokenizer},
num_proc=10,
remove_columns=column_names,
desc="Applying chat template to test_sft",
)
###########
# Training
###########
trainer = SFTTrainer(
model=model,
args=train_conf,
peft_config=peft_conf,
train_dataset=processed_train_dataset,
eval_dataset=processed_test_dataset,
max_seq_length=2048,
dataset_text_field="text",
tokenizer=tokenizer,
packing=True
)
train_result = trainer.train()
metrics = train_result.metrics
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
#############
# Evaluation
#############
tokenizer.padding_side = 'left'
metrics = trainer.evaluate()
metrics["eval_samples"] = len(processed_test_dataset)
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# ############
# # Save model
# ############
trainer.save_model(train_conf.output_dir)

30
special_tokens_map.json Normal file
View File

@ -0,0 +1,30 @@
{
"bos_token": {
"content": "<s>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
"eos_token": {
"content": "<|endoftext|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
"pad_token": {
"content": "<|endoftext|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
"unk_token": {
"content": "<unk>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
}
}

93462
tokenizer.json Normal file

File diff suppressed because it is too large Load Diff

BIN
tokenizer.model (Stored with Git LFS) Normal file

Binary file not shown.

130
tokenizer_config.json Normal file
View File

@ -0,0 +1,130 @@
{
"add_bos_token": false,
"add_eos_token": false,
"added_tokens_decoder": {
"0": {
"content": "<unk>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"1": {
"content": "<s>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"2": {
"content": "</s>",
"lstrip": false,
"normalized": false,
"rstrip": true,
"single_word": false,
"special": false
},
"32000": {
"content": "<|endoftext|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32001": {
"content": "<|assistant|>",
"lstrip": false,
"normalized": false,
"rstrip": true,
"single_word": false,
"special": true
},
"32002": {
"content": "<|placeholder1|>",
"lstrip": false,
"normalized": false,
"rstrip": true,
"single_word": false,
"special": true
},
"32003": {
"content": "<|placeholder2|>",
"lstrip": false,
"normalized": false,
"rstrip": true,
"single_word": false,
"special": true
},
"32004": {
"content": "<|placeholder3|>",
"lstrip": false,
"normalized": false,
"rstrip": true,
"single_word": false,
"special": true
},
"32005": {
"content": "<|placeholder4|>",
"lstrip": false,
"normalized": false,
"rstrip": true,
"single_word": false,
"special": true
},
"32006": {
"content": "<|system|>",
"lstrip": false,
"normalized": false,
"rstrip": true,
"single_word": false,
"special": true
},
"32007": {
"content": "<|end|>",
"lstrip": false,
"normalized": false,
"rstrip": true,
"single_word": false,
"special": true
},
"32008": {
"content": "<|placeholder5|>",
"lstrip": false,
"normalized": false,
"rstrip": true,
"single_word": false,
"special": true
},
"32009": {
"content": "<|placeholder6|>",
"lstrip": false,
"normalized": false,
"rstrip": true,
"single_word": false,
"special": true
},
"32010": {
"content": "<|user|>",
"lstrip": false,
"normalized": false,
"rstrip": true,
"single_word": false,
"special": true
}
},
"bos_token": "<s>",
"chat_template": "{% for message in messages %}{% if message['role'] == 'system' and message['content'] %}{{'<|system|>\n' + message['content'] + '<|end|>\n'}}{% elif message['role'] == 'user' %}{{'<|user|>\n' + message['content'] + '<|end|>\n'}}{% elif message['role'] == 'assistant' %}{{'<|assistant|>\n' + message['content'] + '<|end|>\n'}}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>\n' }}{% else %}{{ eos_token }}{% endif %}",
"clean_up_tokenization_spaces": false,
"eos_token": "<|endoftext|>",
"legacy": false,
"model_max_length": 131072,
"pad_token": "<|endoftext|>",
"padding_side": "left",
"sp_model_kwargs": {},
"tokenizer_class": "LlamaTokenizer",
"unk_token": "<unk>",
"use_default_system_prompt": false
}