first commit
This commit is contained in:
parent
61bf5232ef
commit
447d936797
164
README.md
164
README.md
|
@ -1,3 +1,163 @@
|
|||
# Sa2VA-1B
|
||||
---
|
||||
license: mit
|
||||
pipeline_tag: image-text-to-text
|
||||
library_name: transformers
|
||||
base_model:
|
||||
- OpenGVLab/InternVL2-1B
|
||||
- OpenGVLab/InternVL2_5-8B
|
||||
- OpenGVLab/InternVL2_5-4B
|
||||
- OpenGVLab/InternViT-300M-448px-V2_5
|
||||
- internlm/internlm2_5-7b-chat
|
||||
- Qwen/Qwen2-0.5B-Instruct
|
||||
- Qwen/Qwen2.5-3B-Instruct
|
||||
base_model_relation: merge
|
||||
language:
|
||||
- multilingual
|
||||
tags:
|
||||
- Sa2VA
|
||||
- custom_code
|
||||
---
|
||||
|
||||
Sa2VA-1B
|
||||
# Sa2VA: Marrying SAM2 with LLaVA for Dense Grounded Understanding of Images and Videos
|
||||
|
||||
[\[📂 GitHub\]](https://github.com/magic-research/Sa2VA)
|
||||
[\[📜 Sa2VA paper\]](https://arxiv.org/abs/2501.04001)
|
||||
[\[🚀 Quick Start\]](#quick-start)
|
||||
|
||||
|
||||
|
||||
## Introduction
|
||||
|
||||
Sa2VA is an MLLM capable of question answering, visual prompt understanding, and dense object segmentation at both image and video levels. It achieves comparable performance to SOTA MLLMs Qwen2-VL and InternVL2.5 on question-answering benchmarks. Additionally, Sa2VA possesses the visual prompt understanding and dense object segmentation capabilities that SOTA MLLMs Qwen2-VL and InternVL2.5 lack. Sa2VA achieves SOTA performance on both image and video grounding and segmentation benchmarks.
|
||||
|
||||
## Sa2VA Family
|
||||
|
||||
We built the Sa2VA series based on Qwen2-VL and InternVL2/2.5. In the following table, we provide some Sa2VA models built on InternVL2.5. Other Sa2VA models will be open-sourced soon.
|
||||
|
||||
| Model Name | Base MLLM | Language Part | HF Link |
|
||||
|:----------:|:-----------------------------------------------------------------:|:---------------------------------------------------------------------------:|:----------------------------------------------------:|
|
||||
| Sa2VA-1B | [InternVL2.0-1B](https://huggingface.co/OpenGVLab/InternVL2-1B) | [Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) | [🤗 link](https://huggingface.co/ByteDance/Sa2VA-1B) |
|
||||
| Sa2VA-4B | [InternVL2.5-4B](https://huggingface.co/OpenGVLab/InternVL2_5-4B) | [Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) | [🤗 link](https://huggingface.co/ByteDance/Sa2VA-4B) |
|
||||
| Sa2VA-8B | [InternVL2.5-8B](https://huggingface.co/OpenGVLab/InternVL2_5-8B) | [internlm2_5-7b-chat](https://huggingface.co/internlm/internlm2_5-7b-chat) | [🤗 link](https://huggingface.co/ByteDance/Sa2VA-8B) |
|
||||
|
||||
## Sa2VA Performance
|
||||
| Model Name | MMBench | MME | RefCOCO | RefCOCO+ | RefCOCOg | MeVIS | DAVIS | ReVOS |
|
||||
|:----------:|:---------------------------------------------------------------:|:--------------------------------------------------------------------------:|:----------------------------------------------------:|:----------------------------------------------------:|:----------------------------------------------------:|:----------------------------------------------------:|:----------------------------------------------------:|:-----:|
|
||||
| Sa2VA-1B | 1381/405 | 68.3 | 77.4 | 69.9 | 72.3 | 50.8 | 72.3 | 47.6 |
|
||||
| Sa2VA-4B | 1536/530 | 77.3 | 78.9 | 71.7 | 74.1 | 52.1 | 73.8 | 53.2 |
|
||||
| Sa2VA-8B | 1617/511 | 81.6 | 81.6 | 76.2 | 78.7 | 57.0 | 75.2 | 57.6 |
|
||||
|
||||
|
||||
## Quick Start
|
||||
|
||||
We provide an example code to run `Sa2VA` using `transformers`.
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModel
|
||||
from PIL import Image
|
||||
import numpy as np
|
||||
import os
|
||||
|
||||
# load the model and tokenizer
|
||||
path = "ByteDance/Sa2VA-4B"
|
||||
model = AutoModel.from_pretrained(
|
||||
path,
|
||||
torch_dtype=torch.bfloat16,
|
||||
low_cpu_mem_usage=True,
|
||||
use_flash_attn=True,
|
||||
trust_remote_code=True).eval().cuda()
|
||||
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
|
||||
|
||||
# for image chat
|
||||
image_path = "/PATH/TO/IMAGE"
|
||||
text_prompts = "<image>Please describe the image."
|
||||
image = Image.open(image_path).convert('RGB')
|
||||
input_dict = {
|
||||
'image': image,
|
||||
'text': text_prompts,
|
||||
'past_text': '',
|
||||
'mask_prompts': None,
|
||||
'tokenizer': tokenizer,
|
||||
}
|
||||
return_dict = model.predict_forward(**input_dict)
|
||||
answer = return_dict["prediction"] # the text format answer
|
||||
|
||||
# for image chat with segmentation output
|
||||
image_path = "/PATH/TO/IMAGE"
|
||||
text_prompts = "<image>Could you please give me a brief description of the image? Please respond with interleaved segmentation masks for the corresponding parts of the answer."
|
||||
image = Image.open(image_path).convert('RGB')
|
||||
input_dict = {
|
||||
'image': image,
|
||||
'text': text_prompts,
|
||||
'past_text': '',
|
||||
'mask_prompts': None,
|
||||
'tokenizer': tokenizer,
|
||||
}
|
||||
return_dict = model.predict_forward(**input_dict)
|
||||
answer = return_dict["prediction"] # the text format answer
|
||||
masks = return_dict['prediction_masks'] # segmentation masks, list(np.array(1, h, w), ...)
|
||||
|
||||
# for chat with visual prompt (mask format) input
|
||||
mask_prompts = np.load('/PATH/TO/pred_masks.npy') # np.array(n_prompts, h, w)
|
||||
image_path = "/PATH/TO/IMAGE"
|
||||
text_prompts = "<image>Can you provide me with a detailed description of the region in the picture marked by region1."
|
||||
image = Image.open(image_path).convert('RGB')
|
||||
input_dict = {
|
||||
'image': image,
|
||||
'text': text_prompts,
|
||||
'past_text': '',
|
||||
'mask_prompts': mask_prompts,
|
||||
'tokenizer': tokenizer,
|
||||
}
|
||||
return_dict = model.predict_forward(**input_dict)
|
||||
answer = return_dict["prediction"] # the text format answer
|
||||
|
||||
# for video chat
|
||||
video_folder = "/PATH/TO/VIDEO_FOLDER"
|
||||
images_paths = os.listdir(video_folder)
|
||||
images_paths = [os.path.join(video_folder, image_path) for image_name in images_paths]
|
||||
if len(images_paths) > 5: # uniformly sample 5 frames
|
||||
step = (len(images_paths) - 1) // (5 - 1)
|
||||
images_paths = [images_paths[0]] + images_paths[1:-1][::step][1:] + [images_paths[-1]]
|
||||
text_prompts = "<image>Please describe the video."
|
||||
input_dict = {
|
||||
'video': images_paths,
|
||||
'text': text_prompts,
|
||||
'past_text': '',
|
||||
'mask_prompts': None,
|
||||
'tokenizer': tokenizer,
|
||||
}
|
||||
return_dict = model.predict_forward(**input_dict)
|
||||
answer = return_dict["prediction"] # the text format answer
|
||||
|
||||
|
||||
# for video chat with segmentation mask output
|
||||
video_folder = "/PATH/TO/VIDEO_FOLDER"
|
||||
images_paths = os.listdir(video_folder)
|
||||
images_paths = [os.path.join(video_folder, image_path) for image_name in images_paths]
|
||||
text_prompts = "<image>Please segment the person."
|
||||
input_dict = {
|
||||
'video': images_paths,
|
||||
'text': text_prompts,
|
||||
'past_text': '',
|
||||
'mask_prompts': None,
|
||||
'tokenizer': tokenizer,
|
||||
}
|
||||
return_dict = model.predict_forward(**input_dict)
|
||||
answer = return_dict["prediction"] # the text format answer
|
||||
masks = return_dict['prediction_masks'] # segmentation masks, list(np.array(n_frames, h, w), ...)
|
||||
```
|
||||
|
||||
## Citation
|
||||
|
||||
If you find this project useful in your research, please consider citing:
|
||||
|
||||
```BibTeX
|
||||
@article{sa2va,
|
||||
title={Sa2VA: Marrying SAM2 with LLaVA for Dense Grounded Understanding of Images and Videos},
|
||||
author={Yuan, Haobo and Li, Xiangtai and Zhang, Tao and Huang, Zilong Huang and Xu, Shilin and Ji, Shunping and Tong, Yunhai and Qi, Lu and Feng, Jiashi and Yang, Ming-Hsuan},
|
||||
journal={arXiv preprint},
|
||||
year={2025}
|
||||
}
|
||||
```
|
||||
|
|
|
@ -0,0 +1,17 @@
|
|||
{
|
||||
"</box>": 151654,
|
||||
"</img>": 151647,
|
||||
"</p>": 151657,
|
||||
"</quad>": 151650,
|
||||
"</ref>": 151652,
|
||||
"<IMG_CONTEXT>": 151648,
|
||||
"<box>": 151653,
|
||||
"<img>": 151646,
|
||||
"<p>": 151656,
|
||||
"<quad>": 151649,
|
||||
"<ref>": 151651,
|
||||
"<|endoftext|>": 151643,
|
||||
"<|im_end|>": 151645,
|
||||
"<|im_start|>": 151644,
|
||||
"[SEG]": 151655
|
||||
}
|
|
@ -0,0 +1,194 @@
|
|||
{
|
||||
"_commit_hash": null,
|
||||
"architectures": [
|
||||
"Sa2VAChatModel"
|
||||
],
|
||||
"auto_map": {
|
||||
"AutoConfig": "configuration_sa2va_chat.Sa2VAChatConfig",
|
||||
"AutoModel": "modeling_sa2va_chat.Sa2VAChatModel",
|
||||
"AutoModelForCausalLM": "modeling_sa2va_chat.Sa2VAChatModel"
|
||||
},
|
||||
"downsample_ratio": 0.5,
|
||||
"dynamic_image_size": true,
|
||||
"force_image_size": 448,
|
||||
"hidden_size": 896,
|
||||
"llm_config": {
|
||||
"_name_or_path": "Qwen/Qwen2-0.5B-Instruct",
|
||||
"add_cross_attention": false,
|
||||
"architectures": [
|
||||
"Qwen2ForCausalLM"
|
||||
],
|
||||
"attention_dropout": 0.0,
|
||||
"bad_words_ids": null,
|
||||
"begin_suppress_tokens": null,
|
||||
"bos_token_id": 151643,
|
||||
"chunk_size_feed_forward": 0,
|
||||
"cross_attention_hidden_size": null,
|
||||
"decoder_start_token_id": null,
|
||||
"diversity_penalty": 0.0,
|
||||
"do_sample": false,
|
||||
"early_stopping": false,
|
||||
"encoder_no_repeat_ngram_size": 0,
|
||||
"eos_token_id": 151645,
|
||||
"exponential_decay_length_penalty": null,
|
||||
"finetuning_task": null,
|
||||
"forced_bos_token_id": null,
|
||||
"forced_eos_token_id": null,
|
||||
"hidden_act": "silu",
|
||||
"hidden_size": 896,
|
||||
"id2label": {
|
||||
"0": "LABEL_0",
|
||||
"1": "LABEL_1"
|
||||
},
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 4864,
|
||||
"is_decoder": false,
|
||||
"is_encoder_decoder": false,
|
||||
"label2id": {
|
||||
"LABEL_0": 0,
|
||||
"LABEL_1": 1
|
||||
},
|
||||
"length_penalty": 1.0,
|
||||
"max_length": 20,
|
||||
"max_position_embeddings": 32768,
|
||||
"max_window_layers": 24,
|
||||
"min_length": 0,
|
||||
"model_type": "qwen2",
|
||||
"no_repeat_ngram_size": 0,
|
||||
"num_attention_heads": 14,
|
||||
"num_beam_groups": 1,
|
||||
"num_beams": 1,
|
||||
"num_hidden_layers": 24,
|
||||
"num_key_value_heads": 2,
|
||||
"num_return_sequences": 1,
|
||||
"output_attentions": false,
|
||||
"output_hidden_states": false,
|
||||
"output_scores": false,
|
||||
"pad_token_id": null,
|
||||
"prefix": null,
|
||||
"problem_type": null,
|
||||
"pruned_heads": {},
|
||||
"remove_invalid_values": false,
|
||||
"repetition_penalty": 1.0,
|
||||
"return_dict": true,
|
||||
"return_dict_in_generate": false,
|
||||
"rms_norm_eps": 1e-06,
|
||||
"rope_theta": 1000000.0,
|
||||
"sep_token_id": null,
|
||||
"sliding_window": null,
|
||||
"suppress_tokens": null,
|
||||
"task_specific_params": null,
|
||||
"temperature": 1.0,
|
||||
"tf_legacy_loss": false,
|
||||
"tie_encoder_decoder": false,
|
||||
"tie_word_embeddings": true,
|
||||
"tokenizer_class": null,
|
||||
"top_k": 50,
|
||||
"top_p": 1.0,
|
||||
"torch_dtype": "bfloat16",
|
||||
"torchscript": false,
|
||||
"transformers_version": "4.44.0",
|
||||
"typical_p": 1.0,
|
||||
"use_bfloat16": true,
|
||||
"use_cache": true,
|
||||
"use_sliding_window": false,
|
||||
"vocab_size": 151658
|
||||
},
|
||||
"max_dynamic_patch": 12,
|
||||
"min_dynamic_patch": 1,
|
||||
"model_type": "sa2va_chat",
|
||||
"pad2square": false,
|
||||
"ps_version": "v2",
|
||||
"select_layer": -1,
|
||||
"template": "qwen_chat",
|
||||
"tie_word_embeddings": false,
|
||||
"torch_dtype": "bfloat16",
|
||||
"transformers_version": null,
|
||||
"use_backbone_lora": 0,
|
||||
"use_llm_lora": 0,
|
||||
"use_thumbnail": true,
|
||||
"vision_config": {
|
||||
"_name_or_path": "",
|
||||
"add_cross_attention": false,
|
||||
"architectures": [
|
||||
"InternVisionModel"
|
||||
],
|
||||
"attention_dropout": 0.0,
|
||||
"bad_words_ids": null,
|
||||
"begin_suppress_tokens": null,
|
||||
"bos_token_id": null,
|
||||
"chunk_size_feed_forward": 0,
|
||||
"cross_attention_hidden_size": null,
|
||||
"decoder_start_token_id": null,
|
||||
"diversity_penalty": 0.0,
|
||||
"do_sample": false,
|
||||
"drop_path_rate": 0.0,
|
||||
"dropout": 0.0,
|
||||
"early_stopping": false,
|
||||
"encoder_no_repeat_ngram_size": 0,
|
||||
"eos_token_id": null,
|
||||
"exponential_decay_length_penalty": null,
|
||||
"finetuning_task": null,
|
||||
"forced_bos_token_id": null,
|
||||
"forced_eos_token_id": null,
|
||||
"hidden_act": "gelu",
|
||||
"hidden_size": 1024,
|
||||
"id2label": {
|
||||
"0": "LABEL_0",
|
||||
"1": "LABEL_1"
|
||||
},
|
||||
"image_size": 448,
|
||||
"initializer_factor": 1.0,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 4096,
|
||||
"is_decoder": false,
|
||||
"is_encoder_decoder": false,
|
||||
"label2id": {
|
||||
"LABEL_0": 0,
|
||||
"LABEL_1": 1
|
||||
},
|
||||
"layer_norm_eps": 1e-06,
|
||||
"length_penalty": 1.0,
|
||||
"max_length": 20,
|
||||
"min_length": 0,
|
||||
"model_type": "intern_vit_6b",
|
||||
"no_repeat_ngram_size": 0,
|
||||
"norm_type": "layer_norm",
|
||||
"num_attention_heads": 16,
|
||||
"num_beam_groups": 1,
|
||||
"num_beams": 1,
|
||||
"num_channels": 3,
|
||||
"num_hidden_layers": 24,
|
||||
"num_return_sequences": 1,
|
||||
"output_attentions": false,
|
||||
"output_hidden_states": false,
|
||||
"output_scores": false,
|
||||
"pad_token_id": null,
|
||||
"patch_size": 14,
|
||||
"prefix": null,
|
||||
"problem_type": null,
|
||||
"pruned_heads": {},
|
||||
"qk_normalization": false,
|
||||
"qkv_bias": true,
|
||||
"remove_invalid_values": false,
|
||||
"repetition_penalty": 1.0,
|
||||
"return_dict": true,
|
||||
"return_dict_in_generate": false,
|
||||
"sep_token_id": null,
|
||||
"suppress_tokens": null,
|
||||
"task_specific_params": null,
|
||||
"temperature": 1.0,
|
||||
"tf_legacy_loss": false,
|
||||
"tie_encoder_decoder": false,
|
||||
"tie_word_embeddings": true,
|
||||
"tokenizer_class": null,
|
||||
"top_k": 50,
|
||||
"top_p": 1.0,
|
||||
"torch_dtype": "bfloat16",
|
||||
"torchscript": false,
|
||||
"transformers_version": "4.44.0",
|
||||
"typical_p": 1.0,
|
||||
"use_bfloat16": true,
|
||||
"use_flash_attn": true
|
||||
}
|
||||
}
|
|
@ -0,0 +1,120 @@
|
|||
# --------------------------------------------------------
|
||||
# InternVL
|
||||
# Copyright (c) 2024 OpenGVLab
|
||||
# Licensed under The MIT License [see LICENSE for details]
|
||||
# --------------------------------------------------------
|
||||
|
||||
import os
|
||||
from typing import Union
|
||||
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
from transformers.utils import logging
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class InternVisionConfig(PretrainedConfig):
|
||||
r"""
|
||||
This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
|
||||
instantiate a vision encoder according to the specified arguments, defining the model architecture.
|
||||
|
||||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||
documentation from [`PretrainedConfig`] for more information.
|
||||
|
||||
Args:
|
||||
num_channels (`int`, *optional*, defaults to 3):
|
||||
Number of color channels in the input images (e.g., 3 for RGB).
|
||||
patch_size (`int`, *optional*, defaults to 14):
|
||||
The size (resolution) of each patch.
|
||||
image_size (`int`, *optional*, defaults to 224):
|
||||
The size (resolution) of each image.
|
||||
qkv_bias (`bool`, *optional*, defaults to `False`):
|
||||
Whether to add a bias to the queries and values in the self-attention layers.
|
||||
hidden_size (`int`, *optional*, defaults to 3200):
|
||||
Dimensionality of the encoder layers and the pooler layer.
|
||||
num_attention_heads (`int`, *optional*, defaults to 25):
|
||||
Number of attention heads for each attention layer in the Transformer encoder.
|
||||
intermediate_size (`int`, *optional*, defaults to 12800):
|
||||
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
||||
qk_normalization (`bool`, *optional*, defaults to `True`):
|
||||
Whether to normalize the queries and keys in the self-attention layers.
|
||||
num_hidden_layers (`int`, *optional*, defaults to 48):
|
||||
Number of hidden layers in the Transformer encoder.
|
||||
use_flash_attn (`bool`, *optional*, defaults to `True`):
|
||||
Whether to use flash attention mechanism.
|
||||
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
||||
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
||||
`"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
|
||||
layer_norm_eps (`float`, *optional*, defaults to 1e-6):
|
||||
The epsilon used by the layer normalization layers.
|
||||
dropout (`float`, *optional*, defaults to 0.0):
|
||||
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
||||
drop_path_rate (`float`, *optional*, defaults to 0.0):
|
||||
Dropout rate for stochastic depth.
|
||||
attention_dropout (`float`, *optional*, defaults to 0.0):
|
||||
The dropout ratio for the attention probabilities.
|
||||
initializer_range (`float`, *optional*, defaults to 0.02):
|
||||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||
initializer_factor (`float`, *optional*, defaults to 0.1):
|
||||
A factor for layer scale.
|
||||
"""
|
||||
|
||||
model_type = 'intern_vit_6b'
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
num_channels=3,
|
||||
patch_size=14,
|
||||
image_size=224,
|
||||
qkv_bias=False,
|
||||
hidden_size=3200,
|
||||
num_attention_heads=25,
|
||||
intermediate_size=12800,
|
||||
qk_normalization=True,
|
||||
num_hidden_layers=48,
|
||||
use_flash_attn=True,
|
||||
hidden_act='gelu',
|
||||
norm_type='rms_norm',
|
||||
layer_norm_eps=1e-6,
|
||||
dropout=0.0,
|
||||
drop_path_rate=0.0,
|
||||
attention_dropout=0.0,
|
||||
initializer_range=0.02,
|
||||
initializer_factor=0.1,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(**kwargs)
|
||||
|
||||
self.hidden_size = hidden_size
|
||||
self.intermediate_size = intermediate_size
|
||||
self.dropout = dropout
|
||||
self.drop_path_rate = drop_path_rate
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.num_channels = num_channels
|
||||
self.patch_size = patch_size
|
||||
self.image_size = image_size
|
||||
self.initializer_range = initializer_range
|
||||
self.initializer_factor = initializer_factor
|
||||
self.attention_dropout = attention_dropout
|
||||
self.layer_norm_eps = layer_norm_eps
|
||||
self.hidden_act = hidden_act
|
||||
self.norm_type = norm_type
|
||||
self.qkv_bias = qkv_bias
|
||||
self.qk_normalization = qk_normalization
|
||||
self.use_flash_attn = use_flash_attn
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
|
||||
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
||||
|
||||
if 'vision_config' in config_dict:
|
||||
config_dict = config_dict['vision_config']
|
||||
|
||||
if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
|
||||
logger.warning(
|
||||
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
||||
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
|
||||
)
|
||||
|
||||
return cls.from_dict(config_dict, **kwargs)
|
|
@ -0,0 +1,150 @@
|
|||
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# This code is based on transformers/src/transformers/models/llama/configuration_llama.py
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" InternLM2 model configuration"""
|
||||
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
from transformers.utils import logging
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
||||
|
||||
|
||||
# Modified from transformers.model.llama.configuration_llama.LlamaConfig
|
||||
class InternLM2Config(PretrainedConfig):
|
||||
r"""
|
||||
This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
|
||||
an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
|
||||
configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
|
||||
|
||||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||
documentation from [`PretrainedConfig`] for more information.
|
||||
|
||||
|
||||
Args:
|
||||
vocab_size (`int`, *optional*, defaults to 32000):
|
||||
Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
|
||||
`inputs_ids` passed when calling [`InternLM2Model`]
|
||||
hidden_size (`int`, *optional*, defaults to 4096):
|
||||
Dimension of the hidden representations.
|
||||
intermediate_size (`int`, *optional*, defaults to 11008):
|
||||
Dimension of the MLP representations.
|
||||
num_hidden_layers (`int`, *optional*, defaults to 32):
|
||||
Number of hidden layers in the Transformer encoder.
|
||||
num_attention_heads (`int`, *optional*, defaults to 32):
|
||||
Number of attention heads for each attention layer in the Transformer encoder.
|
||||
num_key_value_heads (`int`, *optional*):
|
||||
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
||||
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
||||
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
||||
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
||||
by meanpooling all the original heads within that group. For more details checkout [this
|
||||
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
||||
`num_attention_heads`.
|
||||
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
||||
The non-linear activation function (function or string) in the decoder.
|
||||
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
||||
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
||||
just in case (e.g., 512 or 1024 or 2048).
|
||||
initializer_range (`float`, *optional*, defaults to 0.02):
|
||||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||
rms_norm_eps (`float`, *optional*, defaults to 1e-12):
|
||||
The epsilon used by the rms normalization layers.
|
||||
use_cache (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
||||
relevant if `config.is_decoder=True`.
|
||||
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
||||
Whether to tie weight embeddings
|
||||
Example:
|
||||
|
||||
"""
|
||||
model_type = 'internlm2'
|
||||
_auto_class = 'AutoConfig'
|
||||
|
||||
def __init__( # pylint: disable=W0102
|
||||
self,
|
||||
vocab_size=103168,
|
||||
hidden_size=4096,
|
||||
intermediate_size=11008,
|
||||
num_hidden_layers=32,
|
||||
num_attention_heads=32,
|
||||
num_key_value_heads=None,
|
||||
hidden_act='silu',
|
||||
max_position_embeddings=2048,
|
||||
initializer_range=0.02,
|
||||
rms_norm_eps=1e-6,
|
||||
use_cache=True,
|
||||
pad_token_id=0,
|
||||
bos_token_id=1,
|
||||
eos_token_id=2,
|
||||
tie_word_embeddings=False,
|
||||
bias=True,
|
||||
rope_theta=10000,
|
||||
rope_scaling=None,
|
||||
attn_implementation='eager',
|
||||
**kwargs,
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.hidden_size = hidden_size
|
||||
self.intermediate_size = intermediate_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.bias = bias
|
||||
|
||||
if num_key_value_heads is None:
|
||||
num_key_value_heads = num_attention_heads
|
||||
self.num_key_value_heads = num_key_value_heads
|
||||
|
||||
self.hidden_act = hidden_act
|
||||
self.initializer_range = initializer_range
|
||||
self.rms_norm_eps = rms_norm_eps
|
||||
self.use_cache = use_cache
|
||||
self.rope_theta = rope_theta
|
||||
self.rope_scaling = rope_scaling
|
||||
self._rope_scaling_validation()
|
||||
|
||||
self.attn_implementation = attn_implementation
|
||||
if self.attn_implementation is None:
|
||||
self.attn_implementation = 'eager'
|
||||
super().__init__(
|
||||
pad_token_id=pad_token_id,
|
||||
bos_token_id=bos_token_id,
|
||||
eos_token_id=eos_token_id,
|
||||
tie_word_embeddings=tie_word_embeddings,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
def _rope_scaling_validation(self):
|
||||
"""
|
||||
Validate the `rope_scaling` configuration.
|
||||
"""
|
||||
if self.rope_scaling is None:
|
||||
return
|
||||
|
||||
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
||||
raise ValueError(
|
||||
'`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, '
|
||||
f'got {self.rope_scaling}'
|
||||
)
|
||||
rope_scaling_type = self.rope_scaling.get('type', None)
|
||||
rope_scaling_factor = self.rope_scaling.get('factor', None)
|
||||
if rope_scaling_type is None or rope_scaling_type not in ['linear', 'dynamic']:
|
||||
raise ValueError(
|
||||
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
||||
)
|
||||
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
|
||||
raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
|
|
@ -0,0 +1,211 @@
|
|||
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License atd
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
""" Phi-3 model configuration"""
|
||||
|
||||
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
from transformers.utils import logging
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
PHI3_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
||||
'microsoft/Phi-3-mini-4k-instruct': 'https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/resolve/main/config.json',
|
||||
'microsoft/Phi-3-mini-128k-instruct': 'https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/config.json',
|
||||
}
|
||||
|
||||
|
||||
class Phi3Config(PretrainedConfig):
|
||||
r"""
|
||||
This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3
|
||||
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
||||
defaults will yield a similar configuration to that of the
|
||||
[microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).
|
||||
|
||||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||
documentation from [`PretrainedConfig`] for more information.
|
||||
|
||||
Args:
|
||||
vocab_size (`int`, *optional*, defaults to 32064):
|
||||
Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
|
||||
`inputs_ids` passed when calling [`Phi3Model`].
|
||||
hidden_size (`int`, *optional*, defaults to 3072):
|
||||
Dimension of the hidden representations.
|
||||
intermediate_size (`int`, *optional*, defaults to 8192):
|
||||
Dimension of the MLP representations.
|
||||
num_hidden_layers (`int`, *optional*, defaults to 32):
|
||||
Number of hidden layers in the Transformer decoder.
|
||||
num_attention_heads (`int`, *optional*, defaults to 32):
|
||||
Number of attention heads for each attention layer in the Transformer decoder.
|
||||
num_key_value_heads (`int`, *optional*):
|
||||
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
||||
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
||||
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
||||
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
||||
by meanpooling all the original heads within that group. For more details checkout [this
|
||||
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
||||
`num_attention_heads`.
|
||||
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
||||
Dropout probability for mlp outputs.
|
||||
embd_pdrop (`int`, *optional*, defaults to 0.0):
|
||||
The dropout ratio for the embeddings.
|
||||
attention_dropout (`float`, *optional*, defaults to 0.0):
|
||||
The dropout ratio after computing the attention scores.
|
||||
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
||||
The non-linear activation function (function or string) in the decoder.
|
||||
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
||||
The maximum sequence length that this model might ever be used with.
|
||||
original_max_position_embeddings (`int`, *optional*, defaults to 4096):
|
||||
The maximum sequence length that this model was trained with. This is used to determine the size of the
|
||||
original RoPE embeddings when using long scaling.
|
||||
initializer_range (`float`, *optional*, defaults to 0.02):
|
||||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
||||
The epsilon value used for the RMSNorm.
|
||||
use_cache (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
||||
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
|
||||
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
||||
Whether to tie weight embeddings
|
||||
rope_theta (`float`, *optional*, defaults to 10000.0):
|
||||
The base period of the RoPE embeddings.
|
||||
rope_scaling (`dict`, *optional*):
|
||||
The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
|
||||
contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be either `su` or `yarn` and
|
||||
the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
|
||||
divided by the number of attention heads divided by 2.
|
||||
bos_token_id (`int`, *optional*, defaults to 1):
|
||||
The id of the "beginning-of-sequence" token.
|
||||
eos_token_id (`int`, *optional*, defaults to 32000):
|
||||
The id of the "end-of-sequence" token.
|
||||
pad_token_id (`int`, *optional*, defaults to 32000):
|
||||
The id of the padding token.
|
||||
sliding_window (`int`, *optional*):
|
||||
Sliding window attention window size. If `None`, no sliding window is applied.
|
||||
|
||||
Example:
|
||||
|
||||
```python
|
||||
>>> from transformers import Phi3Model, Phi3Config
|
||||
|
||||
>>> # Initializing a Phi-3 style configuration
|
||||
>>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
|
||||
|
||||
>>> # Initializing a model from the configuration
|
||||
>>> model = Phi3Model(configuration)
|
||||
|
||||
>>> # Accessing the model configuration
|
||||
>>> configuration = model.config
|
||||
```"""
|
||||
|
||||
model_type = 'phi3'
|
||||
keys_to_ignore_at_inference = ['past_key_values']
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=32064,
|
||||
hidden_size=3072,
|
||||
intermediate_size=8192,
|
||||
num_hidden_layers=32,
|
||||
num_attention_heads=32,
|
||||
num_key_value_heads=None,
|
||||
resid_pdrop=0.0,
|
||||
embd_pdrop=0.0,
|
||||
attention_dropout=0.0,
|
||||
hidden_act='silu',
|
||||
max_position_embeddings=4096,
|
||||
original_max_position_embeddings=4096,
|
||||
initializer_range=0.02,
|
||||
rms_norm_eps=1e-5,
|
||||
use_cache=True,
|
||||
tie_word_embeddings=False,
|
||||
rope_theta=10000.0,
|
||||
rope_scaling=None,
|
||||
bos_token_id=1,
|
||||
eos_token_id=32000,
|
||||
pad_token_id=32000,
|
||||
sliding_window=None,
|
||||
**kwargs,
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.hidden_size = hidden_size
|
||||
self.intermediate_size = intermediate_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
|
||||
if num_key_value_heads is None:
|
||||
num_key_value_heads = num_attention_heads
|
||||
|
||||
self.num_key_value_heads = num_key_value_heads
|
||||
self.resid_pdrop = resid_pdrop
|
||||
self.embd_pdrop = embd_pdrop
|
||||
self.attention_dropout = attention_dropout
|
||||
self.hidden_act = hidden_act
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.original_max_position_embeddings = original_max_position_embeddings
|
||||
self.initializer_range = initializer_range
|
||||
self.rms_norm_eps = rms_norm_eps
|
||||
self.use_cache = use_cache
|
||||
self.rope_theta = rope_theta
|
||||
self.rope_scaling = rope_scaling
|
||||
self._rope_scaling_validation()
|
||||
self.sliding_window = sliding_window
|
||||
|
||||
super().__init__(
|
||||
bos_token_id=bos_token_id,
|
||||
eos_token_id=eos_token_id,
|
||||
pad_token_id=pad_token_id,
|
||||
tie_word_embeddings=tie_word_embeddings,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
def _rope_scaling_validation(self):
|
||||
"""
|
||||
Validate the `rope_scaling` configuration.
|
||||
"""
|
||||
if self.rope_scaling is None:
|
||||
return
|
||||
|
||||
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
|
||||
raise ValueError(
|
||||
'`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, '
|
||||
f'got {self.rope_scaling}'
|
||||
)
|
||||
rope_scaling_type = self.rope_scaling.get('type', None)
|
||||
rope_scaling_short_factor = self.rope_scaling.get('short_factor', None)
|
||||
rope_scaling_long_factor = self.rope_scaling.get('long_factor', None)
|
||||
if rope_scaling_type is None or rope_scaling_type not in ['su', 'yarn']:
|
||||
raise ValueError(f"`rope_scaling`'s type field must be one of ['su', 'yarn'], got {rope_scaling_type}")
|
||||
if not (
|
||||
isinstance(rope_scaling_short_factor, list)
|
||||
and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
|
||||
):
|
||||
raise ValueError(
|
||||
f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
|
||||
)
|
||||
if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2:
|
||||
raise ValueError(
|
||||
f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}"
|
||||
)
|
||||
if not (
|
||||
isinstance(rope_scaling_long_factor, list)
|
||||
and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
|
||||
):
|
||||
raise ValueError(
|
||||
f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
|
||||
)
|
||||
if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2:
|
||||
raise ValueError(
|
||||
f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}"
|
||||
)
|
|
@ -0,0 +1,107 @@
|
|||
# --------------------------------------------------------
|
||||
# InternVL
|
||||
# Copyright (c) 2024 OpenGVLab
|
||||
# Licensed under The MIT License [see LICENSE for details]
|
||||
# --------------------------------------------------------
|
||||
|
||||
import copy
|
||||
|
||||
from .configuration_internlm2 import InternLM2Config
|
||||
from .configuration_phi3 import Phi3Config
|
||||
from transformers import AutoConfig, LlamaConfig, Qwen2Config
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
from transformers.utils import logging
|
||||
|
||||
from .configuration_intern_vit import InternVisionConfig
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class Sa2VAChatConfig(PretrainedConfig):
|
||||
model_type = 'sa2va_chat'
|
||||
is_composition = True
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vision_config=None,
|
||||
llm_config=None,
|
||||
use_backbone_lora=0,
|
||||
use_llm_lora=0,
|
||||
pad2square=False,
|
||||
select_layer=-1,
|
||||
force_image_size=None,
|
||||
downsample_ratio=0.5,
|
||||
template=None,
|
||||
dynamic_image_size=False,
|
||||
use_thumbnail=False,
|
||||
ps_version='v1',
|
||||
min_dynamic_patch=1,
|
||||
max_dynamic_patch=6,
|
||||
**kwargs):
|
||||
super().__init__(**kwargs)
|
||||
|
||||
if vision_config is None:
|
||||
vision_config = {}
|
||||
logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
|
||||
|
||||
if llm_config is None:
|
||||
llm_config = {}
|
||||
logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
|
||||
|
||||
self.vision_config = InternVisionConfig(**vision_config)
|
||||
if llm_config['architectures'][0] == 'LlamaForCausalLM':
|
||||
self.llm_config = LlamaConfig(**llm_config)
|
||||
elif llm_config['architectures'][0] == 'InternLM2ForCausalLM':
|
||||
self.llm_config = InternLM2Config(**llm_config)
|
||||
elif llm_config['architectures'][0] == 'Phi3ForCausalLM':
|
||||
self.llm_config = Phi3Config(**llm_config)
|
||||
elif llm_config['architectures'][0] == 'Qwen2ForCausalLM':
|
||||
self.llm_config = Qwen2Config(**llm_config)
|
||||
else:
|
||||
raise ValueError('Unsupported architecture: {}'.format(llm_config['architectures'][0]))
|
||||
self.use_backbone_lora = use_backbone_lora
|
||||
self.use_llm_lora = use_llm_lora
|
||||
self.pad2square = pad2square
|
||||
self.select_layer = select_layer
|
||||
self.force_image_size = force_image_size
|
||||
self.downsample_ratio = downsample_ratio
|
||||
self.template = template
|
||||
self.dynamic_image_size = dynamic_image_size
|
||||
self.use_thumbnail = use_thumbnail
|
||||
self.ps_version = ps_version # pixel shuffle version
|
||||
self.min_dynamic_patch = min_dynamic_patch
|
||||
self.max_dynamic_patch = max_dynamic_patch
|
||||
|
||||
self.hidden_size = self.llm_config.hidden_size
|
||||
self.tie_word_embeddings = False
|
||||
|
||||
logger.info(f'vision_select_layer: {self.select_layer}')
|
||||
logger.info(f'ps_version: {self.ps_version}')
|
||||
logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
|
||||
logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
|
||||
|
||||
def to_dict(self):
|
||||
"""
|
||||
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
|
||||
|
||||
Returns:
|
||||
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
||||
"""
|
||||
output = copy.deepcopy(self.__dict__)
|
||||
output['vision_config'] = self.vision_config.to_dict()
|
||||
output['llm_config'] = self.llm_config.to_dict()
|
||||
output['model_type'] = self.__class__.model_type
|
||||
output['use_backbone_lora'] = self.use_backbone_lora
|
||||
output['use_llm_lora'] = self.use_llm_lora
|
||||
output['pad2square'] = self.pad2square
|
||||
output['select_layer'] = self.select_layer
|
||||
output['force_image_size'] = self.force_image_size
|
||||
output['downsample_ratio'] = self.downsample_ratio
|
||||
output['template'] = self.template
|
||||
output['dynamic_image_size'] = self.dynamic_image_size
|
||||
output['use_thumbnail'] = self.use_thumbnail
|
||||
output['ps_version'] = self.ps_version
|
||||
output['min_dynamic_patch'] = self.min_dynamic_patch
|
||||
output['max_dynamic_patch'] = self.max_dynamic_patch
|
||||
|
||||
return output
|
|
@ -0,0 +1,76 @@
|
|||
# https://github.com/Dao-AILab/flash-attention/blob/v0.2.8/flash_attn/flash_attention.py
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from einops import rearrange
|
||||
|
||||
try: # v1
|
||||
from flash_attn.flash_attn_interface import \
|
||||
flash_attn_unpadded_qkvpacked_func
|
||||
except: # v2
|
||||
from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func
|
||||
|
||||
from flash_attn.bert_padding import pad_input, unpad_input
|
||||
|
||||
|
||||
class FlashAttention(nn.Module):
|
||||
"""Implement the scaled dot product attention with softmax.
|
||||
Arguments
|
||||
---------
|
||||
softmax_scale: The temperature to use for the softmax attention.
|
||||
(default: 1/sqrt(d_keys) where d_keys is computed at
|
||||
runtime)
|
||||
attention_dropout: The dropout rate to apply to the attention
|
||||
(default: 0.0)
|
||||
"""
|
||||
|
||||
def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
|
||||
super().__init__()
|
||||
self.softmax_scale = softmax_scale
|
||||
self.dropout_p = attention_dropout
|
||||
|
||||
def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
|
||||
max_s=None, need_weights=False):
|
||||
"""Implements the multihead softmax attention.
|
||||
Arguments
|
||||
---------
|
||||
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
|
||||
if unpadded: (nnz, 3, h, d)
|
||||
key_padding_mask: a bool tensor of shape (B, S)
|
||||
"""
|
||||
assert not need_weights
|
||||
assert qkv.dtype in [torch.float16, torch.bfloat16]
|
||||
assert qkv.is_cuda
|
||||
|
||||
if cu_seqlens is None:
|
||||
batch_size = qkv.shape[0]
|
||||
seqlen = qkv.shape[1]
|
||||
if key_padding_mask is None:
|
||||
qkv = rearrange(qkv, 'b s ... -> (b s) ...')
|
||||
max_s = seqlen
|
||||
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
|
||||
device=qkv.device)
|
||||
output = flash_attn_unpadded_qkvpacked_func(
|
||||
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
||||
softmax_scale=self.softmax_scale, causal=causal
|
||||
)
|
||||
output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
|
||||
else:
|
||||
nheads = qkv.shape[-2]
|
||||
x = rearrange(qkv, 'b s three h d -> b s (three h d)')
|
||||
x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
|
||||
x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
|
||||
output_unpad = flash_attn_unpadded_qkvpacked_func(
|
||||
x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
||||
softmax_scale=self.softmax_scale, causal=causal
|
||||
)
|
||||
output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
|
||||
indices, batch_size, seqlen),
|
||||
'b s (h d) -> b s h d', h=nheads)
|
||||
else:
|
||||
assert max_s is not None
|
||||
output = flash_attn_unpadded_qkvpacked_func(
|
||||
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
||||
softmax_scale=self.softmax_scale, causal=causal
|
||||
)
|
||||
|
||||
return output, None
|
|
@ -0,0 +1,4 @@
|
|||
{
|
||||
"_from_model_config": true,
|
||||
"transformers_version": "4.44.0"
|
||||
}
|
File diff suppressed because it is too large
Load Diff
Binary file not shown.
|
@ -0,0 +1,364 @@
|
|||
# --------------------------------------------------------
|
||||
# InternVL
|
||||
# Copyright (c) 2024 OpenGVLab
|
||||
# Licensed under The MIT License [see LICENSE for details]
|
||||
# --------------------------------------------------------
|
||||
|
||||
from typing import Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import torch.utils.checkpoint
|
||||
from einops import rearrange
|
||||
from timm.models.layers import DropPath
|
||||
from torch import nn
|
||||
from transformers.activations import ACT2FN
|
||||
from transformers.modeling_outputs import (BaseModelOutput,
|
||||
BaseModelOutputWithPooling)
|
||||
from transformers.modeling_utils import PreTrainedModel
|
||||
from transformers.utils import logging
|
||||
|
||||
from .configuration_intern_vit import InternVisionConfig
|
||||
|
||||
try:
|
||||
from .flash_attention import FlashAttention
|
||||
has_flash_attn = True
|
||||
except:
|
||||
print('FlashAttention is not installed.')
|
||||
has_flash_attn = False
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class InternRMSNorm(nn.Module):
|
||||
def __init__(self, hidden_size, eps=1e-6):
|
||||
super().__init__()
|
||||
self.weight = nn.Parameter(torch.ones(hidden_size))
|
||||
self.variance_epsilon = eps
|
||||
|
||||
def forward(self, hidden_states):
|
||||
input_dtype = hidden_states.dtype
|
||||
hidden_states = hidden_states.to(torch.float32)
|
||||
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
||||
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
||||
return self.weight * hidden_states.to(input_dtype)
|
||||
|
||||
|
||||
try:
|
||||
from apex.normalization import FusedRMSNorm
|
||||
|
||||
InternRMSNorm = FusedRMSNorm # noqa
|
||||
|
||||
logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
|
||||
except ImportError:
|
||||
# using the normal InternRMSNorm
|
||||
pass
|
||||
except Exception:
|
||||
logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
|
||||
pass
|
||||
|
||||
|
||||
NORM2FN = {
|
||||
'rms_norm': InternRMSNorm,
|
||||
'layer_norm': nn.LayerNorm,
|
||||
}
|
||||
|
||||
|
||||
class InternVisionEmbeddings(nn.Module):
|
||||
def __init__(self, config: InternVisionConfig):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.embed_dim = config.hidden_size
|
||||
self.image_size = config.image_size
|
||||
self.patch_size = config.patch_size
|
||||
|
||||
self.class_embedding = nn.Parameter(
|
||||
torch.randn(1, 1, self.embed_dim),
|
||||
)
|
||||
|
||||
self.patch_embedding = nn.Conv2d(
|
||||
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
|
||||
)
|
||||
|
||||
self.num_patches = (self.image_size // self.patch_size) ** 2
|
||||
self.num_positions = self.num_patches + 1
|
||||
|
||||
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
|
||||
|
||||
def _get_pos_embed(self, pos_embed, H, W):
|
||||
target_dtype = pos_embed.dtype
|
||||
pos_embed = pos_embed.float().reshape(
|
||||
1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
|
||||
pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
|
||||
reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
|
||||
return pos_embed
|
||||
|
||||
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
||||
target_dtype = self.patch_embedding.weight.dtype
|
||||
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
|
||||
batch_size, _, height, width = patch_embeds.shape
|
||||
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
||||
class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
|
||||
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
||||
position_embedding = torch.cat([
|
||||
self.position_embedding[:, :1, :],
|
||||
self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
|
||||
], dim=1)
|
||||
embeddings = embeddings + position_embedding.to(target_dtype)
|
||||
return embeddings
|
||||
|
||||
|
||||
class InternAttention(nn.Module):
|
||||
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
||||
|
||||
def __init__(self, config: InternVisionConfig):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.embed_dim = config.hidden_size
|
||||
self.num_heads = config.num_attention_heads
|
||||
self.use_flash_attn = config.use_flash_attn and has_flash_attn
|
||||
if config.use_flash_attn and not has_flash_attn:
|
||||
print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
|
||||
self.head_dim = self.embed_dim // self.num_heads
|
||||
if self.head_dim * self.num_heads != self.embed_dim:
|
||||
raise ValueError(
|
||||
f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
|
||||
f' {self.num_heads}).'
|
||||
)
|
||||
|
||||
self.scale = self.head_dim ** -0.5
|
||||
self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
|
||||
self.attn_drop = nn.Dropout(config.attention_dropout)
|
||||
self.proj_drop = nn.Dropout(config.dropout)
|
||||
|
||||
self.qk_normalization = config.qk_normalization
|
||||
|
||||
if self.qk_normalization:
|
||||
self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
||||
self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
||||
|
||||
if self.use_flash_attn:
|
||||
self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
|
||||
self.proj = nn.Linear(self.embed_dim, self.embed_dim)
|
||||
|
||||
def _naive_attn(self, x):
|
||||
B, N, C = x.shape
|
||||
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
||||
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
|
||||
|
||||
if self.qk_normalization:
|
||||
B_, H_, N_, D_ = q.shape
|
||||
q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
||||
k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
||||
|
||||
attn = ((q * self.scale) @ k.transpose(-2, -1))
|
||||
attn = attn.softmax(dim=-1)
|
||||
attn = self.attn_drop(attn)
|
||||
|
||||
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
||||
x = self.proj(x)
|
||||
x = self.proj_drop(x)
|
||||
return x
|
||||
|
||||
def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
|
||||
qkv = self.qkv(x)
|
||||
qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
|
||||
|
||||
if self.qk_normalization:
|
||||
q, k, v = qkv.unbind(2)
|
||||
q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
|
||||
k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
|
||||
qkv = torch.stack([q, k, v], dim=2)
|
||||
|
||||
context, _ = self.inner_attn(
|
||||
qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
|
||||
)
|
||||
outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
|
||||
outs = self.proj_drop(outs)
|
||||
return outs
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
|
||||
return x
|
||||
|
||||
|
||||
class InternMLP(nn.Module):
|
||||
def __init__(self, config: InternVisionConfig):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.act = ACT2FN[config.hidden_act]
|
||||
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
||||
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
hidden_states = self.fc1(hidden_states)
|
||||
hidden_states = self.act(hidden_states)
|
||||
hidden_states = self.fc2(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class InternVisionEncoderLayer(nn.Module):
|
||||
def __init__(self, config: InternVisionConfig, drop_path_rate: float):
|
||||
super().__init__()
|
||||
self.embed_dim = config.hidden_size
|
||||
self.intermediate_size = config.intermediate_size
|
||||
self.norm_type = config.norm_type
|
||||
|
||||
self.attn = InternAttention(config)
|
||||
self.mlp = InternMLP(config)
|
||||
self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
|
||||
self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
|
||||
|
||||
self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
||||
self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
||||
self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
||||
self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
|
||||
"""
|
||||
Args:
|
||||
hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
||||
"""
|
||||
hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states)) * self.ls1)
|
||||
|
||||
hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states)) * self.ls2)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class InternVisionEncoder(nn.Module):
|
||||
"""
|
||||
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
||||
[`InternEncoderLayer`].
|
||||
|
||||
Args:
|
||||
config (`InternConfig`):
|
||||
The corresponding vision configuration for the `InternEncoder`.
|
||||
"""
|
||||
|
||||
def __init__(self, config: InternVisionConfig):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
# stochastic depth decay rule
|
||||
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
|
||||
self.layers = nn.ModuleList([
|
||||
InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
|
||||
self.gradient_checkpointing = True
|
||||
|
||||
def forward(
|
||||
self,
|
||||
inputs_embeds,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, BaseModelOutput]:
|
||||
r"""
|
||||
Args:
|
||||
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
||||
Embedded representation of the inputs. Should be float, not int tokens.
|
||||
output_hidden_states (`bool`, *optional*):
|
||||
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
||||
for more detail.
|
||||
return_dict (`bool`, *optional*):
|
||||
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||||
"""
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
encoder_states = () if output_hidden_states else None
|
||||
hidden_states = inputs_embeds
|
||||
|
||||
for idx, encoder_layer in enumerate(self.layers):
|
||||
if output_hidden_states:
|
||||
encoder_states = encoder_states + (hidden_states,)
|
||||
if self.gradient_checkpointing and self.training:
|
||||
layer_outputs = torch.utils.checkpoint.checkpoint(
|
||||
encoder_layer,
|
||||
hidden_states)
|
||||
else:
|
||||
layer_outputs = encoder_layer(
|
||||
hidden_states,
|
||||
)
|
||||
hidden_states = layer_outputs
|
||||
|
||||
if output_hidden_states:
|
||||
encoder_states = encoder_states + (hidden_states,)
|
||||
|
||||
if not return_dict:
|
||||
return tuple(v for v in [hidden_states, encoder_states] if v is not None)
|
||||
return BaseModelOutput(
|
||||
last_hidden_state=hidden_states, hidden_states=encoder_states
|
||||
)
|
||||
|
||||
|
||||
class InternVisionModel(PreTrainedModel):
|
||||
main_input_name = 'pixel_values'
|
||||
_supports_flash_attn_2 = True
|
||||
config_class = InternVisionConfig
|
||||
_no_split_modules = ['InternVisionEncoderLayer']
|
||||
|
||||
def __init__(self, config: InternVisionConfig):
|
||||
super().__init__(config)
|
||||
self.config = config
|
||||
|
||||
self.embeddings = InternVisionEmbeddings(config)
|
||||
self.encoder = InternVisionEncoder(config)
|
||||
|
||||
def resize_pos_embeddings(self, old_size, new_size, patch_size):
|
||||
pos_emb = self.embeddings.position_embedding
|
||||
_, num_positions, embed_dim = pos_emb.shape
|
||||
cls_emb = pos_emb[:, :1, :]
|
||||
pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
|
||||
pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
|
||||
pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
|
||||
pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
|
||||
self.embeddings.position_embedding = nn.Parameter(pos_emb)
|
||||
self.embeddings.image_size = new_size
|
||||
logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.embeddings
|
||||
|
||||
def forward(
|
||||
self,
|
||||
pixel_values: Optional[torch.FloatTensor] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
pixel_embeds: Optional[torch.FloatTensor] = None,
|
||||
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
if pixel_values is None and pixel_embeds is None:
|
||||
raise ValueError('You have to specify pixel_values or pixel_embeds')
|
||||
|
||||
if pixel_embeds is not None:
|
||||
hidden_states = pixel_embeds
|
||||
else:
|
||||
if len(pixel_values.shape) == 4:
|
||||
hidden_states = self.embeddings(pixel_values)
|
||||
else:
|
||||
raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
|
||||
encoder_outputs = self.encoder(
|
||||
inputs_embeds=hidden_states,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
last_hidden_state = encoder_outputs.last_hidden_state
|
||||
pooled_output = last_hidden_state[:, 0, :]
|
||||
|
||||
if not return_dict:
|
||||
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
||||
|
||||
return BaseModelOutputWithPooling(
|
||||
last_hidden_state=last_hidden_state,
|
||||
pooler_output=pooled_output,
|
||||
hidden_states=encoder_outputs.hidden_states,
|
||||
attentions=encoder_outputs.attentions,
|
||||
)
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,866 @@
|
|||
# --------------------------------------------------------
|
||||
# InternVL
|
||||
# Copyright (c) 2024 OpenGVLab
|
||||
# Licensed under The MIT License [see LICENSE for details]
|
||||
# --------------------------------------------------------
|
||||
|
||||
import warnings
|
||||
from typing import Any, List, Optional, Tuple, Union
|
||||
|
||||
import torchvision.transforms as T
|
||||
from torchvision.transforms.functional import InterpolationMode
|
||||
|
||||
import torch.utils.checkpoint
|
||||
import transformers
|
||||
|
||||
from .modeling_internlm2 import InternLM2ForCausalLM
|
||||
from .modeling_phi3 import Phi3ForCausalLM
|
||||
from peft import LoraConfig, get_peft_model
|
||||
from torch import nn
|
||||
from torch.nn import CrossEntropyLoss
|
||||
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
|
||||
LlamaTokenizer, Qwen2ForCausalLM)
|
||||
from transformers.modeling_outputs import CausalLMOutputWithPast
|
||||
from transformers.modeling_utils import PreTrainedModel
|
||||
from transformers.utils import ModelOutput, logging
|
||||
from transformers import StoppingCriteriaList, StoppingCriteria
|
||||
|
||||
from .configuration_sa2va_chat import Sa2VAChatConfig
|
||||
from .modeling_intern_vit import InternVisionModel, has_flash_attn
|
||||
|
||||
from .sam2 import SAM2
|
||||
from .templates import PROMPT_TEMPLATE
|
||||
|
||||
import numpy as np
|
||||
from torchvision.transforms.functional import resize, to_pil_image
|
||||
|
||||
from types import MethodType
|
||||
import torch.nn.functional as F
|
||||
|
||||
try:
|
||||
from .flash_attention import FlashAttention
|
||||
has_flash_attn = True
|
||||
except:
|
||||
print('FlashAttention is not installed.')
|
||||
has_flash_attn = False
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
def version_cmp(v1, v2, op='eq'):
|
||||
import operator
|
||||
|
||||
from packaging import version
|
||||
op_func = getattr(operator, op)
|
||||
return op_func(version.parse(v1), version.parse(v2))
|
||||
|
||||
class StopWordStoppingCriteria(StoppingCriteria):
|
||||
"""StopWord stopping criteria."""
|
||||
|
||||
def __init__(self, tokenizer, stop_word):
|
||||
self.tokenizer = tokenizer
|
||||
self.stop_word = stop_word
|
||||
self.length = len(self.stop_word)
|
||||
|
||||
def __call__(self, input_ids, *args, **kwargs) -> bool:
|
||||
cur_text = self.tokenizer.decode(input_ids[0])
|
||||
cur_text = cur_text.replace('\r', '').replace('\n', '')
|
||||
return cur_text[-self.length:] == self.stop_word
|
||||
|
||||
def get_stop_criteria(
|
||||
tokenizer,
|
||||
stop_words=[],
|
||||
):
|
||||
stop_criteria = StoppingCriteriaList()
|
||||
for word in stop_words:
|
||||
stop_criteria.append(StopWordStoppingCriteria(tokenizer, word))
|
||||
return stop_criteria
|
||||
|
||||
class DirectResize:
|
||||
def __init__(self, target_length: int) -> None:
|
||||
self.target_length = target_length
|
||||
|
||||
def apply_image(self, image: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Expects a numpy array with shape HxWxC in uint8 format.
|
||||
"""
|
||||
img = to_pil_image(image, mode='RGB')
|
||||
return np.array(img.resize((self.target_length, self.target_length)))
|
||||
|
||||
class Sa2VAChatModel(PreTrainedModel):
|
||||
config_class = Sa2VAChatConfig
|
||||
main_input_name = 'pixel_values'
|
||||
base_model_prefix = 'language_model'
|
||||
_no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'InternLM2DecoderLayer',
|
||||
'Phi3DecoderLayer', 'Qwen2DecoderLayer', 'SAM2']
|
||||
_supports_flash_attn_2 = True
|
||||
supports_gradient_checkpointing = True
|
||||
|
||||
def __init__(self, config: Sa2VAChatConfig, vision_model=None, language_model=None, use_flash_attn=True):
|
||||
super().__init__(config)
|
||||
|
||||
assert version_cmp(transformers.__version__, '4.37.0', 'ge')
|
||||
image_size = config.force_image_size or config.vision_config.image_size
|
||||
patch_size = config.vision_config.patch_size
|
||||
self.patch_size = patch_size
|
||||
self.select_layer = config.select_layer
|
||||
self.template = config.template
|
||||
self.template = self.template.replace('-', '_')
|
||||
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
|
||||
self.downsample_ratio = config.downsample_ratio
|
||||
self.ps_version = config.ps_version
|
||||
self.llm_arch_name = config.llm_config.architectures[0]
|
||||
|
||||
use_flash_attn = use_flash_attn if has_flash_attn else False
|
||||
config.vision_config.use_flash_attn = True if use_flash_attn else False
|
||||
config.llm_config._attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
|
||||
|
||||
logger.info(f'num_image_token: {self.num_image_token}')
|
||||
logger.info(f'ps_version: {self.ps_version}')
|
||||
if vision_model is not None:
|
||||
self.vision_model = vision_model
|
||||
else:
|
||||
self.vision_model = InternVisionModel(config.vision_config)
|
||||
if language_model is not None:
|
||||
self.language_model = language_model
|
||||
else:
|
||||
if config.llm_config.architectures[0] == 'LlamaForCausalLM':
|
||||
self.language_model = LlamaForCausalLM(config.llm_config)
|
||||
elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM':
|
||||
self.language_model = InternLM2ForCausalLM(config.llm_config)
|
||||
elif config.llm_config.architectures[0] == 'Phi3ForCausalLM':
|
||||
self.language_model = Phi3ForCausalLM(config.llm_config)
|
||||
elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM':
|
||||
self.language_model = Qwen2ForCausalLM(config.llm_config)
|
||||
else:
|
||||
raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
|
||||
|
||||
vit_hidden_size = config.vision_config.hidden_size
|
||||
llm_hidden_size = config.llm_config.hidden_size
|
||||
|
||||
self.mlp1 = nn.Sequential(
|
||||
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
|
||||
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
|
||||
nn.GELU(),
|
||||
nn.Linear(llm_hidden_size, llm_hidden_size)
|
||||
)
|
||||
|
||||
self.img_context_token_id = None
|
||||
self.conv_template = PROMPT_TEMPLATE[self.template]
|
||||
self.template = self.conv_template
|
||||
if hasattr(config, 'system_message'):
|
||||
self.system_message = config.system_message
|
||||
self.num_samples = 0
|
||||
|
||||
if config.use_backbone_lora:
|
||||
self.wrap_backbone_lora(r=config.use_backbone_lora, lora_alpha=2 * config.use_backbone_lora)
|
||||
|
||||
if config.use_llm_lora:
|
||||
self.wrap_llm_lora(r=config.use_llm_lora, lora_alpha=2 * config.use_llm_lora)
|
||||
|
||||
self.grounding_encoder = SAM2()
|
||||
out_dim = self.grounding_encoder.hidden_dim
|
||||
in_dim = llm_hidden_size
|
||||
self.text_hidden_fcs = nn.Sequential(
|
||||
nn.Linear(in_dim, in_dim), nn.ReLU(inplace=True),
|
||||
nn.Linear(in_dim, out_dim), nn.Dropout(0.0)
|
||||
)
|
||||
|
||||
self.init_prediction_config = False
|
||||
|
||||
def wrap_backbone_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
|
||||
lora_config = LoraConfig(
|
||||
r=r,
|
||||
target_modules=['attn.qkv', 'attn.proj', 'mlp.fc1', 'mlp.fc2'],
|
||||
lora_alpha=lora_alpha,
|
||||
lora_dropout=lora_dropout,
|
||||
)
|
||||
self.vision_model = get_peft_model(self.vision_model, lora_config)
|
||||
self.vision_model.print_trainable_parameters()
|
||||
|
||||
def wrap_llm_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
|
||||
# Determine the target modules based on the architecture of the language model
|
||||
if self.llm_arch_name == 'InternLM2ForCausalLM':
|
||||
target_modules = ['attention.wqkv', 'attention.wo', 'feed_forward.w1', 'feed_forward.w2', 'feed_forward.w3']
|
||||
elif self.llm_arch_name == 'Phi3ForCausalLM':
|
||||
target_modules = ['mlp.down_proj', 'mlp.gate_up_proj', 'self_attn.o_proj', 'self_attn.qkv_proj']
|
||||
elif self.llm_arch_name in ['Qwen2ForCausalLM', 'LlamaForCausalLM']:
|
||||
target_modules = ['self_attn.q_proj', 'self_attn.k_proj', 'self_attn.v_proj', 'self_attn.o_proj',
|
||||
'mlp.gate_proj', 'mlp.down_proj', 'mlp.up_proj']
|
||||
else:
|
||||
raise NotImplemented
|
||||
lora_config = LoraConfig(
|
||||
r=r,
|
||||
target_modules=target_modules,
|
||||
lora_alpha=lora_alpha,
|
||||
lora_dropout=lora_dropout,
|
||||
task_type='CAUSAL_LM'
|
||||
)
|
||||
self.language_model = get_peft_model(self.language_model, lora_config)
|
||||
self.language_model.enable_input_require_grads()
|
||||
self.language_model.print_trainable_parameters()
|
||||
|
||||
def pixel_shuffle(self, x, scale_factor=0.5):
|
||||
n, w, h, c = x.size()
|
||||
# N, W, H, C --> N, W, H * scale, C // scale
|
||||
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
|
||||
# N, W, H * scale, C // scale --> N, H * scale, W, C // scale
|
||||
x = x.permute(0, 2, 1, 3).contiguous()
|
||||
# N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
|
||||
x = x.view(n, int(h * scale_factor), int(w * scale_factor),
|
||||
int(c / (scale_factor * scale_factor)))
|
||||
if self.ps_version == 'v1':
|
||||
warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
|
||||
'which results in a transposed image.')
|
||||
else:
|
||||
x = x.permute(0, 2, 1, 3).contiguous()
|
||||
return x
|
||||
|
||||
def extract_feature(self, pixel_values):
|
||||
if self.select_layer == -1:
|
||||
vit_embeds = self.vision_model(
|
||||
pixel_values=pixel_values,
|
||||
output_hidden_states=False,
|
||||
return_dict=True).last_hidden_state
|
||||
else:
|
||||
vit_embeds = self.vision_model(
|
||||
pixel_values=pixel_values,
|
||||
output_hidden_states=True,
|
||||
return_dict=True).hidden_states[self.select_layer]
|
||||
vit_embeds = vit_embeds[:, 1:, :]
|
||||
|
||||
h = w = int(vit_embeds.shape[1] ** 0.5)
|
||||
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
|
||||
vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
|
||||
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
|
||||
vit_embeds = self.mlp1(vit_embeds)
|
||||
return vit_embeds
|
||||
|
||||
@property
|
||||
def lm_head(self):
|
||||
return self.language_model.get_output_embeddings()
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.language_model.get_input_embeddings()
|
||||
|
||||
def get_output_embeddings(self):
|
||||
return self.language_model.get_output_embeddings()
|
||||
|
||||
def forward(self, data, data_samples=None, mode='loss'):
|
||||
pixel_values = data['pixel_values']
|
||||
|
||||
if type(pixel_values) is list or pixel_values.ndim == 5:
|
||||
if type(pixel_values) is list:
|
||||
pixel_values = [
|
||||
x.unsqueeze(0) if x.ndim == 3 else x for x in pixel_values
|
||||
]
|
||||
# b*n, c, h, w
|
||||
concat_images = torch.cat(
|
||||
[image.to(self.vision_model.dtype) for image in pixel_values], dim=0)
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
|
||||
input_ids = data['input_ids']
|
||||
position_ids = data['position_ids']
|
||||
attention_mask = data['attention_mask']
|
||||
# sum is 0 are text
|
||||
image_flags = torch.sum(concat_images, dim=(1, 2, 3)) != 0
|
||||
image_flags = image_flags.long()
|
||||
|
||||
labels = data['labels']
|
||||
use_cache = False
|
||||
|
||||
if 'vp_overall_mask' not in data.keys():
|
||||
vp_overall_mask = None
|
||||
else:
|
||||
vp_overall_mask = data['vp_overall_mask']
|
||||
|
||||
if 'prompt_masks' in data.keys():
|
||||
prompt_masks = data['prompt_masks']
|
||||
else:
|
||||
prompt_masks = None
|
||||
|
||||
outputs = self._llm_forward(
|
||||
input_ids=input_ids,
|
||||
position_ids=position_ids,
|
||||
attention_mask=attention_mask,
|
||||
image_flags=image_flags,
|
||||
pixel_values=concat_images,
|
||||
labels=labels,
|
||||
use_cache=use_cache,
|
||||
output_hidden_states=True,
|
||||
vp_overall_mask=vp_overall_mask,
|
||||
prompt_masks=prompt_masks,
|
||||
)
|
||||
|
||||
return outputs
|
||||
|
||||
def _llm_forward(
|
||||
self,
|
||||
pixel_values: torch.FloatTensor,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
image_flags: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
vp_overall_mask=None,
|
||||
prompt_masks=None,
|
||||
) -> Union[Tuple, CausalLMOutputWithPast]:
|
||||
return_dict = return_dict if return_dict is not None \
|
||||
else self.config.use_return_dict
|
||||
|
||||
image_flags = image_flags.squeeze(-1)
|
||||
# We only added the clone code here to avoid the error.
|
||||
input_embeds = self.language_model.get_input_embeddings()(
|
||||
input_ids).clone()
|
||||
|
||||
vit_embeds = self.extract_feature(pixel_values)
|
||||
vit_embeds = vit_embeds.to(input_embeds.dtype) # FIXME: why vit_embeds is float16?
|
||||
fast_vit_embeds = None
|
||||
|
||||
vit_embeds = vit_embeds[image_flags == 1]
|
||||
vit_batch_size = pixel_values.shape[0]
|
||||
|
||||
B, N, C = input_embeds.shape
|
||||
input_embeds = input_embeds.reshape(B * N, C)
|
||||
|
||||
self._count += 1
|
||||
|
||||
if vp_overall_mask is not None and prompt_masks is not None:
|
||||
vp_embeds = []
|
||||
vp_overall_mask = vp_overall_mask.to(vit_embeds.device).bool()
|
||||
prompt_masks = [item.to(vit_embeds.device).bool() for item in prompt_masks]
|
||||
|
||||
vp_overall_mask = vp_overall_mask[image_flags == 1]
|
||||
overall_tile_vit_embeds = vit_embeds[vp_overall_mask] # (n_img, hw, c)
|
||||
|
||||
i_vp_img = 0
|
||||
for i_img in range(len(vit_embeds)):
|
||||
vp_embeds.append(vit_embeds[i_img].reshape(-1, C))
|
||||
if vp_overall_mask[i_img]:
|
||||
tile_vit_embeds = overall_tile_vit_embeds[i_vp_img].reshape(-1, C) # (hw, C)
|
||||
objects_prompt_masks = prompt_masks[i_vp_img]
|
||||
n_obj = len(objects_prompt_masks)
|
||||
tile_vit_embeds = tile_vit_embeds.unsqueeze(0).repeat(n_obj, 1, 1)
|
||||
objects_prompt_masks = objects_prompt_masks.reshape(n_obj, -1)
|
||||
vp_embeds.append(tile_vit_embeds[objects_prompt_masks])
|
||||
i_vp_img += 1
|
||||
vp_embeds = torch.cat(vp_embeds, dim=0)
|
||||
else:
|
||||
vp_embeds = None
|
||||
|
||||
input_ids = input_ids.reshape(B * N)
|
||||
selected = (input_ids == self.img_context_token_id)
|
||||
|
||||
if vp_embeds is None:
|
||||
try:
|
||||
input_embeds[selected] = vit_embeds.reshape(-1, C)
|
||||
except Exception as e:
|
||||
vit_embeds = vit_embeds.reshape(-1, C)
|
||||
print(f'warning: {e}, input_embeds[selected].shape='
|
||||
f'{input_embeds[selected].shape}, '
|
||||
f'vit_embeds.shape={vit_embeds.shape}')
|
||||
n_token = selected.sum()
|
||||
if n_token > len(vit_embeds):
|
||||
print(f"Wrong !!! {n_token} image tokens in text but only {len(vit_embeds)} vit embeds !!!")
|
||||
expand_ratio = n_token // len(vit_embeds) + 1
|
||||
vit_embeds = torch.cat([vit_embeds] * expand_ratio, dim=0)
|
||||
|
||||
input_embeds[selected] = vit_embeds[:n_token]
|
||||
else:
|
||||
try:
|
||||
input_embeds[selected] = vp_embeds.reshape(-1, C)
|
||||
except Exception as e:
|
||||
vp_embeds = vp_embeds.reshape(-1, C)
|
||||
print(f'warning: {e}, input_embeds[selected].shape='
|
||||
f'{input_embeds[selected].shape}, '
|
||||
f'vp_embeds.shape={vp_embeds.shape}')
|
||||
n_token = selected.sum()
|
||||
if n_token > len(vp_embeds):
|
||||
print(f"Wrong !!! {n_token} image tokens in text but only {len(vp_embeds)} vit embeds !!!")
|
||||
expand_ratio = n_token // len(vp_embeds) + 1
|
||||
vp_embeds = torch.cat([vp_embeds] * expand_ratio, dim=0)
|
||||
|
||||
input_embeds[selected] = vp_embeds[:n_token]
|
||||
|
||||
input_embeds = input_embeds.reshape(B, N, C)
|
||||
|
||||
outputs = self.language_model(
|
||||
inputs_embeds=input_embeds,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_values=past_key_values,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
logits = outputs.logits
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
# Shift so that tokens < n predict n
|
||||
shift_logits = logits[..., :-1, :].contiguous()
|
||||
shift_labels = labels[..., 1:].contiguous()
|
||||
# Flatten the tokens
|
||||
loss_fct = CrossEntropyLoss()
|
||||
shift_logits = shift_logits.view(
|
||||
-1, self.language_model.config.vocab_size)
|
||||
shift_labels = shift_labels.view(-1)
|
||||
# Enable model parallelism
|
||||
shift_labels = shift_labels.to(shift_logits.device)
|
||||
loss = loss_fct(shift_logits, shift_labels)
|
||||
|
||||
if not return_dict:
|
||||
output = (logits,) + outputs[1:]
|
||||
return (loss,) + output if loss is not None else output
|
||||
|
||||
return CausalLMOutputWithPast(
|
||||
loss=loss,
|
||||
logits=logits,
|
||||
past_key_values=outputs.past_key_values,
|
||||
hidden_states=outputs.hidden_states,
|
||||
attentions=outputs.attentions,
|
||||
)
|
||||
|
||||
@torch.no_grad()
|
||||
def generate(
|
||||
self,
|
||||
pixel_values: Optional[torch.FloatTensor] = None,
|
||||
input_ids: Optional[torch.FloatTensor] = None,
|
||||
attention_mask: Optional[torch.LongTensor] = None,
|
||||
visual_features: Optional[torch.FloatTensor] = None,
|
||||
generation_config: Optional[GenerationConfig] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
prompt_masks=None,
|
||||
vp_overall_mask=None,
|
||||
**generate_kwargs,
|
||||
) -> torch.LongTensor:
|
||||
device = self.device
|
||||
assert self.img_context_token_id is not None
|
||||
|
||||
if pixel_values is not None:
|
||||
if visual_features is not None:
|
||||
vit_embeds = visual_features
|
||||
else:
|
||||
if type(pixel_values) is list or pixel_values.ndim == 5:
|
||||
if type(pixel_values) is list:
|
||||
pixel_values = [
|
||||
x.unsqueeze(0) if x.ndim == 3 else x for x in pixel_values
|
||||
]
|
||||
# b*n, c, h, w
|
||||
pixel_values = torch.cat(
|
||||
[image.to(self.vision_model.dtype) for image in pixel_values], dim=0)
|
||||
|
||||
vit_embeds = self.extract_feature(pixel_values.to(device))
|
||||
image_flags = torch.sum(pixel_values, dim=(1, 2, 3)) != 0
|
||||
image_flags = image_flags.long()
|
||||
vit_embeds = vit_embeds[image_flags == 1]
|
||||
|
||||
input_embeds = self.language_model.get_input_embeddings()(input_ids.to(device))
|
||||
B, N, C = input_embeds.shape
|
||||
input_embeds = input_embeds.reshape(B * N, C)
|
||||
|
||||
if vp_overall_mask is not None and prompt_masks is not None:
|
||||
vp_embeds = []
|
||||
vp_overall_mask = vp_overall_mask.to(vit_embeds.device).bool()
|
||||
prompt_masks = [item.to(vit_embeds.device).bool() for item in prompt_masks]
|
||||
|
||||
vp_overall_mask = vp_overall_mask[image_flags == 1]
|
||||
overall_tile_vit_embeds = vit_embeds[vp_overall_mask] # (n_img, hw, c)
|
||||
|
||||
i_vp_img = 0
|
||||
for i_img in range(len(vit_embeds)):
|
||||
vp_embeds.append(vit_embeds[i_img].reshape(-1, C))
|
||||
if vp_overall_mask[i_img]:
|
||||
tile_vit_embeds = overall_tile_vit_embeds[i_vp_img].reshape(-1, C) # (hw, C)
|
||||
objects_prompt_masks = prompt_masks[i_vp_img]
|
||||
n_obj = len(objects_prompt_masks)
|
||||
tile_vit_embeds = tile_vit_embeds.unsqueeze(0).repeat(n_obj, 1, 1)
|
||||
objects_prompt_masks = objects_prompt_masks.reshape(n_obj, -1)
|
||||
vp_embeds.append(tile_vit_embeds[objects_prompt_masks])
|
||||
i_vp_img += 1
|
||||
|
||||
vp_embeds = torch.cat(vp_embeds, dim=0)
|
||||
else:
|
||||
vp_embeds = None
|
||||
|
||||
input_ids = input_ids.reshape(B * N)
|
||||
selected = (input_ids == self.img_context_token_id)
|
||||
assert selected.sum() != 0
|
||||
if vp_embeds is None:
|
||||
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
|
||||
else:
|
||||
if len(input_embeds[selected]) != len(vp_embeds.reshape(-1, C)):
|
||||
print("Shape mismatch, selected is {}, vp embeds is {} !!!" \
|
||||
.format(len(input_embeds[selected]), len(vp_embeds.reshape(-1, C))))
|
||||
min_tokens = min(len(input_embeds[selected]), len(vp_embeds.reshape(-1, C)))
|
||||
input_embeds[selected][:min_tokens] = vp_embeds.reshape(-1, C)[:min_tokens].to(input_embeds.device)
|
||||
else:
|
||||
input_embeds[selected] = vp_embeds.reshape(-1, C).to(input_embeds.device)
|
||||
|
||||
input_embeds = input_embeds.reshape(B, N, C)
|
||||
else:
|
||||
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
||||
|
||||
outputs = self.language_model.generate(
|
||||
inputs_embeds=input_embeds,
|
||||
attention_mask=attention_mask.to(device),
|
||||
generation_config=generation_config,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
use_cache=True,
|
||||
**generate_kwargs,
|
||||
)
|
||||
|
||||
return outputs
|
||||
|
||||
def preparing_for_generation(self, tokenizer, max_new_tokens=2048, torch_dtype=torch.bfloat16):
|
||||
# set stop criteria and generation configs for model
|
||||
if not hasattr(self, 'tokenizer'):
|
||||
self.tokenizer = tokenizer
|
||||
self.bot_name = 'BOT'
|
||||
stop_words = []
|
||||
stop_words += self.template.get('STOP_WORDS', [])
|
||||
stop_criteria = get_stop_criteria(
|
||||
tokenizer=self.tokenizer, stop_words=stop_words)
|
||||
self.stop_criteria = stop_criteria
|
||||
|
||||
default_generation_kwargs = dict(
|
||||
max_new_tokens=max_new_tokens,
|
||||
do_sample=False,
|
||||
eos_token_id=self.tokenizer.eos_token_id,
|
||||
pad_token_id=(
|
||||
self.tokenizer.pad_token_id
|
||||
if self.tokenizer.pad_token_id is not None
|
||||
else self.tokenizer.eos_token_id
|
||||
),
|
||||
)
|
||||
|
||||
self.gen_config = GenerationConfig(**default_generation_kwargs)
|
||||
self.init_prediction_config = True
|
||||
self.torch_dtype = torch_dtype
|
||||
self.to(torch_dtype)
|
||||
self.extra_image_processor = DirectResize(target_length=1024, )
|
||||
# for multi image process
|
||||
self.min_dynamic_patch = 1
|
||||
self.max_dynamic_patch = 12
|
||||
self.downsample_ratio = 0.5
|
||||
self.image_size = 448
|
||||
self.use_thumbnail = True
|
||||
patch_size = 14
|
||||
self.patch_size = patch_size
|
||||
|
||||
self.patch_token = int((self.image_size // patch_size) ** 2 * (self.downsample_ratio ** 2))
|
||||
self.IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
||||
self.IMAGENET_STD = (0.229, 0.224, 0.225)
|
||||
self.IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>'
|
||||
self.IMG_START_TOKEN = '<img>'
|
||||
self.IMG_END_TOKEN = '</img>'
|
||||
|
||||
self.transformer = T.Compose([
|
||||
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
|
||||
T.Resize((self.image_size, self.image_size), interpolation=InterpolationMode.BICUBIC),
|
||||
T.ToTensor(),
|
||||
T.Normalize(mean=self.IMAGENET_MEAN, std=self.IMAGENET_STD)
|
||||
])
|
||||
self.VP_START_TOKEN = '<vp>'
|
||||
self.VP_END_TOKEN = '</vp>'
|
||||
|
||||
# change phi3 prepare for generation fuction
|
||||
if self.config.llm_config.architectures[0] == 'Phi3ForCausalLM':
|
||||
self.language_model.prepare_inputs_for_generation = MethodType(prepare_inputs_for_generation_phi3, self.language_model)
|
||||
|
||||
img_context_token_id = tokenizer.convert_tokens_to_ids('<IMG_CONTEXT>')
|
||||
self.img_context_token_id = img_context_token_id
|
||||
self.seg_token_idx = tokenizer.convert_tokens_to_ids('[SEG]')
|
||||
return
|
||||
|
||||
def predict_forward(
|
||||
self,
|
||||
image=None,
|
||||
video=None,
|
||||
text=None,
|
||||
past_text='',
|
||||
mask_prompts=None,
|
||||
tokenizer=None,
|
||||
):
|
||||
if not self.init_prediction_config:
|
||||
assert tokenizer
|
||||
self.preparing_for_generation(tokenizer=tokenizer)
|
||||
|
||||
input_dict = {}
|
||||
if video is not None:
|
||||
pixel_values = []
|
||||
extra_pixel_values = []
|
||||
ori_image_size = video[0].size
|
||||
for frame_idx, frame_image in enumerate(video):
|
||||
assert ori_image_size == frame_image.size
|
||||
g_image = np.array(frame_image) # for grounding
|
||||
g_image = self.extra_image_processor.apply_image(g_image)
|
||||
g_image = torch.from_numpy(g_image).permute(2, 0, 1).contiguous()
|
||||
extra_pixel_values.append(g_image)
|
||||
if frame_idx < 5:
|
||||
img = self.transformer(frame_image)
|
||||
pixel_values.append(img)
|
||||
|
||||
pixel_values = torch.stack(pixel_values, dim=0).to(self.torch_dtype) # (n_f, 3, h, w)
|
||||
g_pixel_values = torch.stack([
|
||||
self.grounding_encoder.preprocess_image(pixel) for pixel in extra_pixel_values
|
||||
]).to(self.torch_dtype)
|
||||
num_image_tokens = self.patch_token
|
||||
num_frames = 5
|
||||
|
||||
input_dict['vp_overall_mask'] = None
|
||||
else:
|
||||
ori_image_size = image.size
|
||||
|
||||
# prepare grounding images
|
||||
g_image = np.array(image) # for grounding
|
||||
g_image = self.extra_image_processor.apply_image(g_image)
|
||||
g_pixel_values = torch.from_numpy(g_image).permute(2, 0, 1).contiguous().to(self.torch_dtype)
|
||||
extra_pixel_values = [g_pixel_values]
|
||||
g_pixel_values = torch.stack([
|
||||
self.grounding_encoder.preprocess_image(pixel) for pixel in extra_pixel_values
|
||||
]).to(self.torch_dtype)
|
||||
|
||||
images = dynamic_preprocess(image, self.min_dynamic_patch,
|
||||
self.max_dynamic_patch,
|
||||
self.image_size, self.use_thumbnail)
|
||||
|
||||
if mask_prompts is not None:
|
||||
vp_overall_mask = torch.Tensor([False] * (len(images) - 1) + [True])
|
||||
input_dict['vp_overall_mask'] = vp_overall_mask
|
||||
else:
|
||||
input_dict['vp_overall_mask'] = None
|
||||
|
||||
pixel_values = [self.transformer(image) for image in images]
|
||||
pixel_values = torch.stack(pixel_values).to(self.torch_dtype)
|
||||
num_image_tokens = pixel_values.shape[0] * self.patch_token
|
||||
num_frames = 1
|
||||
input_dict['g_pixel_values'] = g_pixel_values
|
||||
input_dict['pixel_values'] = pixel_values
|
||||
|
||||
|
||||
if mask_prompts is not None:
|
||||
# reshape mask prompts to feature size
|
||||
mask_prompts = [torch.Tensor(item).to(pixel_values.device) for item in mask_prompts]
|
||||
mask_prompts = [F.interpolate(
|
||||
item.unsqueeze(0),
|
||||
size=(int(self.image_size // self.patch_size * self.downsample_ratio),
|
||||
int(self.image_size // self.patch_size * self.downsample_ratio)),
|
||||
mode='nearest').squeeze(0) for item in mask_prompts]
|
||||
region_pixels = []
|
||||
for mask_prompt in mask_prompts[0]:
|
||||
region_pixels.append(mask_prompt.bool().to(torch.int64).sum())
|
||||
|
||||
vp_token_str = '\nThere are {} part regions in the picture: '.format(len(mask_prompts[0]))
|
||||
for i in range(len(mask_prompts[0])):
|
||||
vp_token_str = vp_token_str + \
|
||||
f"region{i + 1}" + self.VP_START_TOKEN + \
|
||||
self.IMG_CONTEXT_TOKEN * region_pixels[i] + \
|
||||
self.VP_END_TOKEN
|
||||
if i == len(mask_prompts[0]) - 1:
|
||||
vp_token_str = vp_token_str + '.\n'
|
||||
else:
|
||||
vp_token_str = vp_token_str + ', '
|
||||
else:
|
||||
vp_token_str = ''
|
||||
|
||||
image_token_str = f'{self.IMG_START_TOKEN}' \
|
||||
f'{self.IMG_CONTEXT_TOKEN * num_image_tokens}' \
|
||||
f'{self.IMG_END_TOKEN}'
|
||||
image_token_str = image_token_str + '\n'
|
||||
image_token_str = image_token_str * num_frames
|
||||
image_token_str = image_token_str.strip()
|
||||
|
||||
ret_masks = []
|
||||
|
||||
if '<image>' in text or mask_prompts is not None:
|
||||
assert past_text is None or len(past_text) == 0
|
||||
text = text.replace('<image>', image_token_str + vp_token_str)
|
||||
input_text = ''
|
||||
input_text += self.template['INSTRUCTION'].format(
|
||||
input=text, round=1, bot_name=self.bot_name)
|
||||
input_text = past_text + input_text
|
||||
ids = self.tokenizer.encode(input_text)
|
||||
ids = torch.tensor(ids).cuda().unsqueeze(0)
|
||||
|
||||
attention_mask = torch.ones_like(ids, dtype=torch.bool)
|
||||
|
||||
mm_inputs = {
|
||||
'pixel_values': input_dict['pixel_values'],
|
||||
'input_ids': ids,
|
||||
'attention_mask': attention_mask,
|
||||
'position_ids': None,
|
||||
'past_key_values': None,
|
||||
'labels': None,
|
||||
'prompt_masks': mask_prompts,
|
||||
'vp_overall_mask': input_dict['vp_overall_mask'],
|
||||
}
|
||||
|
||||
generate_output = self.generate(
|
||||
**mm_inputs,
|
||||
generation_config=self.gen_config,
|
||||
streamer=None,
|
||||
bos_token_id=self.tokenizer.bos_token_id,
|
||||
stopping_criteria=self.stop_criteria,
|
||||
output_hidden_states=True,
|
||||
return_dict_in_generate=True
|
||||
)
|
||||
predict = self.tokenizer.decode(
|
||||
generate_output.sequences[0], skip_special_tokens=False).strip()
|
||||
|
||||
# if have seg result, find the seg hidden states
|
||||
hidden_states = generate_output.hidden_states
|
||||
last_hidden_states = [item[-1][0] for item in hidden_states]
|
||||
last_hidden_states = torch.cat(last_hidden_states, dim=0)
|
||||
seg_hidden_states = get_seg_hidden_states(
|
||||
last_hidden_states, generate_output.sequences[0][:-1],
|
||||
seg_id=self.seg_token_idx
|
||||
)
|
||||
all_seg_hidden_states = self.text_hidden_fcs(seg_hidden_states)
|
||||
|
||||
for seg_hidden_states in all_seg_hidden_states:
|
||||
seg_hidden_states = seg_hidden_states.unsqueeze(0)
|
||||
g_pixel_values = input_dict['g_pixel_values']
|
||||
sam_states = self.grounding_encoder.get_sam2_embeddings(g_pixel_values)
|
||||
pred_masks = self.grounding_encoder.language_embd_inference(sam_states, [seg_hidden_states] * num_frames)
|
||||
w, h = ori_image_size
|
||||
masks = F.interpolate(pred_masks, size=(h, w), mode='bilinear', align_corners=False)
|
||||
masks = masks[:, 0]
|
||||
masks = masks.sigmoid() > 0.5
|
||||
masks = masks.cpu().numpy()
|
||||
ret_masks.append(masks)
|
||||
|
||||
return {'prediction': predict, 'prediction_masks': ret_masks,}
|
||||
|
||||
def get_seg_hidden_states(hidden_states, output_ids, seg_id):
|
||||
seg_mask = output_ids == seg_id
|
||||
n_out = len(seg_mask)
|
||||
if n_out == 0:
|
||||
return hidden_states[0:0]
|
||||
return hidden_states[-n_out:][seg_mask]
|
||||
|
||||
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height,
|
||||
image_size):
|
||||
best_ratio_diff = float('inf')
|
||||
best_ratio = (1, 1)
|
||||
area = width * height
|
||||
for ratio in target_ratios:
|
||||
target_aspect_ratio = ratio[0] / ratio[1]
|
||||
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
||||
if ratio_diff < best_ratio_diff:
|
||||
best_ratio_diff = ratio_diff
|
||||
best_ratio = ratio
|
||||
elif ratio_diff == best_ratio_diff:
|
||||
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
||||
best_ratio = ratio
|
||||
return best_ratio
|
||||
|
||||
def dynamic_preprocess(image,
|
||||
min_num=1,
|
||||
max_num=6,
|
||||
image_size=448,
|
||||
use_thumbnail=False):
|
||||
orig_width, orig_height = image.size
|
||||
aspect_ratio = orig_width / orig_height
|
||||
|
||||
# calculate the existing image aspect ratio
|
||||
target_ratios = {(i, j)
|
||||
for n in range(min_num, max_num + 1)
|
||||
for i in range(1, n + 1) for j in range(1, n + 1)
|
||||
if i * j <= max_num and i * j >= min_num}
|
||||
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
||||
|
||||
# find the closest aspect ratio to the target
|
||||
target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio,
|
||||
target_ratios, orig_width,
|
||||
orig_height, image_size)
|
||||
|
||||
# calculate the target width and height
|
||||
target_width = image_size * target_aspect_ratio[0]
|
||||
target_height = image_size * target_aspect_ratio[1]
|
||||
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
||||
|
||||
# resize the image
|
||||
resized_img = image.resize((target_width, target_height))
|
||||
processed_images = []
|
||||
for i in range(blocks):
|
||||
box = ((i % (target_width // image_size)) * image_size,
|
||||
(i // (target_width // image_size)) * image_size,
|
||||
((i % (target_width // image_size)) + 1) * image_size,
|
||||
((i // (target_width // image_size)) + 1) * image_size)
|
||||
# split the image
|
||||
split_img = resized_img.crop(box)
|
||||
processed_images.append(split_img)
|
||||
assert len(processed_images) == blocks
|
||||
if use_thumbnail and len(processed_images) != 1:
|
||||
thumbnail_img = image.resize((image_size, image_size))
|
||||
processed_images.append(thumbnail_img)
|
||||
return processed_images
|
||||
|
||||
|
||||
from transformers.cache_utils import Cache, DynamicCache
|
||||
|
||||
def prepare_inputs_for_generation_phi3(
|
||||
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
||||
):
|
||||
if past_key_values is not None:
|
||||
if isinstance(past_key_values, Cache):
|
||||
cache_length = past_key_values.get_seq_length()
|
||||
past_length = past_key_values.seen_tokens
|
||||
max_cache_length = past_key_values.get_max_length()
|
||||
else:
|
||||
cache_length = past_length = past_key_values[0][0].shape[2]
|
||||
max_cache_length = None
|
||||
|
||||
# Keep only the unprocessed tokens:
|
||||
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
||||
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
||||
# input)
|
||||
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
||||
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length):]
|
||||
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
||||
# input_ids based on the past_length.
|
||||
elif past_length < input_ids.shape[1]:
|
||||
input_ids = input_ids[:, past_length:]
|
||||
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
||||
|
||||
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
||||
if (
|
||||
max_cache_length is not None
|
||||
and attention_mask is not None
|
||||
and cache_length + input_ids.shape[1] > max_cache_length
|
||||
):
|
||||
attention_mask = attention_mask[:, -max_cache_length:]
|
||||
|
||||
position_ids = kwargs.get('position_ids', None)
|
||||
if attention_mask is not None and position_ids is None:
|
||||
# create position_ids on the fly for batch generation
|
||||
position_ids = attention_mask.long().cumsum(-1) - 1
|
||||
position_ids.masked_fill_(attention_mask == 0, 1)
|
||||
if past_key_values:
|
||||
position_ids = position_ids[:, -input_ids.shape[1]:]
|
||||
|
||||
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
||||
if inputs_embeds is not None and (past_key_values is None or len(past_key_values)==0):
|
||||
model_inputs = {'inputs_embeds': inputs_embeds}
|
||||
else:
|
||||
model_inputs = {'input_ids': input_ids}
|
||||
|
||||
model_inputs.update(
|
||||
{
|
||||
'position_ids': position_ids,
|
||||
'past_key_values': past_key_values,
|
||||
'use_cache': kwargs.get('use_cache'),
|
||||
'attention_mask': attention_mask,
|
||||
}
|
||||
)
|
||||
return model_inputs
|
||||
|
|
@ -0,0 +1,29 @@
|
|||
{
|
||||
"additional_special_tokens": [
|
||||
"<|im_start|>",
|
||||
"<|im_end|>",
|
||||
"<img>",
|
||||
"</img>",
|
||||
"<IMG_CONTEXT>",
|
||||
"<quad>",
|
||||
"</quad>",
|
||||
"<ref>",
|
||||
"</ref>",
|
||||
"<box>",
|
||||
"</box>"
|
||||
],
|
||||
"eos_token": {
|
||||
"content": "<|im_end|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
},
|
||||
"pad_token": {
|
||||
"content": "<|endoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
}
|
||||
}
|
|
@ -0,0 +1,170 @@
|
|||
|
||||
PROMPT_TEMPLATE = dict(
|
||||
default=dict(
|
||||
SYSTEM='<|System|>:{system}\n',
|
||||
INSTRUCTION='<|User|>:{input}\n<|Bot|>:',
|
||||
SEP='\n'),
|
||||
zephyr=dict(
|
||||
SYSTEM='<|system|>\n{system}\n',
|
||||
INSTRUCTION='<|user|>\n{input}\n<|assistant|>\n',
|
||||
SEP='\n'),
|
||||
internlm_chat=dict(
|
||||
SYSTEM='<|System|>:{system}\n',
|
||||
INSTRUCTION='<|User|>:{input}<eoh>\n<|Bot|>:',
|
||||
SUFFIX='<eoa>',
|
||||
SUFFIX_AS_EOS=True,
|
||||
SEP='\n',
|
||||
STOP_WORDS=['<eoa>']),
|
||||
internlm2_chat=dict(
|
||||
SYSTEM='<|im_start|>system\n{system}<|im_end|>\n',
|
||||
INSTRUCTION=('<|im_start|>user\n{input}<|im_end|>\n'
|
||||
'<|im_start|>assistant\n'),
|
||||
SUFFIX='<|im_end|>',
|
||||
SUFFIX_AS_EOS=True,
|
||||
SEP='\n',
|
||||
STOP_WORDS=['<|im_end|>']),
|
||||
moss_sft=dict(
|
||||
SYSTEM='{system}\n',
|
||||
INSTRUCTION='<|Human|>: {input}<eoh>\n',
|
||||
SEP='\n',
|
||||
STOP_WORDS=['<eoc>', '<eom>']),
|
||||
llama2_chat=dict(
|
||||
SYSTEM=(
|
||||
'[INST] <<SYS>>\n You are a helpful, respectful and honest '
|
||||
'assistant. Always answer as helpfully as possible, while being '
|
||||
'safe. Your answers should not include any harmful, unethical, '
|
||||
'racist, sexist, toxic, dangerous, or illegal content. Please '
|
||||
'ensure that your responses are socially unbiased and positive in '
|
||||
'nature.\n{system}\n<</SYS>>\n [/INST] '),
|
||||
INSTRUCTION='[INST] {input} [/INST]',
|
||||
SEP='\n'),
|
||||
code_llama_chat=dict(
|
||||
SYSTEM='{system}\n', INSTRUCTION='[INST] {input} [/INST]'),
|
||||
chatglm2=dict(
|
||||
SYSTEM='{system}\n',
|
||||
INSTRUCTION='[Round {round}]\n\n问:{input}\n\n答:',
|
||||
SEP='\n\n'),
|
||||
chatglm3=dict(
|
||||
SYSTEM='<|system|>\n{system}',
|
||||
INSTRUCTION='<|user|>\n{input}<|assistant|>\n',
|
||||
SEP='\n'),
|
||||
qwen_chat=dict(
|
||||
SYSTEM=('<|im_start|>system\n{system}<|im_end|>\n'),
|
||||
INSTRUCTION=('<|im_start|>user\n{input}<|im_end|>\n'
|
||||
'<|im_start|>assistant\n'),
|
||||
SUFFIX='<|im_end|>',
|
||||
SUFFIX_AS_EOS=True,
|
||||
SEP='\n',
|
||||
STOP_WORDS=['<|im_end|>', '<|endoftext|>']),
|
||||
baichuan_chat=dict(
|
||||
SYSTEM='{system}\n',
|
||||
INSTRUCTION='<reserved_102>{input}<reserved_103>',
|
||||
SEP='\n'),
|
||||
baichuan2_chat=dict(
|
||||
SYSTEM='{system}\n',
|
||||
INSTRUCTION='<reserved_106>{input}<reserved_107>',
|
||||
SEP='\n'),
|
||||
wizardlm=dict(
|
||||
SYSTEM=('A chat between a curious user and an artificial '
|
||||
'intelligence assistant. The assistant gives '
|
||||
'helpful, detailed, and polite answers to the '
|
||||
'user\'s questions. {system}\n '),
|
||||
INSTRUCTION=('USER: {input} ASSISTANT:'),
|
||||
SEP='\n'),
|
||||
wizardcoder=dict(
|
||||
SYSTEM=(
|
||||
'Below is an instruction that describes a task. '
|
||||
'Write a response that appropriately completes the request.\n\n'
|
||||
'{system}\n '),
|
||||
INSTRUCTION=('### Instruction:\n{input}\n\n### Response:'),
|
||||
SEP='\n\n'),
|
||||
vicuna=dict(
|
||||
SYSTEM=('A chat between a curious user and an artificial '
|
||||
'intelligence assistant. The assistant gives '
|
||||
'helpful, detailed, and polite answers to the '
|
||||
'user\'s questions. {system}\n '),
|
||||
INSTRUCTION=('USER: {input} ASSISTANT:'),
|
||||
SEP='\n'),
|
||||
deepseek_coder=dict(
|
||||
SYSTEM=('You are an AI programming assistant, utilizing '
|
||||
'the DeepSeek Coder model, developed by DeepSeek'
|
||||
'Company, and you only answer questions related '
|
||||
'to computer science. For politically sensitive '
|
||||
'questions, security and privacy issues, and '
|
||||
'other non-computer science questions, you will '
|
||||
'refuse to answer. {system}\n'),
|
||||
INSTRUCTION=('### Instruction:\n{input}\n### Response:\n'),
|
||||
SEP='\n'),
|
||||
# TODO: deprecation, v0.2.0
|
||||
deepseekcoder=dict(
|
||||
SYSTEM=('You are an AI programming assistant, utilizing '
|
||||
'the DeepSeek Coder model, developed by DeepSeek'
|
||||
'Company, and you only answer questions related '
|
||||
'to computer science. For politically sensitive '
|
||||
'questions, security and privacy issues, and '
|
||||
'other non-computer science questions, you will '
|
||||
'refuse to answer. {system}\n'),
|
||||
INSTRUCTION=('### Instruction:\n{input}\n### Response:\n'),
|
||||
SEP='\n'),
|
||||
deepseek_moe=dict(
|
||||
SYSTEM=('[INST] {system} [/INST]\n'),
|
||||
INSTRUCTION=('[INST] {input} [/INST]'),
|
||||
SEP='\n'),
|
||||
deepseek_v2=dict(
|
||||
SYSTEM='{system}\n\n',
|
||||
INSTRUCTION='User: {input}\n\nAssistant: ',
|
||||
SUFFIX='<|end▁of▁sentence|>',
|
||||
SUFFIX_AS_EOS=True,
|
||||
STOP_WORDS=['<|end▁of▁sentence|>']),
|
||||
mistral=dict(
|
||||
SYSTEM=('[INST] {system} [/INST]\n'),
|
||||
INSTRUCTION=('[INST] {input} [/INST]'),
|
||||
SEP='\n'),
|
||||
mixtral=dict(
|
||||
SYSTEM=('[INST] {system} [/INST]\n'),
|
||||
INSTRUCTION=('[INST] {input} [/INST]'),
|
||||
SEP='\n'),
|
||||
minicpm=dict(INSTRUCTION=('<用户> {input} <AI>'), SEP='\n'),
|
||||
minicpm3=dict(
|
||||
SYSTEM=('<|im_start|>system\n{system}<|im_end|>\n'),
|
||||
INSTRUCTION=('<|im_start|>user\n{input}<|im_end|>\n'
|
||||
'<|im_start|>assistant\n'),
|
||||
SUFFIX='<|im_end|>',
|
||||
SUFFIX_AS_EOS=True,
|
||||
SEP='\n',
|
||||
STOP_WORDS=['<|im_end|>', '<|endoftext|>']),
|
||||
gemma=dict(
|
||||
# `system` field is extended by xtuner
|
||||
SYSTEM=('<start_of_turn>system\n{system}<end_of_turn>\n'),
|
||||
INSTRUCTION=('<start_of_turn>user\n{input}<end_of_turn>\n'
|
||||
'<start_of_turn>model\n'),
|
||||
SUFFIX='<end_of_turn>',
|
||||
SUFFIX_AS_EOS=False,
|
||||
SEP='\n',
|
||||
STOP_WORDS=['<end_of_turn>']),
|
||||
cohere_chat=dict(
|
||||
SYSTEM=('<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>{system}'
|
||||
'<|END_OF_TURN_TOKEN|>'),
|
||||
INSTRUCTION=(
|
||||
'<|START_OF_TURN_TOKEN|><|USER_TOKEN|>{input}<|END_OF_TURN_TOKEN|>'
|
||||
'<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>'),
|
||||
SUFFIX='<|END_OF_TURN_TOKEN|>',
|
||||
SUFFIX_AS_EOS=True,
|
||||
STOP_WORDS=['<|END_OF_TURN_TOKEN|>']),
|
||||
llama3_chat=dict(
|
||||
SYSTEM=('<|start_header_id|>system<|end_header_id|>\n\n'
|
||||
'{system}<|eot_id|>'),
|
||||
INSTRUCTION=(
|
||||
'<|start_header_id|>user<|end_header_id|>\n\n{input}<|eot_id|>'
|
||||
'<|start_header_id|>assistant<|end_header_id|>\n\n'),
|
||||
SUFFIX='<|eot_id|>',
|
||||
SUFFIX_AS_EOS=True,
|
||||
STOP_WORDS=['<|eot_id|>']),
|
||||
phi3_chat=dict(
|
||||
SYSTEM='<|system|>\n{system}<|end|>\n',
|
||||
INSTRUCTION='<|user|>\n{input}<|end|>\n<|assistant|>\n',
|
||||
SUFFIX='<|end|>',
|
||||
SUFFIX_AS_EOS=True,
|
||||
SEP='\n',
|
||||
STOP_WORDS=['<|end|>']),
|
||||
)
|
|
@ -0,0 +1,235 @@
|
|||
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# This code is based on transformers/src/transformers/models/llama/tokenization_llama.py
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Tokenization classes for InternLM."""
|
||||
import os
|
||||
from shutil import copyfile
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
import sentencepiece as spm
|
||||
from transformers.tokenization_utils import PreTrainedTokenizer
|
||||
from transformers.utils import logging
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
VOCAB_FILES_NAMES = {'vocab_file': './tokenizer.model'}
|
||||
|
||||
PRETRAINED_VOCAB_FILES_MAP = {}
|
||||
|
||||
|
||||
# Modified from transformers.model.llama.tokenization_llama.LlamaTokenizer
|
||||
class InternLM2Tokenizer(PreTrainedTokenizer):
|
||||
"""
|
||||
Construct a InternLM2 tokenizer. Based on byte-level Byte-Pair-Encoding.
|
||||
|
||||
Args:
|
||||
vocab_file (`str`):
|
||||
Path to the vocabulary file.
|
||||
"""
|
||||
|
||||
vocab_files_names = VOCAB_FILES_NAMES
|
||||
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
||||
model_input_names = ['input_ids', 'attention_mask']
|
||||
_auto_class = 'AutoTokenizer'
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_file,
|
||||
unk_token='<unk>',
|
||||
bos_token='<s>',
|
||||
eos_token='</s>',
|
||||
pad_token='</s>',
|
||||
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
||||
add_bos_token=True,
|
||||
add_eos_token=False,
|
||||
decode_with_prefix_space=False,
|
||||
clean_up_tokenization_spaces=False,
|
||||
**kwargs,
|
||||
):
|
||||
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
||||
self.vocab_file = vocab_file
|
||||
self.add_bos_token = add_bos_token
|
||||
self.add_eos_token = add_eos_token
|
||||
self.decode_with_prefix_space = decode_with_prefix_space
|
||||
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
||||
self.sp_model.Load(vocab_file)
|
||||
self._no_prefix_space_tokens = None
|
||||
super().__init__(
|
||||
bos_token=bos_token,
|
||||
eos_token=eos_token,
|
||||
unk_token=unk_token,
|
||||
pad_token=pad_token,
|
||||
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@property
|
||||
def no_prefix_space_tokens(self):
|
||||
if self._no_prefix_space_tokens is None:
|
||||
vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
|
||||
self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith('▁')}
|
||||
return self._no_prefix_space_tokens
|
||||
|
||||
@property
|
||||
def vocab_size(self):
|
||||
"""Returns vocab size"""
|
||||
return self.sp_model.get_piece_size()
|
||||
|
||||
@property
|
||||
def bos_token_id(self) -> Optional[int]:
|
||||
return self.sp_model.bos_id()
|
||||
|
||||
@property
|
||||
def eos_token_id(self) -> Optional[int]:
|
||||
return self.sp_model.eos_id()
|
||||
|
||||
def get_vocab(self):
|
||||
"""Returns vocab as a dict"""
|
||||
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
||||
vocab.update(self.added_tokens_encoder)
|
||||
return vocab
|
||||
|
||||
def _tokenize(self, text):
|
||||
"""Returns a tokenized string."""
|
||||
return self.sp_model.encode(text, out_type=str)
|
||||
|
||||
def _convert_token_to_id(self, token):
|
||||
"""Converts a token (str) in an id using the vocab."""
|
||||
return self.sp_model.piece_to_id(token)
|
||||
|
||||
def _convert_id_to_token(self, index):
|
||||
"""Converts an index (integer) in a token (str) using the vocab."""
|
||||
token = self.sp_model.IdToPiece(index)
|
||||
return token
|
||||
|
||||
def _maybe_add_prefix_space(self, tokens, decoded):
|
||||
if tokens and tokens[0] not in self.no_prefix_space_tokens:
|
||||
return ' ' + decoded
|
||||
else:
|
||||
return decoded
|
||||
|
||||
def convert_tokens_to_string(self, tokens):
|
||||
"""Converts a sequence of tokens (string) in a single string."""
|
||||
current_sub_tokens = []
|
||||
out_string = ''
|
||||
prev_is_special = False
|
||||
for token in tokens:
|
||||
# make sure that special tokens are not decoded using sentencepiece model
|
||||
if token in self.all_special_tokens:
|
||||
if not prev_is_special:
|
||||
out_string += ' '
|
||||
out_string += self.sp_model.decode(current_sub_tokens) + token
|
||||
prev_is_special = True
|
||||
current_sub_tokens = []
|
||||
else:
|
||||
current_sub_tokens.append(token)
|
||||
prev_is_special = False
|
||||
out_string += self.sp_model.decode(current_sub_tokens)
|
||||
out_string = self.clean_up_tokenization(out_string)
|
||||
out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
|
||||
return out_string[1:]
|
||||
|
||||
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
||||
"""
|
||||
Save the vocabulary and special tokens file to a directory.
|
||||
|
||||
Args:
|
||||
save_directory (`str`):
|
||||
The directory in which to save the vocabulary.
|
||||
|
||||
Returns:
|
||||
`Tuple(str)`: Paths to the files saved.
|
||||
"""
|
||||
if not os.path.isdir(save_directory):
|
||||
logger.error(f'Vocabulary path ({save_directory}) should be a directory')
|
||||
return
|
||||
out_vocab_file = os.path.join(
|
||||
save_directory, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']
|
||||
)
|
||||
|
||||
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
||||
copyfile(self.vocab_file, out_vocab_file)
|
||||
elif not os.path.isfile(self.vocab_file):
|
||||
with open(out_vocab_file, 'wb') as fi:
|
||||
content_spiece_model = self.sp_model.serialized_model_proto()
|
||||
fi.write(content_spiece_model)
|
||||
|
||||
return (out_vocab_file,)
|
||||
|
||||
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
||||
if self.add_bos_token:
|
||||
bos_token_ids = [self.bos_token_id]
|
||||
else:
|
||||
bos_token_ids = []
|
||||
|
||||
output = bos_token_ids + token_ids_0
|
||||
|
||||
if token_ids_1 is not None:
|
||||
output = output + token_ids_1
|
||||
|
||||
if self.add_eos_token:
|
||||
output = output + [self.eos_token_id]
|
||||
|
||||
return output
|
||||
|
||||
def get_special_tokens_mask(
|
||||
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
||||
) -> List[int]:
|
||||
"""
|
||||
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
||||
special tokens using the tokenizer `prepare_for_model` method.
|
||||
|
||||
Args:
|
||||
token_ids_0 (`List[int]`):
|
||||
List of IDs.
|
||||
token_ids_1 (`List[int]`, *optional*):
|
||||
Optional second list of IDs for sequence pairs.
|
||||
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not the token list is already formatted with special tokens for the model.
|
||||
|
||||
Returns:
|
||||
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
||||
"""
|
||||
if already_has_special_tokens:
|
||||
return super().get_special_tokens_mask(
|
||||
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
||||
)
|
||||
|
||||
if token_ids_1 is None:
|
||||
return [1] + ([0] * len(token_ids_0)) + [1]
|
||||
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
||||
|
||||
def create_token_type_ids_from_sequences(
|
||||
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
||||
) -> List[int]:
|
||||
"""
|
||||
Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
|
||||
use of token type ids, therefore a list of zeros is returned.
|
||||
|
||||
Args:
|
||||
token_ids_0 (`List[int]`):
|
||||
List of IDs.
|
||||
token_ids_1 (`List[int]`, *optional*):
|
||||
Optional second list of IDs for sequence pairs.
|
||||
|
||||
Returns:
|
||||
`List[int]`: List of zeros.
|
||||
"""
|
||||
eos = [self.eos_token_id]
|
||||
|
||||
if token_ids_1 is None:
|
||||
return len(token_ids_0 + eos) * [0]
|
||||
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
|
|
@ -0,0 +1,211 @@
|
|||
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# This code is based on transformers/src/transformers/models/llama/tokenization_llama_fast.py
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Tokenization Fast class for InternLM."""
|
||||
import os
|
||||
from shutil import copyfile
|
||||
from typing import Any, Dict, Optional, Tuple
|
||||
|
||||
from tokenizers import Tokenizer, decoders, normalizers, processors
|
||||
from tokenizers.models import BPE
|
||||
from transformers.convert_slow_tokenizer import (SLOW_TO_FAST_CONVERTERS,
|
||||
SentencePieceExtractor,
|
||||
SpmConverter)
|
||||
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
|
||||
from transformers.utils import logging
|
||||
|
||||
from .tokenization_internlm2 import InternLM2Tokenizer
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
VOCAB_FILES_NAMES = {'vocab_file': './tokenizer.model'}
|
||||
|
||||
|
||||
# Modified from transformers.convert_slow_tokenizer.LlamaConverter
|
||||
class InternLM2Converter(SpmConverter):
|
||||
handle_byte_fallback = True
|
||||
|
||||
def vocab(self, proto):
|
||||
vocab = [
|
||||
('<unk>', 0.0),
|
||||
('<s>', 0.0),
|
||||
('</s>', 0.0),
|
||||
]
|
||||
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
|
||||
return vocab
|
||||
|
||||
def unk_id(self, proto):
|
||||
unk_id = 0
|
||||
return unk_id
|
||||
|
||||
def decoder(self, replacement, add_prefix_space):
|
||||
return decoders.Sequence(
|
||||
[
|
||||
decoders.Replace('▁', ' '),
|
||||
decoders.ByteFallback(),
|
||||
decoders.Fuse(),
|
||||
decoders.Strip(content=' ', left=1),
|
||||
]
|
||||
)
|
||||
|
||||
def tokenizer(self, proto):
|
||||
model_type = proto.trainer_spec.model_type
|
||||
vocab_scores = self.vocab(proto)
|
||||
# special tokens
|
||||
added_tokens = self.original_tokenizer.added_tokens_decoder
|
||||
for i in range(len(vocab_scores)):
|
||||
piece, score = vocab_scores[i]
|
||||
if i in added_tokens:
|
||||
vocab_scores[i] = (added_tokens[i].content, score)
|
||||
if model_type == 1:
|
||||
raise RuntimeError('InternLM2 is supposed to be a BPE model!')
|
||||
|
||||
elif model_type == 2:
|
||||
_, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract(vocab_scores)
|
||||
bpe_vocab = {word: i for i, (word, _score) in enumerate(vocab_scores)}
|
||||
tokenizer = Tokenizer(
|
||||
BPE(bpe_vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True, byte_fallback=True)
|
||||
)
|
||||
tokenizer.add_special_tokens(
|
||||
[ added_token for index, added_token in added_tokens.items()]
|
||||
)
|
||||
else:
|
||||
raise Exception(
|
||||
"You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
|
||||
)
|
||||
|
||||
return tokenizer
|
||||
|
||||
def normalizer(self, proto):
|
||||
normalizers_list = []
|
||||
if proto.normalizer_spec.add_dummy_prefix:
|
||||
normalizers_list.append(normalizers.Prepend(prepend='▁'))
|
||||
normalizers_list.append(normalizers.Replace(pattern=' ', content='▁'))
|
||||
return normalizers.Sequence(normalizers_list)
|
||||
|
||||
def pre_tokenizer(self, replacement, add_prefix_space):
|
||||
return None
|
||||
|
||||
|
||||
SLOW_TO_FAST_CONVERTERS['InternLM2Tokenizer'] = InternLM2Converter
|
||||
|
||||
|
||||
# Modified from transformers.model.llama.tokenization_llama_fast.LlamaTokenizerFast -> InternLM2TokenizerFast
|
||||
class InternLM2TokenizerFast(PreTrainedTokenizerFast):
|
||||
vocab_files_names = VOCAB_FILES_NAMES
|
||||
slow_tokenizer_class = InternLM2Tokenizer
|
||||
padding_side = 'left'
|
||||
model_input_names = ['input_ids', 'attention_mask']
|
||||
_auto_class = 'AutoTokenizer'
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_file,
|
||||
unk_token='<unk>',
|
||||
bos_token='<s>',
|
||||
eos_token='</s>',
|
||||
pad_token='</s>',
|
||||
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
||||
add_bos_token=True,
|
||||
add_eos_token=False,
|
||||
decode_with_prefix_space=False,
|
||||
clean_up_tokenization_spaces=False,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(
|
||||
vocab_file=vocab_file,
|
||||
unk_token=unk_token,
|
||||
bos_token=bos_token,
|
||||
eos_token=eos_token,
|
||||
pad_token=pad_token,
|
||||
sp_model_kwargs=sp_model_kwargs,
|
||||
add_bos_token=add_bos_token,
|
||||
add_eos_token=add_eos_token,
|
||||
decode_with_prefix_space=decode_with_prefix_space,
|
||||
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
||||
**kwargs,
|
||||
)
|
||||
self._add_bos_token = add_bos_token
|
||||
self._add_eos_token = add_eos_token
|
||||
self.update_post_processor()
|
||||
self.vocab_file = vocab_file
|
||||
|
||||
@property
|
||||
def can_save_slow_tokenizer(self) -> bool:
|
||||
return os.path.isfile(self.vocab_file) if self.vocab_file else False
|
||||
|
||||
def update_post_processor(self):
|
||||
"""
|
||||
Updates the underlying post processor with the current `bos_token` and `eos_token`.
|
||||
"""
|
||||
bos = self.bos_token
|
||||
bos_token_id = self.bos_token_id
|
||||
if bos is None and self.add_bos_token:
|
||||
raise ValueError('add_bos_token = True but bos_token = None')
|
||||
|
||||
eos = self.eos_token
|
||||
eos_token_id = self.eos_token_id
|
||||
if eos is None and self.add_eos_token:
|
||||
raise ValueError('add_eos_token = True but eos_token = None')
|
||||
|
||||
single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
|
||||
pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
|
||||
|
||||
special_tokens = []
|
||||
if self.add_bos_token:
|
||||
special_tokens.append((bos, bos_token_id))
|
||||
if self.add_eos_token:
|
||||
special_tokens.append((eos, eos_token_id))
|
||||
self._tokenizer.post_processor = processors.TemplateProcessing(
|
||||
single=single, pair=pair, special_tokens=special_tokens
|
||||
)
|
||||
|
||||
@property
|
||||
def add_eos_token(self):
|
||||
return self._add_eos_token
|
||||
|
||||
@property
|
||||
def add_bos_token(self):
|
||||
return self._add_bos_token
|
||||
|
||||
@add_eos_token.setter
|
||||
def add_eos_token(self, value):
|
||||
self._add_eos_token = value
|
||||
self.update_post_processor()
|
||||
|
||||
@add_bos_token.setter
|
||||
def add_bos_token(self, value):
|
||||
self._add_bos_token = value
|
||||
self.update_post_processor()
|
||||
|
||||
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
||||
if not self.can_save_slow_tokenizer:
|
||||
raise ValueError(
|
||||
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
|
||||
'tokenizer.'
|
||||
)
|
||||
|
||||
if not os.path.isdir(save_directory):
|
||||
logger.error(f'Vocabulary path ({save_directory}) should be a directory')
|
||||
return
|
||||
out_vocab_file = os.path.join(
|
||||
save_directory, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']
|
||||
)
|
||||
|
||||
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
|
||||
copyfile(self.vocab_file, out_vocab_file)
|
||||
|
||||
return (out_vocab_file,)
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,150 @@
|
|||
{
|
||||
"add_eos_token": false,
|
||||
"add_prefix_space": false,
|
||||
"added_tokens_decoder": {
|
||||
"151643": {
|
||||
"content": "<|endoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151644": {
|
||||
"content": "<|im_start|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151645": {
|
||||
"content": "<|im_end|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151646": {
|
||||
"content": "<img>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151647": {
|
||||
"content": "</img>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151648": {
|
||||
"content": "<IMG_CONTEXT>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151649": {
|
||||
"content": "<quad>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151650": {
|
||||
"content": "</quad>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151651": {
|
||||
"content": "<ref>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151652": {
|
||||
"content": "</ref>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151653": {
|
||||
"content": "<box>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151654": {
|
||||
"content": "</box>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151655": {
|
||||
"content": "[SEG]",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151656": {
|
||||
"content": "<p>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151657": {
|
||||
"content": "</p>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
}
|
||||
},
|
||||
"additional_special_tokens": [
|
||||
"<|im_start|>",
|
||||
"<|im_end|>",
|
||||
"<img>",
|
||||
"</img>",
|
||||
"<IMG_CONTEXT>",
|
||||
"<quad>",
|
||||
"</quad>",
|
||||
"<ref>",
|
||||
"</ref>",
|
||||
"<box>",
|
||||
"</box>"
|
||||
],
|
||||
"bos_token": null,
|
||||
"chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
||||
"clean_up_tokenization_spaces": false,
|
||||
"eos_token": "<|im_end|>",
|
||||
"errors": "replace",
|
||||
"model_max_length": 8192,
|
||||
"pad_token": "<|endoftext|>",
|
||||
"padding_side": "right",
|
||||
"split_special_tokens": false,
|
||||
"tokenizer_class": "Qwen2Tokenizer",
|
||||
"unk_token": null
|
||||
}
|
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue