4103 lines
172 KiB
Python
4103 lines
172 KiB
Python
import os
|
|
from collections import OrderedDict
|
|
from tqdm import tqdm
|
|
import torch.distributed
|
|
|
|
from torch.nn.init import trunc_normal_
|
|
|
|
import copy
|
|
|
|
from typing import List, Any, Optional, Tuple, Type, Union
|
|
|
|
import numpy as np
|
|
|
|
import math
|
|
import warnings
|
|
from functools import partial
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torch import nn, Tensor
|
|
|
|
# a large negative value as a placeholder score for missing objects
|
|
NO_OBJ_SCORE = -1024.0
|
|
|
|
warnings.simplefilter(action="ignore", category=FutureWarning)
|
|
# OLD_GPU, USE_FLASH_ATTN, MATH_KERNEL_ON = get_sdpa_settings()
|
|
OLD_GPU, USE_FLASH_ATTN, MATH_KERNEL_ON = True, True, True
|
|
|
|
def load_checkpoint_with_prefix(filename, prefix=None, map_location='cpu', logger='current'):
|
|
"""Load partial pretrained model with specific prefix.
|
|
|
|
Args:
|
|
prefix (str): The prefix of sub-module.
|
|
filename (str): Accept local filepath, URL, ``torchvision://xxx``,
|
|
``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for
|
|
details.
|
|
map_location (str | None): Same as :func:`torch.load`.
|
|
Defaults to None.
|
|
logger: logger
|
|
|
|
Returns:
|
|
dict or OrderedDict: The loaded checkpoint.
|
|
"""
|
|
checkpoint = torch.load(filename, map_location=map_location)
|
|
|
|
if 'state_dict' in checkpoint:
|
|
state_dict = checkpoint['state_dict']
|
|
elif 'model' in checkpoint:
|
|
state_dict = checkpoint['model']
|
|
else:
|
|
state_dict = checkpoint
|
|
if not prefix:
|
|
return state_dict
|
|
if not prefix.endswith('.'):
|
|
prefix += '.'
|
|
prefix_len = len(prefix)
|
|
|
|
state_dict = {
|
|
k[prefix_len:]: v
|
|
for k, v in state_dict.items() if k.startswith(prefix)
|
|
}
|
|
|
|
assert state_dict, f'{prefix} is not in the pretrained model'
|
|
return state_dict
|
|
|
|
def load_state_dict_to_model(model, state_dict, logger='current'):
|
|
missing_keys, unexpected_keys = model.load_state_dict(state_dict)
|
|
if missing_keys:
|
|
print(missing_keys)
|
|
raise RuntimeError()
|
|
if unexpected_keys:
|
|
print(unexpected_keys)
|
|
raise RuntimeError()
|
|
print("Loaded checkpoint successfully")
|
|
|
|
class SAM2(nn.Module):
|
|
def __init__(
|
|
self,
|
|
ckpt_path: str = None,
|
|
):
|
|
super().__init__()
|
|
|
|
image_encoder = self.build_image_encoder()
|
|
memory_attention = self.build_memory_attention()
|
|
memory_encoder = self.build_memory_encoder()
|
|
sam2_model = SAM2VideoPredictor(
|
|
image_encoder=image_encoder,
|
|
memory_attention=memory_attention,
|
|
memory_encoder=memory_encoder,
|
|
num_maskmem = 7,
|
|
image_size = 1024,
|
|
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
|
sigmoid_scale_for_mem_enc = 20.0,
|
|
sigmoid_bias_for_mem_enc = -10.0,
|
|
use_mask_input_as_output_without_sam = True,
|
|
# Memory
|
|
directly_add_no_mem_embed = True,
|
|
# use high-resolution feature map in the SAM mask decoder
|
|
use_high_res_features_in_sam = True,
|
|
# output 3 masks on the first click on initial conditioning frames
|
|
multimask_output_in_sam = True,
|
|
# SAM heads
|
|
iou_prediction_use_sigmoid = True,
|
|
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
|
use_obj_ptrs_in_encoder = True,
|
|
add_tpos_enc_to_obj_ptrs = False,
|
|
only_obj_ptrs_in_the_past_for_eval = True,
|
|
# object occlusion prediction
|
|
pred_obj_scores = True,
|
|
pred_obj_scores_mlp = True,
|
|
fixed_no_obj_ptr = True,
|
|
# multimask tracking settings
|
|
multimask_output_for_tracking = True,
|
|
use_multimask_token_for_obj_ptr = True,
|
|
multimask_min_pt_num = 0,
|
|
multimask_max_pt_num = 1,
|
|
use_mlp_for_obj_ptr_proj = True,
|
|
# Compilation flag
|
|
compile_image_encoder = False,
|
|
sam_mask_decoder_extra_args={
|
|
'dynamic_multimask_via_stability':True,
|
|
'dynamic_multimask_stability_delta': 0.05,
|
|
'dynamic_multimask_stability_thresh': 0.98,
|
|
}
|
|
)
|
|
if ckpt_path is not None:
|
|
state_dict = load_checkpoint_with_prefix(ckpt_path)
|
|
load_state_dict_to_model(sam2_model, state_dict)
|
|
|
|
self.sam2_model = sam2_model
|
|
|
|
self.hidden_dim = self.sam2_model.hidden_dim
|
|
|
|
self.img_mean = (0.485, 0.456, 0.406)
|
|
self.img_std = (0.229, 0.224, 0.225)
|
|
|
|
def build_image_encoder(self):
|
|
def build_trunk():
|
|
embed_dim = 144
|
|
num_heads = 2
|
|
stages = [2, 6, 36, 4]
|
|
global_att_blocks = [23, 33, 43]
|
|
window_pos_embed_bkg_spatial_size = [7, 7]
|
|
window_spec = [8, 4, 16, 8]
|
|
ret = Hiera(
|
|
embed_dim=embed_dim,
|
|
num_heads=num_heads,
|
|
stages=stages,
|
|
global_att_blocks=global_att_blocks,
|
|
window_pos_embed_bkg_spatial_size=window_pos_embed_bkg_spatial_size,
|
|
window_spec=window_spec,
|
|
)
|
|
return ret
|
|
def build_neck():
|
|
def build_position_encoding():
|
|
num_pos_feats = 256
|
|
normalize = True
|
|
scale = None
|
|
temperature = 10000
|
|
ret = PositionEmbeddingSine(
|
|
num_pos_feats=num_pos_feats,
|
|
normalize=normalize,
|
|
scale=scale,
|
|
temperature=temperature,
|
|
)
|
|
return ret
|
|
d_model = 256
|
|
backbone_channel_list = [1152, 576, 288, 144]
|
|
fpn_top_down_levels = [2, 3] # output level 0 and 1 directly use the backbone features
|
|
fpn_interp_model = 'nearest'
|
|
position_encoding = build_position_encoding()
|
|
ret = FpnNeck(
|
|
d_model=d_model,
|
|
position_encoding=position_encoding,
|
|
backbone_channel_list=backbone_channel_list,
|
|
fpn_top_down_levels=fpn_top_down_levels,
|
|
fpn_interp_model=fpn_interp_model,
|
|
)
|
|
return ret
|
|
scalp = 1
|
|
trunk = build_trunk()
|
|
neck = build_neck()
|
|
ret = ImageEncoder(scalp=scalp, trunk=trunk, neck=neck)
|
|
return ret
|
|
|
|
def build_memory_attention(self):
|
|
def build_layer():
|
|
def build_self_attention():
|
|
rope_theta = 10000.0
|
|
feat_sizes = [32, 32]
|
|
embedding_dim = 256
|
|
num_heads = 1
|
|
downsample_rate = 1
|
|
dropout = 0.1
|
|
ret = RoPEAttention(
|
|
rope_theta=rope_theta,
|
|
feat_sizes=feat_sizes,
|
|
embedding_dim=embedding_dim,
|
|
num_heads=num_heads,
|
|
downsample_rate=downsample_rate,
|
|
dropout=dropout
|
|
)
|
|
return ret
|
|
def build_cross_attention():
|
|
rope_theta = 10000.0
|
|
feat_sizes = [32, 32]
|
|
rope_k_repeat = True
|
|
embedding_dim = 256
|
|
num_heads = 1
|
|
downsample_rate = 1
|
|
dropout = 0.1
|
|
kv_in_dim = 64
|
|
ret = RoPEAttention(
|
|
rope_theta=rope_theta,
|
|
feat_sizes=feat_sizes,
|
|
rope_k_repeat=rope_k_repeat,
|
|
embedding_dim=embedding_dim,
|
|
num_heads=num_heads,
|
|
downsample_rate=downsample_rate,
|
|
dropout=dropout,
|
|
kv_in_dim=kv_in_dim
|
|
)
|
|
return ret
|
|
activation = 'relu'
|
|
dim_feedforward = 2048
|
|
dropout = 0.1
|
|
pos_enc_at_attn = False
|
|
d_model = 256
|
|
pos_enc_at_cross_attn_keys = True
|
|
pos_enc_at_cross_attn_queries = False
|
|
self_attention = build_self_attention()
|
|
cross_attention = build_cross_attention()
|
|
ret = MemoryAttentionLayer(
|
|
activation=activation,
|
|
dim_feedforward=dim_feedforward,
|
|
dropout=dropout,
|
|
pos_enc_at_attn=pos_enc_at_attn,
|
|
d_model=d_model,
|
|
pos_enc_at_cross_attn_queries=pos_enc_at_cross_attn_queries,
|
|
pos_enc_at_cross_attn_keys=pos_enc_at_cross_attn_keys,
|
|
self_attention=self_attention,
|
|
cross_attention=cross_attention,
|
|
)
|
|
return ret
|
|
d_model = 256
|
|
pos_enc_at_input = True
|
|
num_layers = 4
|
|
layer = build_layer()
|
|
ret = MemoryAttention(
|
|
d_model=d_model,
|
|
pos_enc_at_input=pos_enc_at_input,
|
|
num_layers=num_layers,
|
|
layer=layer,
|
|
)
|
|
return ret
|
|
|
|
def build_memory_encoder(self):
|
|
def build_position_encoding():
|
|
num_pos_feats = 64
|
|
normalize = True
|
|
scale = None
|
|
temperature = 10000
|
|
ret = PositionEmbeddingSine(
|
|
num_pos_feats=num_pos_feats,
|
|
normalize=normalize,
|
|
scale=scale,
|
|
temperature=temperature,
|
|
)
|
|
return ret
|
|
|
|
def build_mask_downsampler():
|
|
kernel_size = 3
|
|
stride = 2
|
|
padding = 1
|
|
ret = MaskDownSampler(
|
|
kernel_size=kernel_size,
|
|
stride=stride,
|
|
padding=padding,
|
|
)
|
|
return ret
|
|
|
|
def build_fuser():
|
|
def build_layer():
|
|
dim = 256
|
|
kernel_size = 7
|
|
padding = 3
|
|
layer_scale_init_value = 1e-6
|
|
use_dwconv = True # depth-wise convs
|
|
ret = CXBlock(
|
|
dim=dim, kernel_size=kernel_size,
|
|
padding=padding, layer_scale_init_value=layer_scale_init_value,
|
|
use_dwconv=use_dwconv,
|
|
)
|
|
return ret
|
|
|
|
num_layers = 2
|
|
layer = build_layer()
|
|
ret = Fuser(
|
|
layer=layer,
|
|
num_layers=num_layers
|
|
)
|
|
return ret
|
|
|
|
out_dim = 64
|
|
position_encoding = build_position_encoding()
|
|
mask_downsampler = build_mask_downsampler()
|
|
fuser = build_fuser()
|
|
ret = MemoryEncoder(
|
|
out_dim=out_dim,
|
|
position_encoding=position_encoding,
|
|
mask_downsampler=mask_downsampler,
|
|
fuser=fuser,
|
|
)
|
|
return ret
|
|
|
|
def inject_language_embd(self, inference_state, language_embd):
|
|
num_frame = len(language_embd)
|
|
num_obj = len(language_embd[0])
|
|
mask_out = []
|
|
for frame_idx in range(num_frame):
|
|
frame_mask_out = []
|
|
for obj_idx in range(num_obj):
|
|
_language_embd = language_embd[frame_idx][obj_idx][None][None]
|
|
_, _, out_mask_logits = self.sam2_model.add_language_embd(inference_state, frame_idx, obj_idx + 100, _language_embd)
|
|
frame_mask_out.append(out_mask_logits)
|
|
frame_mask_out = torch.cat(frame_mask_out, dim=1)
|
|
mask_out.append(frame_mask_out)
|
|
mask_out = torch.cat(mask_out, dim=0)
|
|
return mask_out
|
|
|
|
|
|
def language_embd_inference(self, inference_state, language_embd):
|
|
num_frame = len(language_embd)
|
|
num_obj = len(language_embd[0])
|
|
mask_out = []
|
|
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
|
|
for frame_idx in range(num_frame):
|
|
frame_mask_out = []
|
|
|
|
for obj_idx in range(num_obj):
|
|
_language_embd = language_embd[frame_idx][obj_idx][None][None]
|
|
_, _, out_mask_logits = self.sam2_model.add_language_embd(
|
|
inference_state,
|
|
frame_idx,
|
|
obj_idx + 100,
|
|
_language_embd,
|
|
inference=True,
|
|
)
|
|
frame_mask_out.append(out_mask_logits)
|
|
frame_mask_out = torch.cat(frame_mask_out, dim=1)
|
|
mask_out.append(frame_mask_out)
|
|
|
|
|
|
mask_out = []
|
|
for out_frame_idx, out_obj_ids, out_mask_logits in self.sam2_model.propagate_in_video(inference_state):
|
|
mask_out.append(out_mask_logits)
|
|
mask_out = torch.cat(mask_out, dim=0)
|
|
return mask_out
|
|
|
|
def get_sam2_embeddings(self, images):
|
|
return self.sam2_model.init_state(images)
|
|
|
|
def forward(self, batch):
|
|
raise NotImplementedError
|
|
|
|
def preprocess_image(self, image: torch.Tensor, dtype=torch.bfloat16) -> torch.Tensor:
|
|
image = image / 255.
|
|
|
|
img_mean = torch.tensor(self.img_mean, dtype=dtype, device=image.device)[:, None, None]
|
|
img_std = torch.tensor(self.img_std, dtype=dtype, device=image.device)[:, None, None]
|
|
image -= img_mean
|
|
image /= img_std
|
|
|
|
return image
|
|
|
|
class MemoryAttentionLayer(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
activation: str,
|
|
cross_attention: nn.Module,
|
|
d_model: int,
|
|
dim_feedforward: int,
|
|
dropout: float,
|
|
pos_enc_at_attn: bool,
|
|
pos_enc_at_cross_attn_keys: bool,
|
|
pos_enc_at_cross_attn_queries: bool,
|
|
self_attention: nn.Module,
|
|
):
|
|
super().__init__()
|
|
self.d_model = d_model
|
|
self.dim_feedforward = dim_feedforward
|
|
self.dropout_value = dropout
|
|
self.self_attn = self_attention
|
|
self.cross_attn_image = cross_attention
|
|
|
|
# Implementation of Feedforward model
|
|
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
|
self.dropout = nn.Dropout(dropout)
|
|
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
|
|
|
self.norm1 = nn.LayerNorm(d_model)
|
|
self.norm2 = nn.LayerNorm(d_model)
|
|
self.norm3 = nn.LayerNorm(d_model)
|
|
self.dropout1 = nn.Dropout(dropout)
|
|
self.dropout2 = nn.Dropout(dropout)
|
|
self.dropout3 = nn.Dropout(dropout)
|
|
|
|
self.activation_str = activation
|
|
self.activation = get_activation_fn(activation)
|
|
|
|
# Where to add pos enc
|
|
self.pos_enc_at_attn = pos_enc_at_attn
|
|
self.pos_enc_at_cross_attn_queries = pos_enc_at_cross_attn_queries
|
|
self.pos_enc_at_cross_attn_keys = pos_enc_at_cross_attn_keys
|
|
|
|
def _forward_sa(self, tgt, query_pos):
|
|
# Self-Attention
|
|
tgt2 = self.norm1(tgt)
|
|
q = k = tgt2 + query_pos if self.pos_enc_at_attn else tgt2
|
|
tgt2 = self.self_attn(q, k, v=tgt2)
|
|
tgt = tgt + self.dropout1(tgt2)
|
|
return tgt
|
|
|
|
def _forward_ca(self, tgt, memory, query_pos, pos, num_k_exclude_rope=0):
|
|
kwds = {}
|
|
if num_k_exclude_rope > 0:
|
|
assert isinstance(self.cross_attn_image, RoPEAttention)
|
|
kwds = {"num_k_exclude_rope": num_k_exclude_rope}
|
|
|
|
# Cross-Attention
|
|
tgt2 = self.norm2(tgt)
|
|
tgt2 = self.cross_attn_image(
|
|
q=tgt2 + query_pos if self.pos_enc_at_cross_attn_queries else tgt2,
|
|
k=memory + pos if self.pos_enc_at_cross_attn_keys else memory,
|
|
v=memory,
|
|
**kwds,
|
|
)
|
|
tgt = tgt + self.dropout2(tgt2)
|
|
return tgt
|
|
|
|
def forward(
|
|
self,
|
|
tgt,
|
|
memory,
|
|
pos: Optional[Tensor] = None,
|
|
query_pos: Optional[Tensor] = None,
|
|
num_k_exclude_rope: int = 0,
|
|
) -> torch.Tensor:
|
|
|
|
# Self-Attn, Cross-Attn
|
|
tgt = self._forward_sa(tgt, query_pos)
|
|
tgt = self._forward_ca(tgt, memory, query_pos, pos, num_k_exclude_rope)
|
|
# MLP
|
|
tgt2 = self.norm3(tgt)
|
|
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
|
|
tgt = tgt + self.dropout3(tgt2)
|
|
return tgt
|
|
|
|
|
|
class MemoryAttention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
d_model: int,
|
|
pos_enc_at_input: bool,
|
|
layer: nn.Module,
|
|
num_layers: int,
|
|
batch_first: bool = True, # Do layers expect batch first input?
|
|
):
|
|
super().__init__()
|
|
self.d_model = d_model
|
|
self.layers = get_clones(layer, num_layers)
|
|
self.num_layers = num_layers
|
|
self.norm = nn.LayerNorm(d_model)
|
|
self.pos_enc_at_input = pos_enc_at_input
|
|
self.batch_first = batch_first
|
|
|
|
def forward(
|
|
self,
|
|
curr: torch.Tensor, # self-attention inputs
|
|
memory: torch.Tensor, # cross-attention inputs
|
|
curr_pos: Optional[Tensor] = None, # pos_enc for self-attention inputs
|
|
memory_pos: Optional[Tensor] = None, # pos_enc for cross-attention inputs
|
|
num_obj_ptr_tokens: int = 0, # number of object pointer *tokens*
|
|
):
|
|
if isinstance(curr, list):
|
|
assert isinstance(curr_pos, list)
|
|
assert len(curr) == len(curr_pos) == 1
|
|
curr, curr_pos = (
|
|
curr[0],
|
|
curr_pos[0],
|
|
)
|
|
|
|
assert (
|
|
curr.shape[1] == memory.shape[1]
|
|
), "Batch size must be the same for curr and memory"
|
|
|
|
output = curr
|
|
if self.pos_enc_at_input and curr_pos is not None:
|
|
output = output + 0.1 * curr_pos
|
|
|
|
if self.batch_first:
|
|
# Convert to batch first
|
|
output = output.transpose(0, 1)
|
|
curr_pos = curr_pos.transpose(0, 1)
|
|
memory = memory.transpose(0, 1)
|
|
memory_pos = memory_pos.transpose(0, 1)
|
|
|
|
for layer in self.layers:
|
|
kwds = {}
|
|
if isinstance(layer.cross_attn_image, RoPEAttention):
|
|
kwds = {"num_k_exclude_rope": num_obj_ptr_tokens}
|
|
|
|
output = layer(
|
|
tgt=output,
|
|
memory=memory,
|
|
pos=memory_pos,
|
|
query_pos=curr_pos,
|
|
**kwds,
|
|
)
|
|
normed_output = self.norm(output)
|
|
|
|
if self.batch_first:
|
|
# Convert back to seq first
|
|
normed_output = normed_output.transpose(0, 1)
|
|
curr_pos = curr_pos.transpose(0, 1)
|
|
|
|
return normed_output
|
|
|
|
class MaskDownSampler(nn.Module):
|
|
"""
|
|
Progressively downsample a mask by total_stride, each time by stride.
|
|
Note that LayerNorm is applied per *token*, like in ViT.
|
|
|
|
With each downsample (by a factor stride**2), channel capacity increases by the same factor.
|
|
In the end, we linearly project to embed_dim channels.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
embed_dim=256,
|
|
kernel_size=4,
|
|
stride=4,
|
|
padding=0,
|
|
total_stride=16,
|
|
activation=nn.GELU,
|
|
):
|
|
super().__init__()
|
|
num_layers = int(math.log2(total_stride) // math.log2(stride))
|
|
assert stride**num_layers == total_stride
|
|
self.encoder = nn.Sequential()
|
|
mask_in_chans, mask_out_chans = 1, 1
|
|
for _ in range(num_layers):
|
|
mask_out_chans = mask_in_chans * (stride**2)
|
|
self.encoder.append(
|
|
nn.Conv2d(
|
|
mask_in_chans,
|
|
mask_out_chans,
|
|
kernel_size=kernel_size,
|
|
stride=stride,
|
|
padding=padding,
|
|
)
|
|
)
|
|
self.encoder.append(LayerNorm2d(mask_out_chans))
|
|
self.encoder.append(activation())
|
|
mask_in_chans = mask_out_chans
|
|
|
|
self.encoder.append(nn.Conv2d(mask_out_chans, embed_dim, kernel_size=1))
|
|
|
|
def forward(self, x):
|
|
return self.encoder(x)
|
|
|
|
|
|
# Lightly adapted from ConvNext (https://github.com/facebookresearch/ConvNeXt)
|
|
class CXBlock(nn.Module):
|
|
r"""ConvNeXt Block. There are two equivalent implementations:
|
|
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
|
|
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
|
|
We use (2) as we find it slightly faster in PyTorch
|
|
|
|
Args:
|
|
dim (int): Number of input channels.
|
|
drop_path (float): Stochastic depth rate. Default: 0.0
|
|
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
kernel_size=7,
|
|
padding=3,
|
|
drop_path=0.0,
|
|
layer_scale_init_value=1e-6,
|
|
use_dwconv=True,
|
|
):
|
|
super().__init__()
|
|
self.dwconv = nn.Conv2d(
|
|
dim,
|
|
dim,
|
|
kernel_size=kernel_size,
|
|
padding=padding,
|
|
groups=dim if use_dwconv else 1,
|
|
) # depthwise conv
|
|
self.norm = LayerNorm2d(dim, eps=1e-6)
|
|
self.pwconv1 = nn.Linear(
|
|
dim, 4 * dim
|
|
) # pointwise/1x1 convs, implemented with linear layers
|
|
self.act = nn.GELU()
|
|
self.pwconv2 = nn.Linear(4 * dim, dim)
|
|
# self.gamma = (
|
|
self.g_weight = (
|
|
nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)
|
|
if layer_scale_init_value > 0
|
|
else None
|
|
)
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
|
|
|
def forward(self, x):
|
|
input = x
|
|
x = self.dwconv(x)
|
|
x = self.norm(x)
|
|
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
|
|
x = self.pwconv1(x)
|
|
x = self.act(x)
|
|
x = self.pwconv2(x)
|
|
if self.g_weight is not None:
|
|
x = self.g_weight * x
|
|
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
|
|
|
|
x = input + self.drop_path(x)
|
|
return x
|
|
|
|
|
|
class Fuser(nn.Module):
|
|
def __init__(self, layer, num_layers, dim=None, input_projection=False):
|
|
super().__init__()
|
|
self.proj = nn.Identity()
|
|
self.layers = get_clones(layer, num_layers)
|
|
|
|
if input_projection:
|
|
assert dim is not None
|
|
self.proj = nn.Conv2d(dim, dim, kernel_size=1)
|
|
|
|
def forward(self, x):
|
|
# normally x: (N, C, H, W)
|
|
x = self.proj(x)
|
|
for layer in self.layers:
|
|
x = layer(x)
|
|
return x
|
|
|
|
|
|
class MemoryEncoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
out_dim,
|
|
mask_downsampler,
|
|
fuser,
|
|
position_encoding,
|
|
in_dim=256, # in_dim of pix_feats
|
|
):
|
|
super().__init__()
|
|
|
|
self.mask_downsampler = mask_downsampler
|
|
|
|
self.pix_feat_proj = nn.Conv2d(in_dim, in_dim, kernel_size=1)
|
|
self.fuser = fuser
|
|
self.position_encoding = position_encoding
|
|
self.out_proj = nn.Identity()
|
|
if out_dim != in_dim:
|
|
self.out_proj = nn.Conv2d(in_dim, out_dim, kernel_size=1)
|
|
|
|
def forward(
|
|
self,
|
|
pix_feat: torch.Tensor,
|
|
masks: torch.Tensor,
|
|
skip_mask_sigmoid: bool = False,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
## Process masks
|
|
# sigmoid, so that less domain shift from gt masks which are bool
|
|
if not skip_mask_sigmoid:
|
|
masks = F.sigmoid(masks)
|
|
masks = self.mask_downsampler(masks)
|
|
|
|
## Fuse pix_feats and downsampled masks
|
|
# in case the visual features are on CPU, cast them to CUDA
|
|
pix_feat = pix_feat.to(masks.device)
|
|
|
|
x = self.pix_feat_proj(pix_feat)
|
|
x = x + masks
|
|
x = self.fuser(x)
|
|
x = self.out_proj(x)
|
|
|
|
pos = self.position_encoding(x).to(x.dtype)
|
|
|
|
return {"vision_features": x, "vision_pos_enc": [pos]}
|
|
|
|
|
|
class ImageEncoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
trunk: nn.Module,
|
|
neck: nn.Module,
|
|
scalp: int = 0,
|
|
):
|
|
super().__init__()
|
|
self.trunk = trunk
|
|
self.neck = neck
|
|
self.scalp = scalp
|
|
assert (
|
|
self.trunk.channel_list == self.neck.backbone_channel_list
|
|
), f"Channel dims of trunk and neck do not match. Trunk: {self.trunk.channel_list}, neck: {self.neck.backbone_channel_list}"
|
|
|
|
def forward(self, sample: torch.Tensor):
|
|
# Forward through backbone
|
|
features, pos = self.neck(self.trunk(sample))
|
|
if self.scalp > 0:
|
|
# Discard the lowest resolution features
|
|
features, pos = features[: -self.scalp], pos[: -self.scalp]
|
|
|
|
src = features[-1]
|
|
output = {
|
|
"vision_features": src,
|
|
"vision_pos_enc": pos,
|
|
"backbone_fpn": features,
|
|
}
|
|
return output
|
|
|
|
|
|
class FpnNeck(nn.Module):
|
|
"""
|
|
A modified variant of Feature Pyramid Network (FPN) neck
|
|
(we remove output conv and also do bicubic interpolation similar to ViT
|
|
pos embed interpolation)
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
position_encoding: nn.Module,
|
|
d_model: int,
|
|
backbone_channel_list: List[int],
|
|
kernel_size: int = 1,
|
|
stride: int = 1,
|
|
padding: int = 0,
|
|
fpn_interp_model: str = "bilinear",
|
|
fuse_type: str = "sum",
|
|
fpn_top_down_levels: Optional[List[int]] = None,
|
|
):
|
|
"""Initialize the neck
|
|
:param trunk: the backbone
|
|
:param position_encoding: the positional encoding to use
|
|
:param d_model: the dimension of the model
|
|
:param neck_norm: the normalization to use
|
|
"""
|
|
super().__init__()
|
|
self.position_encoding = position_encoding
|
|
self.convs = nn.ModuleList()
|
|
self.backbone_channel_list = backbone_channel_list
|
|
for dim in backbone_channel_list:
|
|
current = nn.Sequential()
|
|
current.add_module(
|
|
"conv",
|
|
nn.Conv2d(
|
|
in_channels=dim,
|
|
out_channels=d_model,
|
|
kernel_size=kernel_size,
|
|
stride=stride,
|
|
padding=padding,
|
|
),
|
|
)
|
|
|
|
self.convs.append(current)
|
|
self.fpn_interp_model = fpn_interp_model
|
|
assert fuse_type in ["sum", "avg"]
|
|
self.fuse_type = fuse_type
|
|
|
|
# levels to have top-down features in its outputs
|
|
# e.g. if fpn_top_down_levels is [2, 3], then only outputs of level 2 and 3
|
|
# have top-down propagation, while outputs of level 0 and level 1 have only
|
|
# lateral features from the same backbone level.
|
|
if fpn_top_down_levels is None:
|
|
# default is to have top-down features on all levels
|
|
fpn_top_down_levels = range(len(self.convs))
|
|
self.fpn_top_down_levels = list(fpn_top_down_levels)
|
|
|
|
def forward(self, xs: List[torch.Tensor]):
|
|
|
|
out = [None] * len(self.convs)
|
|
pos = [None] * len(self.convs)
|
|
assert len(xs) == len(self.convs)
|
|
# fpn forward pass
|
|
# see https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/fpn.py
|
|
prev_features = None
|
|
# forward in top-down order (from low to high resolution)
|
|
n = len(self.convs) - 1
|
|
for i in range(n, -1, -1):
|
|
x = xs[i]
|
|
lateral_features = self.convs[n - i](x)
|
|
if i in self.fpn_top_down_levels and prev_features is not None:
|
|
top_down_features = F.interpolate(
|
|
prev_features.to(dtype=torch.float32),
|
|
scale_factor=2.0,
|
|
mode=self.fpn_interp_model,
|
|
align_corners=(
|
|
None if self.fpn_interp_model == "nearest" else False
|
|
),
|
|
antialias=False,
|
|
)
|
|
prev_features = lateral_features + top_down_features
|
|
if self.fuse_type == "avg":
|
|
prev_features /= 2
|
|
else:
|
|
prev_features = lateral_features
|
|
x_out = prev_features
|
|
out[i] = x_out
|
|
pos[i] = self.position_encoding(x_out).to(x_out.dtype)
|
|
|
|
return out, pos
|
|
|
|
def window_partition(x, window_size):
|
|
"""
|
|
Partition into non-overlapping windows with padding if needed.
|
|
Args:
|
|
x (tensor): input tokens with [B, H, W, C].
|
|
window_size (int): window size.
|
|
Returns:
|
|
windows: windows after partition with [B * num_windows, window_size, window_size, C].
|
|
(Hp, Wp): padded height and width before partition
|
|
"""
|
|
B, H, W, C = x.shape
|
|
|
|
pad_h = (window_size - H % window_size) % window_size
|
|
pad_w = (window_size - W % window_size) % window_size
|
|
if pad_h > 0 or pad_w > 0:
|
|
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
|
|
Hp, Wp = H + pad_h, W + pad_w
|
|
|
|
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
|
|
windows = (
|
|
x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
|
)
|
|
return windows, (Hp, Wp)
|
|
|
|
|
|
def window_unpartition(windows, window_size, pad_hw, hw):
|
|
"""
|
|
Window unpartition into original sequences and removing padding.
|
|
Args:
|
|
x (tensor): input tokens with [B * num_windows, window_size, window_size, C].
|
|
window_size (int): window size.
|
|
pad_hw (Tuple): padded height and width (Hp, Wp).
|
|
hw (Tuple): original height and width (H, W) before padding.
|
|
Returns:
|
|
x: unpartitioned sequences with [B, H, W, C].
|
|
"""
|
|
Hp, Wp = pad_hw
|
|
H, W = hw
|
|
B = windows.shape[0] // (Hp * Wp // window_size // window_size)
|
|
x = windows.view(
|
|
B, Hp // window_size, Wp // window_size, window_size, window_size, -1
|
|
)
|
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
|
|
|
|
if Hp > H or Wp > W:
|
|
x = x[:, :H, :W, :].contiguous()
|
|
return x
|
|
|
|
|
|
class PatchEmbed(nn.Module):
|
|
"""
|
|
Image to Patch Embedding.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
kernel_size: Tuple[int, ...] = (7, 7),
|
|
stride: Tuple[int, ...] = (4, 4),
|
|
padding: Tuple[int, ...] = (3, 3),
|
|
in_chans: int = 3,
|
|
embed_dim: int = 768,
|
|
):
|
|
"""
|
|
Args:
|
|
kernel_size (Tuple): kernel size of the projection layer.
|
|
stride (Tuple): stride of the projection layer.
|
|
padding (Tuple): padding size of the projection layer.
|
|
in_chans (int): Number of input image channels.
|
|
embed_dim (int): embed_dim (int): Patch embedding dimension.
|
|
"""
|
|
super().__init__()
|
|
self.proj = nn.Conv2d(
|
|
in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
|
|
)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x = self.proj(x)
|
|
# B C H W -> B H W C
|
|
x = x.permute(0, 2, 3, 1)
|
|
return x
|
|
|
|
def do_pool(x: torch.Tensor, pool: nn.Module, norm: nn.Module = None) -> torch.Tensor:
|
|
if pool is None:
|
|
return x
|
|
# (B, H, W, C) -> (B, C, H, W)
|
|
x = x.permute(0, 3, 1, 2)
|
|
x = pool(x)
|
|
# (B, C, H', W') -> (B, H', W', C)
|
|
x = x.permute(0, 2, 3, 1)
|
|
if norm:
|
|
x = norm(x)
|
|
|
|
return x
|
|
|
|
|
|
class MultiScaleAttention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
dim_out: int,
|
|
num_heads: int,
|
|
q_pool: nn.Module = None,
|
|
):
|
|
super().__init__()
|
|
|
|
self.dim = dim
|
|
self.dim_out = dim_out
|
|
|
|
self.num_heads = num_heads
|
|
head_dim = dim_out // num_heads
|
|
self.scale = head_dim**-0.5
|
|
|
|
self.q_pool = q_pool
|
|
self.qkv = nn.Linear(dim, dim_out * 3)
|
|
self.proj = nn.Linear(dim_out, dim_out)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
B, H, W, _ = x.shape
|
|
# qkv with shape (B, H * W, 3, nHead, C)
|
|
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1)
|
|
# q, k, v with shape (B, H * W, nheads, C)
|
|
q, k, v = torch.unbind(qkv, 2)
|
|
|
|
# Q pooling (for downsample at stage changes)
|
|
if self.q_pool:
|
|
q = do_pool(q.reshape(B, H, W, -1), self.q_pool)
|
|
H, W = q.shape[1:3] # downsampled shape
|
|
q = q.reshape(B, H * W, self.num_heads, -1)
|
|
|
|
# Torch's SDPA expects [B, nheads, H*W, C] so we transpose
|
|
x = F.scaled_dot_product_attention(
|
|
q.transpose(1, 2),
|
|
k.transpose(1, 2),
|
|
v.transpose(1, 2),
|
|
)
|
|
# Transpose back
|
|
x = x.transpose(1, 2)
|
|
x = x.reshape(B, H, W, -1)
|
|
|
|
x = self.proj(x)
|
|
|
|
return x
|
|
|
|
|
|
class MultiScaleBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
dim_out: int,
|
|
num_heads: int,
|
|
mlp_ratio: float = 4.0,
|
|
drop_path: float = 0.0,
|
|
norm_layer: Union[nn.Module, str] = "LayerNorm",
|
|
q_stride: Tuple[int, int] = None,
|
|
act_layer: nn.Module = nn.GELU,
|
|
window_size: int = 0,
|
|
):
|
|
super().__init__()
|
|
|
|
if isinstance(norm_layer, str):
|
|
norm_layer = partial(getattr(nn, norm_layer), eps=1e-6)
|
|
|
|
self.dim = dim
|
|
self.dim_out = dim_out
|
|
self.norm1 = norm_layer(dim)
|
|
|
|
self.window_size = window_size
|
|
|
|
self.pool, self.q_stride = None, q_stride
|
|
if self.q_stride:
|
|
self.pool = nn.MaxPool2d(
|
|
kernel_size=q_stride, stride=q_stride, ceil_mode=False
|
|
)
|
|
|
|
self.attn = MultiScaleAttention(
|
|
dim,
|
|
dim_out,
|
|
num_heads=num_heads,
|
|
q_pool=self.pool,
|
|
)
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
|
|
|
self.norm2 = norm_layer(dim_out)
|
|
self.mlp = MLP(
|
|
dim_out,
|
|
int(dim_out * mlp_ratio),
|
|
dim_out,
|
|
num_layers=2,
|
|
activation=act_layer,
|
|
)
|
|
|
|
if dim != dim_out:
|
|
self.proj = nn.Linear(dim, dim_out)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
shortcut = x # B, H, W, C
|
|
x = self.norm1(x)
|
|
|
|
# Skip connection
|
|
if self.dim != self.dim_out:
|
|
shortcut = do_pool(self.proj(x), self.pool)
|
|
|
|
# Window partition
|
|
window_size = self.window_size
|
|
if window_size > 0:
|
|
H, W = x.shape[1], x.shape[2]
|
|
x, pad_hw = window_partition(x, window_size)
|
|
|
|
# Window Attention + Q Pooling (if stage change)
|
|
x = self.attn(x)
|
|
if self.q_stride:
|
|
# Shapes have changed due to Q pooling
|
|
window_size = self.window_size // self.q_stride[0]
|
|
H, W = shortcut.shape[1:3]
|
|
|
|
pad_h = (window_size - H % window_size) % window_size
|
|
pad_w = (window_size - W % window_size) % window_size
|
|
pad_hw = (H + pad_h, W + pad_w)
|
|
|
|
# Reverse window partition
|
|
if self.window_size > 0:
|
|
x = window_unpartition(x, window_size, pad_hw, (H, W))
|
|
|
|
x = shortcut + self.drop_path(x)
|
|
# MLP
|
|
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
|
return x
|
|
|
|
|
|
class Hiera(nn.Module):
|
|
"""
|
|
Reference: https://arxiv.org/abs/2306.00989
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
embed_dim: int = 96, # initial embed dim
|
|
num_heads: int = 1, # initial number of heads
|
|
drop_path_rate: float = 0.0, # stochastic depth
|
|
q_pool: int = 3, # number of q_pool stages
|
|
q_stride: Tuple[int, int] = (2, 2), # downsample stride bet. stages
|
|
stages: Tuple[int, ...] = (2, 3, 16, 3), # blocks per stage
|
|
dim_mul: float = 2.0, # dim_mul factor at stage shift
|
|
head_mul: float = 2.0, # head_mul factor at stage shift
|
|
window_pos_embed_bkg_spatial_size: Tuple[int, int] = (14, 14),
|
|
# window size per stage, when not using global att.
|
|
window_spec: Tuple[int, ...] = (
|
|
8,
|
|
4,
|
|
14,
|
|
7,
|
|
),
|
|
# global attn in these blocks
|
|
global_att_blocks: Tuple[int, ...] = (
|
|
12,
|
|
16,
|
|
20,
|
|
),
|
|
return_interm_layers=True, # return feats from every stage
|
|
):
|
|
super().__init__()
|
|
|
|
assert len(stages) == len(window_spec)
|
|
self.window_spec = window_spec
|
|
|
|
depth = sum(stages)
|
|
self.q_stride = q_stride
|
|
self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)]
|
|
assert 0 <= q_pool <= len(self.stage_ends[:-1])
|
|
self.q_pool_blocks = [x + 1 for x in self.stage_ends[:-1]][:q_pool]
|
|
self.return_interm_layers = return_interm_layers
|
|
|
|
self.patch_embed = PatchEmbed(
|
|
embed_dim=embed_dim,
|
|
)
|
|
# Which blocks have global att?
|
|
self.global_att_blocks = global_att_blocks
|
|
|
|
# Windowed positional embedding (https://arxiv.org/abs/2311.05613)
|
|
self.window_pos_embed_bkg_spatial_size = window_pos_embed_bkg_spatial_size
|
|
self.pos_embed = nn.Parameter(
|
|
torch.zeros(1, embed_dim, *self.window_pos_embed_bkg_spatial_size)
|
|
)
|
|
self.pos_embed_window = nn.Parameter(
|
|
torch.zeros(1, embed_dim, self.window_spec[0], self.window_spec[0])
|
|
)
|
|
|
|
dpr = [
|
|
x.item() for x in torch.linspace(0, drop_path_rate, depth)
|
|
] # stochastic depth decay rule
|
|
|
|
cur_stage = 1
|
|
self.blocks = nn.ModuleList()
|
|
|
|
for i in range(depth):
|
|
dim_out = embed_dim
|
|
# lags by a block, so first block of
|
|
# next stage uses an initial window size
|
|
# of previous stage and final window size of current stage
|
|
window_size = self.window_spec[cur_stage - 1]
|
|
|
|
if self.global_att_blocks is not None:
|
|
window_size = 0 if i in self.global_att_blocks else window_size
|
|
|
|
if i - 1 in self.stage_ends:
|
|
dim_out = int(embed_dim * dim_mul)
|
|
num_heads = int(num_heads * head_mul)
|
|
cur_stage += 1
|
|
|
|
block = MultiScaleBlock(
|
|
dim=embed_dim,
|
|
dim_out=dim_out,
|
|
num_heads=num_heads,
|
|
drop_path=dpr[i],
|
|
q_stride=self.q_stride if i in self.q_pool_blocks else None,
|
|
window_size=window_size,
|
|
)
|
|
|
|
embed_dim = dim_out
|
|
self.blocks.append(block)
|
|
|
|
self.channel_list = (
|
|
[self.blocks[i].dim_out for i in self.stage_ends[::-1]]
|
|
if return_interm_layers
|
|
else [self.blocks[-1].dim_out]
|
|
)
|
|
|
|
def _get_pos_embed(self, hw: Tuple[int, int]) -> torch.Tensor:
|
|
h, w = hw
|
|
window_embed = self.pos_embed_window
|
|
pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode="bicubic")
|
|
pos_embed = pos_embed + window_embed.tile(
|
|
[x // y for x, y in zip(pos_embed.shape, window_embed.shape)]
|
|
)
|
|
pos_embed = pos_embed.permute(0, 2, 3, 1)
|
|
return pos_embed
|
|
|
|
def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
|
|
x = self.patch_embed(x)
|
|
# x: (B, H, W, C)
|
|
|
|
# Add pos embed
|
|
x = x + self._get_pos_embed(x.shape[1:3])
|
|
|
|
outputs = []
|
|
for i, blk in enumerate(self.blocks):
|
|
x = blk(x)
|
|
if (i == self.stage_ends[-1]) or (
|
|
i in self.stage_ends and self.return_interm_layers
|
|
):
|
|
feats = x.permute(0, 3, 1, 2)
|
|
outputs.append(feats)
|
|
|
|
return outputs
|
|
|
|
class TwoWayTransformer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
depth: int,
|
|
embedding_dim: int,
|
|
num_heads: int,
|
|
mlp_dim: int,
|
|
activation: Type[nn.Module] = nn.ReLU,
|
|
attention_downsample_rate: int = 2,
|
|
) -> None:
|
|
"""
|
|
A transformer decoder that attends to an input image using
|
|
queries whose positional embedding is supplied.
|
|
|
|
Args:
|
|
depth (int): number of layers in the transformer
|
|
embedding_dim (int): the channel dimension for the input embeddings
|
|
num_heads (int): the number of heads for multihead attention. Must
|
|
divide embedding_dim
|
|
mlp_dim (int): the channel dimension internal to the MLP block
|
|
activation (nn.Module): the activation to use in the MLP block
|
|
"""
|
|
super().__init__()
|
|
self.depth = depth
|
|
self.embedding_dim = embedding_dim
|
|
self.num_heads = num_heads
|
|
self.mlp_dim = mlp_dim
|
|
self.layers = nn.ModuleList()
|
|
|
|
for i in range(depth):
|
|
self.layers.append(
|
|
TwoWayAttentionBlock(
|
|
embedding_dim=embedding_dim,
|
|
num_heads=num_heads,
|
|
mlp_dim=mlp_dim,
|
|
activation=activation,
|
|
attention_downsample_rate=attention_downsample_rate,
|
|
skip_first_layer_pe=(i == 0),
|
|
)
|
|
)
|
|
|
|
self.final_attn_token_to_image = Attention(
|
|
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
|
|
)
|
|
self.norm_final_attn = nn.LayerNorm(embedding_dim)
|
|
|
|
def forward(
|
|
self,
|
|
image_embedding: Tensor,
|
|
image_pe: Tensor,
|
|
point_embedding: Tensor,
|
|
) -> Tuple[Tensor, Tensor]:
|
|
"""
|
|
Args:
|
|
image_embedding (torch.Tensor): image to attend to. Should be shape
|
|
B x embedding_dim x h x w for any h and w.
|
|
image_pe (torch.Tensor): the positional encoding to add to the image. Must
|
|
have the same shape as image_embedding.
|
|
point_embedding (torch.Tensor): the embedding to add to the query points.
|
|
Must have shape B x N_points x embedding_dim for any N_points.
|
|
|
|
Returns:
|
|
torch.Tensor: the processed point_embedding
|
|
torch.Tensor: the processed image_embedding
|
|
"""
|
|
# BxCxHxW -> BxHWxC == B x N_image_tokens x C
|
|
bs, c, h, w = image_embedding.shape
|
|
image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
|
|
image_pe = image_pe.flatten(2).permute(0, 2, 1)
|
|
|
|
# Prepare queries
|
|
queries = point_embedding
|
|
keys = image_embedding
|
|
|
|
# Apply transformer blocks and final layernorm
|
|
for layer in self.layers:
|
|
queries, keys = layer(
|
|
queries=queries,
|
|
keys=keys,
|
|
query_pe=point_embedding,
|
|
key_pe=image_pe,
|
|
)
|
|
|
|
# Apply the final attention layer from the points to the image
|
|
q = queries + point_embedding
|
|
k = keys + image_pe
|
|
attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
|
|
queries = queries + attn_out
|
|
queries = self.norm_final_attn(queries)
|
|
|
|
return queries, keys
|
|
|
|
|
|
class TwoWayAttentionBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
embedding_dim: int,
|
|
num_heads: int,
|
|
mlp_dim: int = 2048,
|
|
activation: Type[nn.Module] = nn.ReLU,
|
|
attention_downsample_rate: int = 2,
|
|
skip_first_layer_pe: bool = False,
|
|
) -> None:
|
|
"""
|
|
A transformer block with four layers: (1) self-attention of sparse
|
|
inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp
|
|
block on sparse inputs, and (4) cross attention of dense inputs to sparse
|
|
inputs.
|
|
|
|
Arguments:
|
|
embedding_dim (int): the channel dimension of the embeddings
|
|
num_heads (int): the number of heads in the attention layers
|
|
mlp_dim (int): the hidden dimension of the mlp block
|
|
activation (nn.Module): the activation of the mlp block
|
|
skip_first_layer_pe (bool): skip the PE on the first layer
|
|
"""
|
|
super().__init__()
|
|
self.self_attn = Attention(embedding_dim, num_heads)
|
|
self.norm1 = nn.LayerNorm(embedding_dim)
|
|
|
|
self.cross_attn_token_to_image = Attention(
|
|
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
|
|
)
|
|
self.norm2 = nn.LayerNorm(embedding_dim)
|
|
|
|
self.mlp = MLP(
|
|
embedding_dim, mlp_dim, embedding_dim, num_layers=2, activation=activation
|
|
)
|
|
self.norm3 = nn.LayerNorm(embedding_dim)
|
|
|
|
self.norm4 = nn.LayerNorm(embedding_dim)
|
|
self.cross_attn_image_to_token = Attention(
|
|
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
|
|
)
|
|
|
|
self.skip_first_layer_pe = skip_first_layer_pe
|
|
|
|
def forward(
|
|
self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor
|
|
) -> Tuple[Tensor, Tensor]:
|
|
# Self attention block
|
|
if self.skip_first_layer_pe:
|
|
queries = self.self_attn(q=queries, k=queries, v=queries)
|
|
else:
|
|
q = queries + query_pe
|
|
attn_out = self.self_attn(q=q, k=q, v=queries)
|
|
queries = queries + attn_out
|
|
queries = self.norm1(queries)
|
|
|
|
# Cross attention block, tokens attending to image embedding
|
|
q = queries + query_pe
|
|
k = keys + key_pe
|
|
attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
|
|
queries = queries + attn_out
|
|
queries = self.norm2(queries)
|
|
|
|
# MLP block
|
|
mlp_out = self.mlp(queries)
|
|
queries = queries + mlp_out
|
|
queries = self.norm3(queries)
|
|
|
|
# Cross attention block, image embedding attending to tokens
|
|
q = queries + query_pe
|
|
k = keys + key_pe
|
|
attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
|
|
keys = keys + attn_out
|
|
keys = self.norm4(keys)
|
|
|
|
return queries, keys
|
|
|
|
|
|
class Attention(nn.Module):
|
|
"""
|
|
An attention layer that allows for downscaling the size of the embedding
|
|
after projection to queries, keys, and values.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
embedding_dim: int,
|
|
num_heads: int,
|
|
downsample_rate: int = 1,
|
|
dropout: float = 0.0,
|
|
kv_in_dim: int = None,
|
|
) -> None:
|
|
super().__init__()
|
|
self.embedding_dim = embedding_dim
|
|
self.kv_in_dim = kv_in_dim if kv_in_dim is not None else embedding_dim
|
|
self.internal_dim = embedding_dim // downsample_rate
|
|
self.num_heads = num_heads
|
|
assert (
|
|
self.internal_dim % num_heads == 0
|
|
), "num_heads must divide embedding_dim."
|
|
|
|
self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
|
|
self.k_proj = nn.Linear(self.kv_in_dim, self.internal_dim)
|
|
self.v_proj = nn.Linear(self.kv_in_dim, self.internal_dim)
|
|
self.out_proj = nn.Linear(self.internal_dim, embedding_dim)
|
|
|
|
self.dropout_p = dropout
|
|
|
|
def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
|
|
b, n, c = x.shape
|
|
x = x.reshape(b, n, num_heads, c // num_heads)
|
|
return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head
|
|
|
|
def _recombine_heads(self, x: Tensor) -> Tensor:
|
|
b, n_heads, n_tokens, c_per_head = x.shape
|
|
x = x.transpose(1, 2)
|
|
return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C
|
|
|
|
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
|
|
# Input projections
|
|
q = self.q_proj(q)
|
|
k = self.k_proj(k)
|
|
v = self.v_proj(v)
|
|
|
|
# Separate into heads
|
|
q = self._separate_heads(q, self.num_heads)
|
|
k = self._separate_heads(k, self.num_heads)
|
|
v = self._separate_heads(v, self.num_heads)
|
|
|
|
dropout_p = self.dropout_p if self.training else 0.0
|
|
# Attention
|
|
with torch.backends.cuda.sdp_kernel(
|
|
enable_flash=USE_FLASH_ATTN,
|
|
# if Flash attention kernel is off, then math kernel needs to be enabled
|
|
enable_math=(OLD_GPU and dropout_p > 0.0) or MATH_KERNEL_ON,
|
|
enable_mem_efficient=OLD_GPU,
|
|
):
|
|
out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)
|
|
|
|
out = self._recombine_heads(out)
|
|
out = self.out_proj(out)
|
|
|
|
return out
|
|
|
|
|
|
class RoPEAttention(Attention):
|
|
"""Attention with rotary position encoding."""
|
|
|
|
def __init__(
|
|
self,
|
|
*args,
|
|
rope_theta=10000.0,
|
|
# whether to repeat q rope to match k length
|
|
# this is needed for cross-attention to memories
|
|
rope_k_repeat=False,
|
|
feat_sizes=(32, 32), # [w, h] for stride 16 feats at 512 resolution
|
|
**kwargs,
|
|
):
|
|
super().__init__(*args, **kwargs)
|
|
|
|
self.compute_cis = partial(
|
|
compute_axial_cis, dim=self.internal_dim // self.num_heads, theta=rope_theta
|
|
)
|
|
freqs_cis = self.compute_cis(end_x=feat_sizes[0], end_y=feat_sizes[1])
|
|
self.freqs_cis = freqs_cis
|
|
self.rope_k_repeat = rope_k_repeat
|
|
|
|
def forward(
|
|
self, q: Tensor, k: Tensor, v: Tensor, num_k_exclude_rope: int = 0
|
|
) -> Tensor:
|
|
# Input projections
|
|
q = self.q_proj(q)
|
|
k = self.k_proj(k)
|
|
v = self.v_proj(v)
|
|
|
|
# Separate into heads
|
|
q = self._separate_heads(q, self.num_heads)
|
|
k = self._separate_heads(k, self.num_heads)
|
|
v = self._separate_heads(v, self.num_heads)
|
|
|
|
# Apply rotary position encoding
|
|
w = h = math.sqrt(q.shape[-2])
|
|
self.freqs_cis = self.freqs_cis.to(q.device)
|
|
if self.freqs_cis.shape[0] != q.shape[-2]:
|
|
self.freqs_cis = self.compute_cis(end_x=w, end_y=h).to(q.device)
|
|
if q.shape[-2] != k.shape[-2]:
|
|
assert self.rope_k_repeat
|
|
|
|
num_k_rope = k.size(-2) - num_k_exclude_rope
|
|
q, k[:, :, :num_k_rope] = apply_rotary_enc(
|
|
q,
|
|
k[:, :, :num_k_rope],
|
|
freqs_cis=self.freqs_cis,
|
|
repeat_freqs_k=self.rope_k_repeat,
|
|
)
|
|
|
|
dropout_p = self.dropout_p if self.training else 0.0
|
|
# Attention
|
|
with torch.backends.cuda.sdp_kernel(
|
|
enable_flash=USE_FLASH_ATTN,
|
|
# if Flash attention kernel is off, then math kernel needs to be enabled
|
|
enable_math=(OLD_GPU and dropout_p > 0.0) or MATH_KERNEL_ON,
|
|
enable_mem_efficient=OLD_GPU,
|
|
):
|
|
out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)
|
|
|
|
out = self._recombine_heads(out)
|
|
out = self.out_proj(out)
|
|
|
|
return out
|
|
|
|
|
|
class PromptEncoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
embed_dim: int,
|
|
image_embedding_size: Tuple[int, int],
|
|
input_image_size: Tuple[int, int],
|
|
mask_in_chans: int,
|
|
activation: Type[nn.Module] = nn.GELU,
|
|
) -> None:
|
|
"""
|
|
Encodes prompts for input to SAM's mask decoder.
|
|
|
|
Arguments:
|
|
embed_dim (int): The prompts' embedding dimension
|
|
image_embedding_size (tuple(int, int)): The spatial size of the
|
|
image embedding, as (H, W).
|
|
input_image_size (int): The padded size of the image as input
|
|
to the image encoder, as (H, W).
|
|
mask_in_chans (int): The number of hidden channels used for
|
|
encoding input masks.
|
|
activation (nn.Module): The activation to use when encoding
|
|
input masks.
|
|
"""
|
|
super().__init__()
|
|
self.embed_dim = embed_dim
|
|
self.input_image_size = input_image_size
|
|
self.image_embedding_size = image_embedding_size
|
|
self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)
|
|
|
|
self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners
|
|
point_embeddings = [
|
|
nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)
|
|
]
|
|
self.point_embeddings = nn.ModuleList(point_embeddings)
|
|
self.not_a_point_embed = nn.Embedding(1, embed_dim)
|
|
|
|
self.mask_input_size = (
|
|
4 * image_embedding_size[0],
|
|
4 * image_embedding_size[1],
|
|
)
|
|
self.mask_downscaling = nn.Sequential(
|
|
nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
|
|
LayerNorm2d(mask_in_chans // 4),
|
|
activation(),
|
|
nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
|
|
LayerNorm2d(mask_in_chans),
|
|
activation(),
|
|
nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
|
|
)
|
|
self.no_mask_embed = nn.Embedding(1, embed_dim)
|
|
|
|
def get_dense_pe(self) -> torch.Tensor:
|
|
"""
|
|
Returns the positional encoding used to encode point prompts,
|
|
applied to a dense set of points the shape of the image encoding.
|
|
|
|
Returns:
|
|
torch.Tensor: Positional encoding with shape
|
|
1x(embed_dim)x(embedding_h)x(embedding_w)
|
|
"""
|
|
return self.pe_layer(self.image_embedding_size).unsqueeze(0)
|
|
|
|
def _embed_points(
|
|
self,
|
|
points: torch.Tensor,
|
|
labels: torch.Tensor,
|
|
pad: bool,
|
|
) -> torch.Tensor:
|
|
"""Embeds point prompts."""
|
|
points = points + 0.5 # Shift to center of pixel
|
|
if pad:
|
|
padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device)
|
|
padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
|
|
points = torch.cat([points, padding_point], dim=1)
|
|
labels = torch.cat([labels, padding_label], dim=1)
|
|
point_embedding = self.pe_layer.forward_with_coords(
|
|
points, self.input_image_size
|
|
)
|
|
point_embedding[labels == -1] = 0.0
|
|
point_embedding[labels == -1] += self.not_a_point_embed.weight
|
|
point_embedding[labels == 0] += self.point_embeddings[0].weight
|
|
point_embedding[labels == 1] += self.point_embeddings[1].weight
|
|
point_embedding[labels == 2] += self.point_embeddings[2].weight
|
|
point_embedding[labels == 3] += self.point_embeddings[3].weight
|
|
return point_embedding
|
|
|
|
def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
|
|
"""Embeds box prompts."""
|
|
boxes = boxes + 0.5 # Shift to center of pixel
|
|
coords = boxes.reshape(-1, 2, 2)
|
|
corner_embedding = self.pe_layer.forward_with_coords(
|
|
coords, self.input_image_size
|
|
)
|
|
corner_embedding[:, 0, :] += self.point_embeddings[2].weight
|
|
corner_embedding[:, 1, :] += self.point_embeddings[3].weight
|
|
return corner_embedding
|
|
|
|
def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
|
|
"""Embeds mask inputs."""
|
|
mask_embedding = self.mask_downscaling(masks)
|
|
return mask_embedding
|
|
|
|
def _get_batch_size(
|
|
self,
|
|
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
|
boxes: Optional[torch.Tensor],
|
|
masks: Optional[torch.Tensor],
|
|
) -> int:
|
|
"""
|
|
Gets the batch size of the output given the batch size of the input prompts.
|
|
"""
|
|
if points is not None:
|
|
return points[0].shape[0]
|
|
elif boxes is not None:
|
|
return boxes.shape[0]
|
|
elif masks is not None:
|
|
return masks.shape[0]
|
|
else:
|
|
return 1
|
|
|
|
def _get_device(self) -> torch.device:
|
|
return self.point_embeddings[0].weight.device
|
|
|
|
def forward(
|
|
self,
|
|
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
|
boxes: Optional[torch.Tensor],
|
|
masks: Optional[torch.Tensor],
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""
|
|
Embeds different types of prompts, returning both sparse and dense
|
|
embeddings.
|
|
|
|
Arguments:
|
|
points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates
|
|
and labels to embed.
|
|
boxes (torch.Tensor or none): boxes to embed
|
|
masks (torch.Tensor or none): masks to embed
|
|
|
|
Returns:
|
|
torch.Tensor: sparse embeddings for the points and boxes, with shape
|
|
BxNx(embed_dim), where N is determined by the number of input points
|
|
and boxes.
|
|
torch.Tensor: dense embeddings for the masks, in the shape
|
|
Bx(embed_dim)x(embed_H)x(embed_W)
|
|
"""
|
|
bs = self._get_batch_size(points, boxes, masks)
|
|
sparse_embeddings = torch.empty(
|
|
(bs, 0, self.embed_dim), device=self._get_device()
|
|
)
|
|
if points is not None:
|
|
coords, labels = points
|
|
point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
|
|
sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
|
|
if boxes is not None:
|
|
box_embeddings = self._embed_boxes(boxes)
|
|
sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
|
|
|
|
if masks is not None:
|
|
dense_embeddings = self._embed_masks(masks)
|
|
else:
|
|
dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
|
|
bs, -1, self.image_embedding_size[0], self.image_embedding_size[1]
|
|
)
|
|
|
|
return sparse_embeddings, dense_embeddings
|
|
|
|
class PositionEmbeddingSine(nn.Module):
|
|
"""
|
|
This is a more standard version of the position embedding, very similar to the one
|
|
used by the Attention is all you need paper, generalized to work on images.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
num_pos_feats,
|
|
temperature: int = 10000,
|
|
normalize: bool = True,
|
|
scale: Optional[float] = None,
|
|
):
|
|
super().__init__()
|
|
assert num_pos_feats % 2 == 0, "Expecting even model width"
|
|
self.num_pos_feats = num_pos_feats // 2
|
|
self.temperature = temperature
|
|
self.normalize = normalize
|
|
if scale is not None and normalize is False:
|
|
raise ValueError("normalize should be True if scale is passed")
|
|
if scale is None:
|
|
scale = 2 * math.pi
|
|
self.scale = scale
|
|
|
|
self.cache = {}
|
|
|
|
def _encode_xy(self, x, y):
|
|
# The positions are expected to be normalized
|
|
assert len(x) == len(y) and x.ndim == y.ndim == 1
|
|
x_embed = x * self.scale
|
|
y_embed = y * self.scale
|
|
|
|
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
|
|
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
|
|
|
|
pos_x = x_embed[:, None] / dim_t
|
|
pos_y = y_embed[:, None] / dim_t
|
|
pos_x = torch.stack(
|
|
(pos_x[:, 0::2].sin(), pos_x[:, 1::2].cos()), dim=2
|
|
).flatten(1)
|
|
pos_y = torch.stack(
|
|
(pos_y[:, 0::2].sin(), pos_y[:, 1::2].cos()), dim=2
|
|
).flatten(1)
|
|
return pos_x, pos_y
|
|
|
|
@torch.no_grad()
|
|
def encode_boxes(self, x, y, w, h):
|
|
pos_x, pos_y = self._encode_xy(x, y)
|
|
pos = torch.cat((pos_y, pos_x, h[:, None], w[:, None]), dim=1)
|
|
return pos
|
|
|
|
encode = encode_boxes # Backwards compatibility
|
|
|
|
@torch.no_grad()
|
|
def encode_points(self, x, y, labels):
|
|
(bx, nx), (by, ny), (bl, nl) = x.shape, y.shape, labels.shape
|
|
assert bx == by and nx == ny and bx == bl and nx == nl
|
|
pos_x, pos_y = self._encode_xy(x.flatten(), y.flatten())
|
|
pos_x, pos_y = pos_x.reshape(bx, nx, -1), pos_y.reshape(by, ny, -1)
|
|
pos = torch.cat((pos_y, pos_x, labels[:, :, None]), dim=2)
|
|
return pos
|
|
|
|
@torch.no_grad()
|
|
def forward(self, x: torch.Tensor):
|
|
cache_key = (x.shape[-2], x.shape[-1])
|
|
if cache_key in self.cache:
|
|
return self.cache[cache_key][None].repeat(x.shape[0], 1, 1, 1)
|
|
y_embed = (
|
|
torch.arange(1, x.shape[-2] + 1, dtype=torch.float32, device=x.device)
|
|
.view(1, -1, 1)
|
|
.repeat(x.shape[0], 1, x.shape[-1])
|
|
)
|
|
x_embed = (
|
|
torch.arange(1, x.shape[-1] + 1, dtype=torch.float32, device=x.device)
|
|
.view(1, 1, -1)
|
|
.repeat(x.shape[0], x.shape[-2], 1)
|
|
)
|
|
|
|
if self.normalize:
|
|
eps = 1e-6
|
|
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
|
|
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
|
|
|
|
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
|
|
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
|
|
|
|
pos_x = x_embed[:, :, :, None] / dim_t
|
|
pos_y = y_embed[:, :, :, None] / dim_t
|
|
pos_x = torch.stack(
|
|
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
|
|
).flatten(3)
|
|
pos_y = torch.stack(
|
|
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
|
|
).flatten(3)
|
|
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
|
|
self.cache[cache_key] = pos[0]
|
|
return pos
|
|
|
|
|
|
class PositionEmbeddingRandom(nn.Module):
|
|
"""
|
|
Positional encoding using random spatial frequencies.
|
|
"""
|
|
|
|
def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
|
|
super().__init__()
|
|
if scale is None or scale <= 0.0:
|
|
scale = 1.0
|
|
self.register_buffer(
|
|
"positional_encoding_gaussian_matrix",
|
|
scale * torch.randn((2, num_pos_feats)),
|
|
)
|
|
self.first = True
|
|
|
|
def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
|
|
"""Positionally encode points that are normalized to [0,1]."""
|
|
# assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
|
|
coords = 2 * coords - 1
|
|
coords = coords.to(self.positional_encoding_gaussian_matrix.dtype)
|
|
if self.first:
|
|
self.positional_encoding_gaussian_matrix = self.positional_encoding_gaussian_matrix.to(coords.device)
|
|
self.first = False
|
|
coords = coords @ self.positional_encoding_gaussian_matrix
|
|
coords = 2 * np.pi * coords
|
|
# outputs d_1 x ... x d_n x C shape
|
|
return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
|
|
|
|
def forward(self, size: Tuple[int, int]) -> torch.Tensor:
|
|
"""Generate positional encoding for a grid of the specified size."""
|
|
h, w = size
|
|
device: Any = self.positional_encoding_gaussian_matrix.device
|
|
grid = torch.ones((h, w), device=device, dtype=torch.float32)
|
|
y_embed = grid.cumsum(dim=0) - 0.5
|
|
x_embed = grid.cumsum(dim=1) - 0.5
|
|
y_embed = y_embed / h
|
|
x_embed = x_embed / w
|
|
|
|
pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1))
|
|
return pe.permute(2, 0, 1) # C x H x W
|
|
|
|
def forward_with_coords(
|
|
self, coords_input: torch.Tensor, image_size: Tuple[int, int]
|
|
) -> torch.Tensor:
|
|
"""Positionally encode points that are not normalized to [0,1]."""
|
|
coords = coords_input.clone()
|
|
coords[:, :, 0] = coords[:, :, 0] / image_size[1]
|
|
coords[:, :, 1] = coords[:, :, 1] / image_size[0]
|
|
return self._pe_encoding(coords.to(torch.float)) # B x N x C
|
|
|
|
|
|
# Rotary Positional Encoding, adapted from:
|
|
# 1. https://github.com/meta-llama/codellama/blob/main/llama/model.py
|
|
# 2. https://github.com/naver-ai/rope-vit
|
|
# 3. https://github.com/lucidrains/rotary-embedding-torch
|
|
|
|
|
|
def init_t_xy(end_x: int, end_y: int):
|
|
t = torch.arange(end_x * end_y, dtype=torch.float32)
|
|
t_x = (t % end_x).float()
|
|
t_y = torch.div(t, end_x, rounding_mode="floor").float()
|
|
return t_x, t_y
|
|
|
|
|
|
def compute_axial_cis(dim: int, end_x: int, end_y: int, theta: float = 10000.0):
|
|
freqs_x = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim))
|
|
freqs_y = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim))
|
|
|
|
t_x, t_y = init_t_xy(end_x, end_y)
|
|
freqs_x = torch.outer(t_x, freqs_x)
|
|
freqs_y = torch.outer(t_y, freqs_y)
|
|
freqs_cis_x = torch.polar(torch.ones_like(freqs_x), freqs_x)
|
|
freqs_cis_y = torch.polar(torch.ones_like(freqs_y), freqs_y)
|
|
return torch.cat([freqs_cis_x, freqs_cis_y], dim=-1)
|
|
|
|
|
|
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
|
|
ndim = x.ndim
|
|
assert 0 <= 1 < ndim
|
|
assert freqs_cis.shape == (x.shape[-2], x.shape[-1])
|
|
shape = [d if i >= ndim - 2 else 1 for i, d in enumerate(x.shape)]
|
|
return freqs_cis.view(*shape)
|
|
|
|
|
|
def apply_rotary_enc(
|
|
xq: torch.Tensor,
|
|
xk: torch.Tensor,
|
|
freqs_cis: torch.Tensor,
|
|
repeat_freqs_k: bool = False,
|
|
):
|
|
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
|
|
xk_ = (
|
|
torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
|
|
if xk.shape[-2] != 0
|
|
else None
|
|
)
|
|
freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
|
|
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
|
|
if xk_ is None:
|
|
# no keys to rotate, due to dropout
|
|
return xq_out.type_as(xq).to(xq.device), xk
|
|
# repeat freqs along seq_len dim to match k seq_len
|
|
if repeat_freqs_k:
|
|
r = xk_.shape[-2] // xq_.shape[-2]
|
|
freqs_cis = freqs_cis.repeat(*([1] * (freqs_cis.ndim - 2)), r, 1)
|
|
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
|
|
return xq_out.type_as(xq).to(xq.device), xk_out.type_as(xk).to(xk.device)
|
|
|
|
|
|
class MaskDecoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
transformer_dim: int,
|
|
transformer: nn.Module,
|
|
num_multimask_outputs: int = 3,
|
|
activation: Type[nn.Module] = nn.GELU,
|
|
iou_head_depth: int = 3,
|
|
iou_head_hidden_dim: int = 256,
|
|
use_high_res_features: bool = False,
|
|
iou_prediction_use_sigmoid=False,
|
|
dynamic_multimask_via_stability=False,
|
|
dynamic_multimask_stability_delta=0.05,
|
|
dynamic_multimask_stability_thresh=0.98,
|
|
pred_obj_scores: bool = False,
|
|
pred_obj_scores_mlp: bool = False,
|
|
use_multimask_token_for_obj_ptr: bool = False,
|
|
) -> None:
|
|
"""
|
|
Predicts masks given an image and prompt embeddings, using a
|
|
transformer architecture.
|
|
|
|
Arguments:
|
|
transformer_dim (int): the channel dimension of the transformer
|
|
transformer (nn.Module): the transformer used to predict masks
|
|
num_multimask_outputs (int): the number of masks to predict
|
|
when disambiguating masks
|
|
activation (nn.Module): the type of activation to use when
|
|
upscaling masks
|
|
iou_head_depth (int): the depth of the MLP used to predict
|
|
mask quality
|
|
iou_head_hidden_dim (int): the hidden dimension of the MLP
|
|
used to predict mask quality
|
|
"""
|
|
super().__init__()
|
|
self.transformer_dim = transformer_dim
|
|
self.transformer = transformer
|
|
|
|
self.num_multimask_outputs = num_multimask_outputs
|
|
|
|
self.iou_token = nn.Embedding(1, transformer_dim)
|
|
self.num_mask_tokens = num_multimask_outputs + 1
|
|
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
|
|
|
|
self.pred_obj_scores = pred_obj_scores
|
|
if self.pred_obj_scores:
|
|
self.obj_score_token = nn.Embedding(1, transformer_dim)
|
|
self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr
|
|
|
|
self.output_upscaling = nn.Sequential(
|
|
nn.ConvTranspose2d(
|
|
transformer_dim, transformer_dim // 4, kernel_size=2, stride=2
|
|
),
|
|
LayerNorm2d(transformer_dim // 4),
|
|
activation(),
|
|
nn.ConvTranspose2d(
|
|
transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2
|
|
),
|
|
activation(),
|
|
)
|
|
self.use_high_res_features = use_high_res_features
|
|
if use_high_res_features:
|
|
self.conv_s0 = nn.Conv2d(
|
|
transformer_dim, transformer_dim // 8, kernel_size=1, stride=1
|
|
)
|
|
self.conv_s1 = nn.Conv2d(
|
|
transformer_dim, transformer_dim // 4, kernel_size=1, stride=1
|
|
)
|
|
|
|
self.output_hypernetworks_mlps = nn.ModuleList(
|
|
[
|
|
MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
|
|
for i in range(self.num_mask_tokens)
|
|
]
|
|
)
|
|
|
|
self.iou_prediction_head = MLP(
|
|
transformer_dim,
|
|
iou_head_hidden_dim,
|
|
self.num_mask_tokens,
|
|
iou_head_depth,
|
|
sigmoid_output=iou_prediction_use_sigmoid,
|
|
)
|
|
if self.pred_obj_scores:
|
|
self.pred_obj_score_head = nn.Linear(transformer_dim, 1)
|
|
if pred_obj_scores_mlp:
|
|
self.pred_obj_score_head = MLP(transformer_dim, transformer_dim, 1, 3)
|
|
|
|
# When outputting a single mask, optionally we can dynamically fall back to the best
|
|
# multimask output token if the single mask output token gives low stability scores.
|
|
self.dynamic_multimask_via_stability = dynamic_multimask_via_stability
|
|
self.dynamic_multimask_stability_delta = dynamic_multimask_stability_delta
|
|
self.dynamic_multimask_stability_thresh = dynamic_multimask_stability_thresh
|
|
|
|
def forward(
|
|
self,
|
|
image_embeddings: torch.Tensor,
|
|
image_pe: torch.Tensor,
|
|
sparse_prompt_embeddings: torch.Tensor,
|
|
dense_prompt_embeddings: torch.Tensor,
|
|
multimask_output: bool,
|
|
repeat_image: bool,
|
|
high_res_features: Optional[List[torch.Tensor]] = None,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""
|
|
Predict masks given image and prompt embeddings.
|
|
|
|
Arguments:
|
|
image_embeddings (torch.Tensor): the embeddings from the image encoder
|
|
image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
|
|
sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
|
|
dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
|
|
multimask_output (bool): Whether to return multiple masks or a single
|
|
mask.
|
|
|
|
Returns:
|
|
torch.Tensor: batched predicted masks
|
|
torch.Tensor: batched predictions of mask quality
|
|
torch.Tensor: batched SAM token for mask output
|
|
"""
|
|
masks, iou_pred, mask_tokens_out, object_score_logits = self.predict_masks(
|
|
image_embeddings=image_embeddings,
|
|
image_pe=image_pe,
|
|
sparse_prompt_embeddings=sparse_prompt_embeddings,
|
|
dense_prompt_embeddings=dense_prompt_embeddings,
|
|
repeat_image=repeat_image,
|
|
high_res_features=high_res_features,
|
|
)
|
|
|
|
# Select the correct mask or masks for output
|
|
if multimask_output:
|
|
masks = masks[:, 1:, :, :]
|
|
iou_pred = iou_pred[:, 1:]
|
|
elif self.dynamic_multimask_via_stability and not self.training:
|
|
masks, iou_pred = self._dynamic_multimask_via_stability(masks, iou_pred)
|
|
else:
|
|
masks = masks[:, 0:1, :, :]
|
|
iou_pred = iou_pred[:, 0:1]
|
|
|
|
if multimask_output and self.use_multimask_token_for_obj_ptr:
|
|
sam_tokens_out = mask_tokens_out[:, 1:] # [b, 3, c] shape
|
|
else:
|
|
# Take the mask output token. Here we *always* use the token for single mask output.
|
|
# At test time, even if we track after 1-click (and using multimask_output=True),
|
|
# we still take the single mask token here. The rationale is that we always track
|
|
# after multiple clicks during training, so the past tokens seen during training
|
|
# are always the single mask token (and we'll let it be the object-memory token).
|
|
sam_tokens_out = mask_tokens_out[:, 0:1] # [b, 1, c] shape
|
|
|
|
# Prepare output
|
|
return masks, iou_pred, sam_tokens_out, object_score_logits
|
|
|
|
def predict_masks(
|
|
self,
|
|
image_embeddings: torch.Tensor,
|
|
image_pe: torch.Tensor,
|
|
sparse_prompt_embeddings: torch.Tensor,
|
|
dense_prompt_embeddings: torch.Tensor,
|
|
repeat_image: bool,
|
|
high_res_features: Optional[List[torch.Tensor]] = None,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""Predicts masks. See 'forward' for more details."""
|
|
# Concatenate output tokens
|
|
s = 0
|
|
if self.pred_obj_scores:
|
|
output_tokens = torch.cat(
|
|
[
|
|
self.obj_score_token.weight,
|
|
self.iou_token.weight,
|
|
self.mask_tokens.weight,
|
|
],
|
|
dim=0,
|
|
)
|
|
s = 1
|
|
else:
|
|
output_tokens = torch.cat(
|
|
[self.iou_token.weight, self.mask_tokens.weight], dim=0
|
|
)
|
|
output_tokens = output_tokens.unsqueeze(0).expand(
|
|
sparse_prompt_embeddings.size(0), -1, -1
|
|
)
|
|
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
|
|
|
|
# Expand per-image data in batch direction to be per-mask
|
|
if repeat_image:
|
|
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
|
|
else:
|
|
assert image_embeddings.shape[0] == tokens.shape[0]
|
|
src = image_embeddings
|
|
src = src + dense_prompt_embeddings
|
|
assert (
|
|
image_pe.size(0) == 1
|
|
), "image_pe should have size 1 in batch dim (from `get_dense_pe()`)"
|
|
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
|
|
b, c, h, w = src.shape
|
|
|
|
# Run the transformer
|
|
# print('src: ', src.dtype, 'pos_src:', pos_src.dtype, 'tokens:', tokens.dtype)
|
|
_dtype = pos_src.dtype
|
|
src = src.to(_dtype)
|
|
tokens = tokens.to(_dtype)
|
|
hs, src = self.transformer(src, pos_src, tokens)
|
|
iou_token_out = hs[:, s, :]
|
|
mask_tokens_out = hs[:, s + 1 : (s + 1 + self.num_mask_tokens), :]
|
|
|
|
# Upscale mask embeddings and predict masks using the mask tokens
|
|
src = src.transpose(1, 2).view(b, c, h, w)
|
|
if not self.use_high_res_features:
|
|
upscaled_embedding = self.output_upscaling(src)
|
|
else:
|
|
dc1, ln1, act1, dc2, act2 = self.output_upscaling
|
|
feat_s0, feat_s1 = high_res_features
|
|
upscaled_embedding = act1(ln1(dc1(src) + feat_s1))
|
|
upscaled_embedding = act2(dc2(upscaled_embedding) + feat_s0)
|
|
|
|
hyper_in_list: List[torch.Tensor] = []
|
|
for i in range(self.num_mask_tokens):
|
|
hyper_in_list.append(
|
|
self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :])
|
|
)
|
|
hyper_in = torch.stack(hyper_in_list, dim=1)
|
|
b, c, h, w = upscaled_embedding.shape
|
|
masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
|
|
|
|
# Generate mask quality predictions
|
|
iou_pred = self.iou_prediction_head(iou_token_out)
|
|
if self.pred_obj_scores:
|
|
assert s == 1
|
|
object_score_logits = self.pred_obj_score_head(hs[:, 0, :])
|
|
else:
|
|
# Obj scores logits - default to 10.0, i.e. assuming the object is present, sigmoid(10)=1
|
|
object_score_logits = 10.0 * iou_pred.new_ones(iou_pred.shape[0], 1)
|
|
|
|
return masks, iou_pred, mask_tokens_out, object_score_logits
|
|
|
|
def _get_stability_scores(self, mask_logits):
|
|
"""
|
|
Compute stability scores of the mask logits based on the IoU between upper and
|
|
lower thresholds, similar to https://github.com/fairinternal/onevision/pull/568.
|
|
"""
|
|
mask_logits = mask_logits.flatten(-2)
|
|
stability_delta = self.dynamic_multimask_stability_delta
|
|
area_i = torch.sum(mask_logits > stability_delta, dim=-1).float()
|
|
area_u = torch.sum(mask_logits > -stability_delta, dim=-1).float()
|
|
stability_scores = torch.where(area_u > 0, area_i / area_u, 1.0)
|
|
return stability_scores
|
|
|
|
def _dynamic_multimask_via_stability(self, all_mask_logits, all_iou_scores):
|
|
"""
|
|
When outputting a single mask, if the stability score from the current single-mask
|
|
output (based on output token 0) falls below a threshold, we instead select from
|
|
multi-mask outputs (based on output token 1~3) the mask with the highest predicted
|
|
IoU score. This is intended to ensure a valid mask for both clicking and tracking.
|
|
"""
|
|
# The best mask from multimask output tokens (1~3)
|
|
multimask_logits = all_mask_logits[:, 1:, :, :]
|
|
multimask_iou_scores = all_iou_scores[:, 1:]
|
|
best_scores_inds = torch.argmax(multimask_iou_scores, dim=-1)
|
|
batch_inds = torch.arange(
|
|
multimask_iou_scores.size(0), device=all_iou_scores.device
|
|
)
|
|
best_multimask_logits = multimask_logits[batch_inds, best_scores_inds]
|
|
best_multimask_logits = best_multimask_logits.unsqueeze(1)
|
|
best_multimask_iou_scores = multimask_iou_scores[batch_inds, best_scores_inds]
|
|
best_multimask_iou_scores = best_multimask_iou_scores.unsqueeze(1)
|
|
|
|
# The mask from singlemask output token 0 and its stability score
|
|
singlemask_logits = all_mask_logits[:, 0:1, :, :]
|
|
singlemask_iou_scores = all_iou_scores[:, 0:1]
|
|
stability_scores = self._get_stability_scores(singlemask_logits)
|
|
is_stable = stability_scores >= self.dynamic_multimask_stability_thresh
|
|
|
|
# Dynamically fall back to best multimask output upon low stability scores.
|
|
mask_logits_out = torch.where(
|
|
is_stable[..., None, None].expand_as(singlemask_logits),
|
|
singlemask_logits,
|
|
best_multimask_logits,
|
|
)
|
|
iou_scores_out = torch.where(
|
|
is_stable.expand_as(singlemask_iou_scores),
|
|
singlemask_iou_scores,
|
|
best_multimask_iou_scores,
|
|
)
|
|
return mask_logits_out, iou_scores_out
|
|
|
|
def select_closest_cond_frames(frame_idx, cond_frame_outputs, max_cond_frame_num):
|
|
"""
|
|
Select up to `max_cond_frame_num` conditioning frames from `cond_frame_outputs`
|
|
that are temporally closest to the current frame at `frame_idx`. Here, we take
|
|
- a) the closest conditioning frame before `frame_idx` (if any);
|
|
- b) the closest conditioning frame after `frame_idx` (if any);
|
|
- c) any other temporally closest conditioning frames until reaching a total
|
|
of `max_cond_frame_num` conditioning frames.
|
|
|
|
Outputs:
|
|
- selected_outputs: selected items (keys & values) from `cond_frame_outputs`.
|
|
- unselected_outputs: items (keys & values) not selected in `cond_frame_outputs`.
|
|
"""
|
|
if max_cond_frame_num == -1 or len(cond_frame_outputs) <= max_cond_frame_num:
|
|
selected_outputs = cond_frame_outputs
|
|
unselected_outputs = {}
|
|
else:
|
|
assert max_cond_frame_num >= 2, "we should allow using 2+ conditioning frames"
|
|
selected_outputs = {}
|
|
|
|
# the closest conditioning frame before `frame_idx` (if any)
|
|
idx_before = max((t for t in cond_frame_outputs if t < frame_idx), default=None)
|
|
if idx_before is not None:
|
|
selected_outputs[idx_before] = cond_frame_outputs[idx_before]
|
|
|
|
# the closest conditioning frame after `frame_idx` (if any)
|
|
idx_after = min((t for t in cond_frame_outputs if t >= frame_idx), default=None)
|
|
if idx_after is not None:
|
|
selected_outputs[idx_after] = cond_frame_outputs[idx_after]
|
|
|
|
# add other temporally closest conditioning frames until reaching a total
|
|
# of `max_cond_frame_num` conditioning frames.
|
|
num_remain = max_cond_frame_num - len(selected_outputs)
|
|
inds_remain = sorted(
|
|
(t for t in cond_frame_outputs if t not in selected_outputs),
|
|
key=lambda x: abs(x - frame_idx),
|
|
)[:num_remain]
|
|
selected_outputs.update((t, cond_frame_outputs[t]) for t in inds_remain)
|
|
unselected_outputs = {
|
|
t: v for t, v in cond_frame_outputs.items() if t not in selected_outputs
|
|
}
|
|
|
|
return selected_outputs, unselected_outputs
|
|
|
|
|
|
def get_1d_sine_pe(pos_inds, dim, temperature=10000):
|
|
"""
|
|
Get 1D sine positional embedding as in the original Transformer paper.
|
|
"""
|
|
pe_dim = dim // 2
|
|
dim_t = torch.arange(pe_dim, dtype=torch.float32, device=pos_inds.device)
|
|
dim_t = temperature ** (2 * (dim_t // 2) / pe_dim)
|
|
|
|
pos_embed = pos_inds.unsqueeze(-1) / dim_t
|
|
pos_embed = torch.cat([pos_embed.sin(), pos_embed.cos()], dim=-1)
|
|
return pos_embed
|
|
|
|
|
|
def get_activation_fn(activation):
|
|
"""Return an activation function given a string"""
|
|
if activation == "relu":
|
|
return F.relu
|
|
if activation == "gelu":
|
|
return F.gelu
|
|
if activation == "glu":
|
|
return F.glu
|
|
raise RuntimeError(f"activation should be relu/gelu, not {activation}.")
|
|
|
|
|
|
def get_clones(module, N):
|
|
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
|
|
|
|
|
|
class DropPath(nn.Module):
|
|
# adapted from https://github.com/huggingface/pytorch-image-models/blob/main/timm/layers/drop.py
|
|
def __init__(self, drop_prob=0.0, scale_by_keep=True):
|
|
super(DropPath, self).__init__()
|
|
self.drop_prob = drop_prob
|
|
self.scale_by_keep = scale_by_keep
|
|
|
|
def forward(self, x):
|
|
if self.drop_prob == 0.0 or not self.training:
|
|
return x
|
|
keep_prob = 1 - self.drop_prob
|
|
shape = (x.shape[0],) + (1,) * (x.ndim - 1)
|
|
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
|
|
if keep_prob > 0.0 and self.scale_by_keep:
|
|
random_tensor.div_(keep_prob)
|
|
return x * random_tensor
|
|
|
|
|
|
# Lightly adapted from
|
|
# https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa
|
|
class MLP(nn.Module):
|
|
def __init__(
|
|
self,
|
|
input_dim: int,
|
|
hidden_dim: int,
|
|
output_dim: int,
|
|
num_layers: int,
|
|
activation: nn.Module = nn.ReLU,
|
|
sigmoid_output: bool = False,
|
|
) -> None:
|
|
super().__init__()
|
|
self.num_layers = num_layers
|
|
h = [hidden_dim] * (num_layers - 1)
|
|
self.layers = nn.ModuleList(
|
|
nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
|
|
)
|
|
self.sigmoid_output = sigmoid_output
|
|
self.act = activation()
|
|
|
|
def forward(self, x):
|
|
for i, layer in enumerate(self.layers):
|
|
x = self.act(layer(x)) if i < self.num_layers - 1 else layer(x)
|
|
if self.sigmoid_output:
|
|
x = F.sigmoid(x)
|
|
return x
|
|
|
|
|
|
# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
|
|
# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa
|
|
class LayerNorm2d(nn.Module):
|
|
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
|
|
super().__init__()
|
|
self.weight = nn.Parameter(torch.ones(num_channels))
|
|
self.bias = nn.Parameter(torch.zeros(num_channels))
|
|
self.eps = eps
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
u = x.mean(1, keepdim=True)
|
|
s = (x - u).pow(2).mean(1, keepdim=True)
|
|
x = (x - u) / torch.sqrt(s + self.eps)
|
|
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
|
return x
|
|
|
|
class SAM2Base_(torch.nn.Module):
|
|
def __init__(
|
|
self,
|
|
image_encoder,
|
|
memory_attention,
|
|
memory_encoder,
|
|
num_maskmem=7, # default 1 input frame + 6 previous frames
|
|
image_size=512,
|
|
backbone_stride=16, # stride of the image backbone output
|
|
sigmoid_scale_for_mem_enc=1.0, # scale factor for mask sigmoid prob
|
|
sigmoid_bias_for_mem_enc=0.0, # bias factor for mask sigmoid prob
|
|
# During evaluation, whether to binarize the sigmoid mask logits on interacted frames with clicks
|
|
binarize_mask_from_pts_for_mem_enc=False,
|
|
use_mask_input_as_output_without_sam=False, # on frames with mask input, whether to directly output the input mask without using a SAM prompt encoder + mask decoder
|
|
# The maximum number of conditioning frames to participate in the memory attention (-1 means no limit; if there are more conditioning frames than this limit,
|
|
# we only cross-attend to the temporally closest `max_cond_frames_in_attn` conditioning frames in the encoder when tracking each frame). This gives the model
|
|
# a temporal locality when handling a large number of annotated frames (since closer frames should be more important) and also avoids GPU OOM.
|
|
max_cond_frames_in_attn=-1,
|
|
# on the first frame, whether to directly add the no-memory embedding to the image feature
|
|
# (instead of using the transformer encoder)
|
|
directly_add_no_mem_embed=False,
|
|
# whether to use high-resolution feature maps in the SAM mask decoder
|
|
use_high_res_features_in_sam=False,
|
|
# whether to output multiple (3) masks for the first click on initial conditioning frames
|
|
multimask_output_in_sam=False,
|
|
# the minimum and maximum number of clicks to use multimask_output_in_sam (only relevant when `multimask_output_in_sam=True`;
|
|
# default is 1 for both, meaning that only the first click gives multimask output; also note that a box counts as two points)
|
|
multimask_min_pt_num=1,
|
|
multimask_max_pt_num=1,
|
|
# whether to also use multimask output for tracking (not just for the first click on initial conditioning frames; only relevant when `multimask_output_in_sam=True`)
|
|
multimask_output_for_tracking=False,
|
|
# Whether to use multimask tokens for obj ptr; Only relevant when both
|
|
# use_obj_ptrs_in_encoder=True and multimask_output_for_tracking=True
|
|
use_multimask_token_for_obj_ptr: bool = False,
|
|
# whether to use sigmoid to restrict ious prediction to [0-1]
|
|
iou_prediction_use_sigmoid=False,
|
|
# The memory bank's temporal stride during evaluation (i.e. the `r` parameter in XMem and Cutie; XMem and Cutie use r=5).
|
|
# For r>1, the (self.num_maskmem - 1) non-conditioning memory frames consist of
|
|
# (self.num_maskmem - 2) nearest frames from every r-th frames, plus the last frame.
|
|
memory_temporal_stride_for_eval=1,
|
|
# if `add_all_frames_to_correct_as_cond` is True, we also append to the conditioning frame list any frame that receives a later correction click
|
|
# if `add_all_frames_to_correct_as_cond` is False, we conditioning frame list to only use those initial conditioning frames
|
|
add_all_frames_to_correct_as_cond=False,
|
|
# whether to apply non-overlapping constraints on the object masks in the memory encoder during evaluation (to avoid/alleviate superposing masks)
|
|
non_overlap_masks_for_mem_enc=False,
|
|
# whether to cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
|
use_obj_ptrs_in_encoder=False,
|
|
# the maximum number of object pointers from other frames in encoder cross attention (only relevant when `use_obj_ptrs_in_encoder=True`)
|
|
max_obj_ptrs_in_encoder=16,
|
|
# whether to add temporal positional encoding to the object pointers in the encoder (only relevant when `use_obj_ptrs_in_encoder=True`)
|
|
add_tpos_enc_to_obj_ptrs=True,
|
|
# whether to add an extra linear projection layer for the temporal positional encoding in the object pointers to avoid potential interference
|
|
# with spatial positional encoding (only relevant when both `use_obj_ptrs_in_encoder=True` and `add_tpos_enc_to_obj_ptrs=True`)
|
|
proj_tpos_enc_in_obj_ptrs=False,
|
|
# whether to only attend to object pointers in the past (before the current frame) in the encoder during evaluation
|
|
# (only relevant when `use_obj_ptrs_in_encoder=True`; this might avoid pointer information too far in the future to distract the initial tracking)
|
|
only_obj_ptrs_in_the_past_for_eval=False,
|
|
# Whether to predict if there is an object in the frame
|
|
pred_obj_scores: bool = False,
|
|
# Whether to use an MLP to predict object scores
|
|
pred_obj_scores_mlp: bool = False,
|
|
# Only relevant if pred_obj_scores=True and use_obj_ptrs_in_encoder=True;
|
|
# Whether to have a fixed no obj pointer when there is no object present
|
|
# or to use it as an additive embedding with obj_ptr produced by decoder
|
|
fixed_no_obj_ptr: bool = False,
|
|
# Soft no object, i.e. mix in no_obj_ptr softly,
|
|
# hope to make recovery easier if there is a mistake and mitigate accumulation of errors
|
|
soft_no_obj_ptr: bool = False,
|
|
use_mlp_for_obj_ptr_proj: bool = False,
|
|
# extra arguments used to construct the SAM mask decoder; if not None, it should be a dict of kwargs to be passed into `MaskDecoder` class.
|
|
sam_mask_decoder_extra_args=None,
|
|
compile_image_encoder: bool = False,
|
|
):
|
|
super().__init__()
|
|
|
|
# Part 1: the image backbone
|
|
self.image_encoder = image_encoder
|
|
# Use level 0, 1, 2 for high-res setting, or just level 2 for the default setting
|
|
self.use_high_res_features_in_sam = use_high_res_features_in_sam
|
|
self.num_feature_levels = 3 if use_high_res_features_in_sam else 1
|
|
self.use_obj_ptrs_in_encoder = use_obj_ptrs_in_encoder
|
|
self.max_obj_ptrs_in_encoder = max_obj_ptrs_in_encoder
|
|
if use_obj_ptrs_in_encoder:
|
|
# A conv layer to downsample the mask prompt to stride 4 (the same stride as
|
|
# low-res SAM mask logits) and to change its scales from 0~1 to SAM logit scale,
|
|
# so that it can be fed into the SAM mask decoder to generate a pointer.
|
|
self.mask_downsample = torch.nn.Conv2d(1, 1, kernel_size=4, stride=4)
|
|
self.add_tpos_enc_to_obj_ptrs = add_tpos_enc_to_obj_ptrs
|
|
if proj_tpos_enc_in_obj_ptrs:
|
|
assert add_tpos_enc_to_obj_ptrs # these options need to be used together
|
|
self.proj_tpos_enc_in_obj_ptrs = proj_tpos_enc_in_obj_ptrs
|
|
self.only_obj_ptrs_in_the_past_for_eval = only_obj_ptrs_in_the_past_for_eval
|
|
|
|
# Part 2: memory attention to condition current frame's visual features
|
|
# with memories (and obj ptrs) from past frames
|
|
self.memory_attention = memory_attention
|
|
self.hidden_dim = memory_attention.d_model
|
|
|
|
# Part 3: memory encoder for the previous frame's outputs
|
|
self.memory_encoder = memory_encoder
|
|
self.mem_dim = self.hidden_dim
|
|
if hasattr(self.memory_encoder, "out_proj") and hasattr(
|
|
self.memory_encoder.out_proj, "weight"
|
|
):
|
|
# if there is compression of memories along channel dim
|
|
self.mem_dim = self.memory_encoder.out_proj.weight.shape[0]
|
|
self.num_maskmem = num_maskmem # Number of memories accessible
|
|
# Temporal encoding of the memories
|
|
self.maskmem_tpos_enc = torch.nn.Parameter(
|
|
torch.zeros(num_maskmem, 1, 1, self.mem_dim)
|
|
)
|
|
trunc_normal_(self.maskmem_tpos_enc, std=0.02)
|
|
# a single token to indicate no memory embedding from previous frames
|
|
self.no_mem_embed = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim))
|
|
self.no_mem_pos_enc = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim))
|
|
trunc_normal_(self.no_mem_embed, std=0.02)
|
|
trunc_normal_(self.no_mem_pos_enc, std=0.02)
|
|
self.directly_add_no_mem_embed = directly_add_no_mem_embed
|
|
# Apply sigmoid to the output raw mask logits (to turn them from
|
|
# range (-inf, +inf) to range (0, 1)) before feeding them into the memory encoder
|
|
self.sigmoid_scale_for_mem_enc = sigmoid_scale_for_mem_enc
|
|
self.sigmoid_bias_for_mem_enc = sigmoid_bias_for_mem_enc
|
|
self.binarize_mask_from_pts_for_mem_enc = binarize_mask_from_pts_for_mem_enc
|
|
self.non_overlap_masks_for_mem_enc = non_overlap_masks_for_mem_enc
|
|
self.memory_temporal_stride_for_eval = memory_temporal_stride_for_eval
|
|
# On frames with mask input, whether to directly output the input mask without
|
|
# using a SAM prompt encoder + mask decoder
|
|
self.use_mask_input_as_output_without_sam = use_mask_input_as_output_without_sam
|
|
self.multimask_output_in_sam = multimask_output_in_sam
|
|
self.multimask_min_pt_num = multimask_min_pt_num
|
|
self.multimask_max_pt_num = multimask_max_pt_num
|
|
self.multimask_output_for_tracking = multimask_output_for_tracking
|
|
self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr
|
|
self.iou_prediction_use_sigmoid = iou_prediction_use_sigmoid
|
|
|
|
# Part 4: SAM-style prompt encoder (for both mask and point inputs)
|
|
# and SAM-style mask decoder for the final mask output
|
|
self.image_size = image_size
|
|
self.backbone_stride = backbone_stride
|
|
self.sam_mask_decoder_extra_args = sam_mask_decoder_extra_args
|
|
self.pred_obj_scores = pred_obj_scores
|
|
self.pred_obj_scores_mlp = pred_obj_scores_mlp
|
|
self.fixed_no_obj_ptr = fixed_no_obj_ptr
|
|
self.soft_no_obj_ptr = soft_no_obj_ptr
|
|
if self.fixed_no_obj_ptr:
|
|
assert self.pred_obj_scores
|
|
assert self.use_obj_ptrs_in_encoder
|
|
if self.pred_obj_scores and self.use_obj_ptrs_in_encoder:
|
|
self.no_obj_ptr = torch.nn.Parameter(torch.zeros(1, self.hidden_dim))
|
|
trunc_normal_(self.no_obj_ptr, std=0.02)
|
|
self.use_mlp_for_obj_ptr_proj = use_mlp_for_obj_ptr_proj
|
|
|
|
self._build_sam_heads()
|
|
self.add_all_frames_to_correct_as_cond = add_all_frames_to_correct_as_cond
|
|
self.max_cond_frames_in_attn = max_cond_frames_in_attn
|
|
|
|
# Model compilation
|
|
if compile_image_encoder:
|
|
# Compile the forward function (not the full module) to allow loading checkpoints.
|
|
print(
|
|
"Image encoder compilation is enabled. First forward pass will be slow."
|
|
)
|
|
self.image_encoder.forward = torch.compile(
|
|
self.image_encoder.forward,
|
|
mode="max-autotune",
|
|
fullgraph=True,
|
|
dynamic=False,
|
|
)
|
|
|
|
@property
|
|
def device(self):
|
|
return next(self.parameters()).device
|
|
|
|
def forward(self, *args, **kwargs):
|
|
raise NotImplementedError(
|
|
"Please use the corresponding methods in SAM2VideoPredictor for inference."
|
|
"See notebooks/video_predictor_example.ipynb for an example."
|
|
)
|
|
|
|
def _build_sam_heads(self):
|
|
"""Build SAM-style prompt encoder and mask decoder."""
|
|
self.sam_prompt_embed_dim = self.hidden_dim
|
|
self.sam_image_embedding_size = self.image_size // self.backbone_stride
|
|
|
|
# build PromptEncoder and MaskDecoder from SAM
|
|
# (their hyperparameters like `mask_in_chans=16` are from SAM code)
|
|
self.sam_prompt_encoder = PromptEncoder(
|
|
embed_dim=self.sam_prompt_embed_dim,
|
|
image_embedding_size=(
|
|
self.sam_image_embedding_size,
|
|
self.sam_image_embedding_size,
|
|
),
|
|
input_image_size=(self.image_size, self.image_size),
|
|
mask_in_chans=16,
|
|
)
|
|
self.sam_mask_decoder = MaskDecoder(
|
|
num_multimask_outputs=3,
|
|
transformer=TwoWayTransformer(
|
|
depth=2,
|
|
embedding_dim=self.sam_prompt_embed_dim,
|
|
mlp_dim=2048,
|
|
num_heads=8,
|
|
),
|
|
transformer_dim=self.sam_prompt_embed_dim,
|
|
iou_head_depth=3,
|
|
iou_head_hidden_dim=256,
|
|
use_high_res_features=self.use_high_res_features_in_sam,
|
|
iou_prediction_use_sigmoid=self.iou_prediction_use_sigmoid,
|
|
pred_obj_scores=self.pred_obj_scores,
|
|
pred_obj_scores_mlp=self.pred_obj_scores_mlp,
|
|
use_multimask_token_for_obj_ptr=self.use_multimask_token_for_obj_ptr,
|
|
**(self.sam_mask_decoder_extra_args or {}),
|
|
)
|
|
if self.use_obj_ptrs_in_encoder:
|
|
# a linear projection on SAM output tokens to turn them into object pointers
|
|
self.obj_ptr_proj = torch.nn.Linear(self.hidden_dim, self.hidden_dim)
|
|
if self.use_mlp_for_obj_ptr_proj:
|
|
self.obj_ptr_proj = MLP(
|
|
self.hidden_dim, self.hidden_dim, self.hidden_dim, 3
|
|
)
|
|
else:
|
|
self.obj_ptr_proj = torch.nn.Identity()
|
|
if self.proj_tpos_enc_in_obj_ptrs:
|
|
# a linear projection on temporal positional encoding in object pointers to
|
|
# avoid potential interference with spatial positional encoding
|
|
self.obj_ptr_tpos_proj = torch.nn.Linear(self.hidden_dim, self.mem_dim)
|
|
else:
|
|
self.obj_ptr_tpos_proj = torch.nn.Identity()
|
|
|
|
def _forward_sam_heads(
|
|
self,
|
|
backbone_features,
|
|
point_inputs=None,
|
|
mask_inputs=None,
|
|
high_res_features=None,
|
|
multimask_output=False,
|
|
):
|
|
"""
|
|
Forward SAM prompt encoders and mask heads.
|
|
|
|
Inputs:
|
|
- backbone_features: image features of [B, C, H, W] shape
|
|
- point_inputs: a dictionary with "point_coords" and "point_labels", where
|
|
1) "point_coords" has [B, P, 2] shape and float32 dtype and contains the
|
|
absolute pixel-unit coordinate in (x, y) format of the P input points
|
|
2) "point_labels" has shape [B, P] and int32 dtype, where 1 means
|
|
positive clicks, 0 means negative clicks, and -1 means padding
|
|
- mask_inputs: a mask of [B, 1, H*16, W*16] shape, float or bool, with the
|
|
same spatial size as the image.
|
|
- high_res_features: either 1) None or 2) or a list of length 2 containing
|
|
two feature maps of [B, C, 4*H, 4*W] and [B, C, 2*H, 2*W] shapes respectively,
|
|
which will be used as high-resolution feature maps for SAM decoder.
|
|
- multimask_output: if it's True, we output 3 candidate masks and their 3
|
|
corresponding IoU estimates, and if it's False, we output only 1 mask and
|
|
its corresponding IoU estimate.
|
|
|
|
Outputs:
|
|
- low_res_multimasks: [B, M, H*4, W*4] shape (where M = 3 if
|
|
`multimask_output=True` and M = 1 if `multimask_output=False`), the SAM
|
|
output mask logits (before sigmoid) for the low-resolution masks, with 4x
|
|
the resolution (1/4 stride) of the input backbone_features.
|
|
- high_res_multimasks: [B, M, H*16, W*16] shape (where M = 3
|
|
if `multimask_output=True` and M = 1 if `multimask_output=False`),
|
|
upsampled from the low-resolution masks, with shape size as the image
|
|
(stride is 1 pixel).
|
|
- ious, [B, M] shape, where (where M = 3 if `multimask_output=True` and M = 1
|
|
if `multimask_output=False`), the estimated IoU of each output mask.
|
|
- low_res_masks: [B, 1, H*4, W*4] shape, the best mask in `low_res_multimasks`.
|
|
If `multimask_output=True`, it's the mask with the highest IoU estimate.
|
|
If `multimask_output=False`, it's the same as `low_res_multimasks`.
|
|
- high_res_masks: [B, 1, H*16, W*16] shape, the best mask in `high_res_multimasks`.
|
|
If `multimask_output=True`, it's the mask with the highest IoU estimate.
|
|
If `multimask_output=False`, it's the same as `high_res_multimasks`.
|
|
- obj_ptr: [B, C] shape, the object pointer vector for the output mask, extracted
|
|
based on the output token from the SAM mask decoder.
|
|
"""
|
|
B = backbone_features.size(0)
|
|
device = backbone_features.device
|
|
assert backbone_features.size(1) == self.sam_prompt_embed_dim
|
|
assert backbone_features.size(2) == self.sam_image_embedding_size
|
|
assert backbone_features.size(3) == self.sam_image_embedding_size
|
|
|
|
# a) Handle point prompts
|
|
if point_inputs is not None:
|
|
sam_point_coords = point_inputs["point_coords"]
|
|
sam_point_labels = point_inputs["point_labels"]
|
|
assert sam_point_coords.size(0) == B and sam_point_labels.size(0) == B
|
|
else:
|
|
# If no points are provide, pad with an empty point (with label -1)
|
|
sam_point_coords = torch.zeros(B, 1, 2, device=device)
|
|
sam_point_labels = -torch.ones(B, 1, dtype=torch.int32, device=device)
|
|
|
|
# b) Handle mask prompts
|
|
if mask_inputs is not None:
|
|
# If mask_inputs is provided, downsize it into low-res mask input if needed
|
|
# and feed it as a dense mask prompt into the SAM mask encoder
|
|
assert len(mask_inputs.shape) == 4 and mask_inputs.shape[:2] == (B, 1)
|
|
if mask_inputs.shape[-2:] != self.sam_prompt_encoder.mask_input_size:
|
|
sam_mask_prompt = F.interpolate(
|
|
mask_inputs.float(),
|
|
size=self.sam_prompt_encoder.mask_input_size,
|
|
align_corners=False,
|
|
mode="bilinear",
|
|
antialias=True, # use antialias for downsampling
|
|
)
|
|
else:
|
|
sam_mask_prompt = mask_inputs
|
|
else:
|
|
# Otherwise, simply feed None (and SAM's prompt encoder will add
|
|
# a learned `no_mask_embed` to indicate no mask input in this case).
|
|
sam_mask_prompt = None
|
|
|
|
sparse_embeddings, dense_embeddings = self.sam_prompt_encoder(
|
|
points=(sam_point_coords, sam_point_labels),
|
|
boxes=None,
|
|
masks=sam_mask_prompt,
|
|
)
|
|
(
|
|
low_res_multimasks,
|
|
ious,
|
|
sam_output_tokens,
|
|
object_score_logits,
|
|
) = self.sam_mask_decoder(
|
|
image_embeddings=backbone_features,
|
|
image_pe=self.sam_prompt_encoder.get_dense_pe(),
|
|
sparse_prompt_embeddings=sparse_embeddings,
|
|
dense_prompt_embeddings=dense_embeddings,
|
|
multimask_output=multimask_output,
|
|
repeat_image=False, # the image is already batched
|
|
high_res_features=high_res_features,
|
|
)
|
|
if self.pred_obj_scores:
|
|
is_obj_appearing = object_score_logits > 0
|
|
|
|
# Mask used for spatial memories is always a *hard* choice between obj and no obj,
|
|
# consistent with the actual mask prediction
|
|
low_res_multimasks = torch.where(
|
|
is_obj_appearing[:, None, None],
|
|
low_res_multimasks,
|
|
NO_OBJ_SCORE,
|
|
)
|
|
|
|
# convert masks from possibly bfloat16 (or float16) to float32
|
|
# (older PyTorch versions before 2.1 don't support `interpolate` on bf16)
|
|
_dtype = low_res_multimasks.dtype
|
|
# low_res_multimasks = low_res_multimasks.float()
|
|
high_res_multimasks = F.interpolate(
|
|
low_res_multimasks.float(),
|
|
size=(self.image_size, self.image_size),
|
|
mode="bilinear",
|
|
align_corners=False,
|
|
).to(_dtype)
|
|
|
|
sam_output_token = sam_output_tokens[:, 0]
|
|
if multimask_output:
|
|
# take the best mask prediction (with the highest IoU estimation)
|
|
best_iou_inds = torch.argmax(ious, dim=-1)
|
|
batch_inds = torch.arange(B, device=device)
|
|
low_res_masks = low_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
|
|
high_res_masks = high_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
|
|
if sam_output_tokens.size(1) > 1:
|
|
sam_output_token = sam_output_tokens[batch_inds, best_iou_inds]
|
|
else:
|
|
low_res_masks, high_res_masks = low_res_multimasks, high_res_multimasks
|
|
|
|
# Extract object pointer from the SAM output token (with occlusion handling)
|
|
obj_ptr = self.obj_ptr_proj(sam_output_token)
|
|
if self.pred_obj_scores:
|
|
# Allow *soft* no obj ptr, unlike for masks
|
|
if self.soft_no_obj_ptr:
|
|
# Only hard possible with gt
|
|
assert not self.teacher_force_obj_scores_for_mem
|
|
lambda_is_obj_appearing = object_score_logits.sigmoid()
|
|
else:
|
|
lambda_is_obj_appearing = is_obj_appearing.float()
|
|
|
|
if self.fixed_no_obj_ptr:
|
|
obj_ptr = lambda_is_obj_appearing * obj_ptr
|
|
obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr
|
|
|
|
return (
|
|
low_res_multimasks,
|
|
high_res_multimasks,
|
|
ious,
|
|
low_res_masks,
|
|
high_res_masks,
|
|
obj_ptr,
|
|
object_score_logits,
|
|
)
|
|
|
|
def _use_mask_as_output(self, backbone_features, high_res_features, mask_inputs):
|
|
"""
|
|
Directly turn binary `mask_inputs` into a output mask logits without using SAM.
|
|
(same input and output shapes as in _forward_sam_heads above).
|
|
"""
|
|
# Use -10/+10 as logits for neg/pos pixels (very close to 0/1 in prob after sigmoid).
|
|
out_scale, out_bias = 20.0, -10.0 # sigmoid(-10.0)=4.5398e-05
|
|
mask_inputs_float = mask_inputs.float()
|
|
high_res_masks = mask_inputs_float * out_scale + out_bias
|
|
low_res_masks = F.interpolate(
|
|
high_res_masks,
|
|
size=(high_res_masks.size(-2) // 4, high_res_masks.size(-1) // 4),
|
|
align_corners=False,
|
|
mode="bilinear",
|
|
antialias=True, # use antialias for downsampling
|
|
)
|
|
# a dummy IoU prediction of all 1's under mask input
|
|
ious = mask_inputs.new_ones(mask_inputs.size(0), 1).float()
|
|
if not self.use_obj_ptrs_in_encoder:
|
|
# all zeros as a dummy object pointer (of shape [B, C])
|
|
obj_ptr = torch.zeros(
|
|
mask_inputs.size(0), self.hidden_dim, device=mask_inputs.device
|
|
)
|
|
else:
|
|
# produce an object pointer using the SAM decoder from the mask input
|
|
_, _, _, _, _, obj_ptr, _ = self._forward_sam_heads(
|
|
backbone_features=backbone_features,
|
|
mask_inputs=self.mask_downsample(mask_inputs_float),
|
|
high_res_features=high_res_features,
|
|
)
|
|
# In this method, we are treating mask_input as output, e.g. using it directly to create spatial mem;
|
|
# Below, we follow the same design axiom to use mask_input to decide if obj appears or not instead of relying
|
|
# on the object_scores from the SAM decoder.
|
|
is_obj_appearing = torch.any(mask_inputs.flatten(1).float() > 0.0, dim=1)
|
|
is_obj_appearing = is_obj_appearing[..., None]
|
|
lambda_is_obj_appearing = is_obj_appearing.float()
|
|
object_score_logits = out_scale * lambda_is_obj_appearing + out_bias
|
|
if self.pred_obj_scores:
|
|
if self.fixed_no_obj_ptr:
|
|
obj_ptr = lambda_is_obj_appearing * obj_ptr
|
|
obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr
|
|
|
|
return (
|
|
low_res_masks,
|
|
high_res_masks,
|
|
ious,
|
|
low_res_masks,
|
|
high_res_masks,
|
|
obj_ptr,
|
|
object_score_logits,
|
|
)
|
|
|
|
def forward_image(self, img_batch: torch.Tensor):
|
|
"""Get the image feature on the input batch."""
|
|
backbone_out = self.image_encoder(img_batch)
|
|
if self.use_high_res_features_in_sam:
|
|
# precompute projected level 0 and level 1 features in SAM decoder
|
|
# to avoid running it again on every SAM click
|
|
backbone_out["backbone_fpn"][0] = self.sam_mask_decoder.conv_s0(
|
|
backbone_out["backbone_fpn"][0]
|
|
)
|
|
backbone_out["backbone_fpn"][1] = self.sam_mask_decoder.conv_s1(
|
|
backbone_out["backbone_fpn"][1]
|
|
)
|
|
return backbone_out
|
|
|
|
def _prepare_backbone_features(self, backbone_out):
|
|
"""Prepare and flatten visual features."""
|
|
backbone_out = backbone_out.copy()
|
|
assert len(backbone_out["backbone_fpn"]) == len(backbone_out["vision_pos_enc"])
|
|
assert len(backbone_out["backbone_fpn"]) >= self.num_feature_levels
|
|
|
|
feature_maps = backbone_out["backbone_fpn"][-self.num_feature_levels :]
|
|
vision_pos_embeds = backbone_out["vision_pos_enc"][-self.num_feature_levels :]
|
|
|
|
feat_sizes = [(x.shape[-2], x.shape[-1]) for x in vision_pos_embeds]
|
|
# flatten NxCxHxW to HWxNxC
|
|
vision_feats = [x.flatten(2).permute(2, 0, 1) for x in feature_maps]
|
|
vision_pos_embeds = [x.flatten(2).permute(2, 0, 1) for x in vision_pos_embeds]
|
|
|
|
return backbone_out, vision_feats, vision_pos_embeds, feat_sizes
|
|
|
|
def _prepare_memory_conditioned_features(
|
|
self,
|
|
frame_idx,
|
|
is_init_cond_frame,
|
|
current_vision_feats,
|
|
current_vision_pos_embeds,
|
|
feat_sizes,
|
|
output_dict,
|
|
num_frames,
|
|
track_in_reverse=False, # tracking in reverse time order (for demo usage)
|
|
):
|
|
"""Fuse the current frame's visual feature map with previous memory."""
|
|
B = current_vision_feats[-1].size(1) # batch size on this frame
|
|
C = self.hidden_dim
|
|
H, W = feat_sizes[-1] # top-level (lowest-resolution) feature size
|
|
device = current_vision_feats[-1].device
|
|
# The case of `self.num_maskmem == 0` below is primarily used for reproducing SAM on images.
|
|
# In this case, we skip the fusion with any memory.
|
|
if self.num_maskmem == 0: # Disable memory and skip fusion
|
|
pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W)
|
|
return pix_feat
|
|
|
|
num_obj_ptr_tokens = 0
|
|
# Step 1: condition the visual features of the current frame on previous memories
|
|
if not is_init_cond_frame:
|
|
# Retrieve the memories encoded with the maskmem backbone
|
|
to_cat_memory, to_cat_memory_pos_embed = [], []
|
|
# Add conditioning frames's output first (all cond frames have t_pos=0 for
|
|
# when getting temporal positional embedding below)
|
|
assert len(output_dict["cond_frame_outputs"]) > 0
|
|
# Select a maximum number of temporally closest cond frames for cross attention
|
|
cond_outputs = output_dict["cond_frame_outputs"]
|
|
selected_cond_outputs, unselected_cond_outputs = select_closest_cond_frames(
|
|
frame_idx, cond_outputs, self.max_cond_frames_in_attn
|
|
)
|
|
t_pos_and_prevs = [(0, out) for out in selected_cond_outputs.values()]
|
|
# Add last (self.num_maskmem - 1) frames before current frame for non-conditioning memory
|
|
# the earliest one has t_pos=1 and the latest one has t_pos=self.num_maskmem-1
|
|
# We also allow taking the memory frame non-consecutively (with r>1), in which case
|
|
# we take (self.num_maskmem - 2) frames among every r-th frames plus the last frame.
|
|
r = self.memory_temporal_stride_for_eval
|
|
for t_pos in range(1, self.num_maskmem):
|
|
t_rel = self.num_maskmem - t_pos # how many frames before current frame
|
|
if t_rel == 1:
|
|
# for t_rel == 1, we take the last frame (regardless of r)
|
|
if not track_in_reverse:
|
|
# the frame immediately before this frame (i.e. frame_idx - 1)
|
|
prev_frame_idx = frame_idx - t_rel
|
|
else:
|
|
# the frame immediately after this frame (i.e. frame_idx + 1)
|
|
prev_frame_idx = frame_idx + t_rel
|
|
else:
|
|
# for t_rel >= 2, we take the memory frame from every r-th frames
|
|
if not track_in_reverse:
|
|
# first find the nearest frame among every r-th frames before this frame
|
|
# for r=1, this would be (frame_idx - 2)
|
|
prev_frame_idx = ((frame_idx - 2) // r) * r
|
|
# then seek further among every r-th frames
|
|
prev_frame_idx = prev_frame_idx - (t_rel - 2) * r
|
|
else:
|
|
# first find the nearest frame among every r-th frames after this frame
|
|
# for r=1, this would be (frame_idx + 2)
|
|
prev_frame_idx = -(-(frame_idx + 2) // r) * r
|
|
# then seek further among every r-th frames
|
|
prev_frame_idx = prev_frame_idx + (t_rel - 2) * r
|
|
out = output_dict["non_cond_frame_outputs"].get(prev_frame_idx, None)
|
|
if out is None:
|
|
# If an unselected conditioning frame is among the last (self.num_maskmem - 1)
|
|
# frames, we still attend to it as if it's a non-conditioning frame.
|
|
out = unselected_cond_outputs.get(prev_frame_idx, None)
|
|
t_pos_and_prevs.append((t_pos, out))
|
|
|
|
for t_pos, prev in t_pos_and_prevs:
|
|
if prev is None:
|
|
continue # skip padding frames
|
|
# "maskmem_features" might have been offloaded to CPU in demo use cases,
|
|
# so we load it back to GPU (it's a no-op if it's already on GPU).
|
|
feats = prev["maskmem_features"].cuda(non_blocking=True)
|
|
to_cat_memory.append(feats.flatten(2).permute(2, 0, 1))
|
|
# Spatial positional encoding (it might have been offloaded to CPU in eval)
|
|
maskmem_enc = prev["maskmem_pos_enc"][-1].cuda()
|
|
maskmem_enc = maskmem_enc.flatten(2).permute(2, 0, 1)
|
|
# Temporal positional encoding
|
|
maskmem_enc = (
|
|
maskmem_enc + self.maskmem_tpos_enc[self.num_maskmem - t_pos - 1]
|
|
)
|
|
to_cat_memory_pos_embed.append(maskmem_enc)
|
|
|
|
# Construct the list of past object pointers
|
|
if self.use_obj_ptrs_in_encoder:
|
|
max_obj_ptrs_in_encoder = min(num_frames, self.max_obj_ptrs_in_encoder)
|
|
# First add those object pointers from selected conditioning frames
|
|
# (optionally, only include object pointers in the past during evaluation)
|
|
if not self.training and self.only_obj_ptrs_in_the_past_for_eval:
|
|
ptr_cond_outputs = {
|
|
t: out
|
|
for t, out in selected_cond_outputs.items()
|
|
if (t >= frame_idx if track_in_reverse else t <= frame_idx)
|
|
}
|
|
else:
|
|
ptr_cond_outputs = selected_cond_outputs
|
|
pos_and_ptrs = [
|
|
# Temporal pos encoding contains how far away each pointer is from current frame
|
|
(abs(frame_idx - t), out["obj_ptr"])
|
|
for t, out in ptr_cond_outputs.items()
|
|
]
|
|
# Add up to (max_obj_ptrs_in_encoder - 1) non-conditioning frames before current frame
|
|
for t_diff in range(1, max_obj_ptrs_in_encoder):
|
|
t = frame_idx + t_diff if track_in_reverse else frame_idx - t_diff
|
|
if t < 0 or (num_frames is not None and t >= num_frames):
|
|
break
|
|
out = output_dict["non_cond_frame_outputs"].get(
|
|
t, unselected_cond_outputs.get(t, None)
|
|
)
|
|
if out is not None:
|
|
pos_and_ptrs.append((t_diff, out["obj_ptr"]))
|
|
# If we have at least one object pointer, add them to the across attention
|
|
if len(pos_and_ptrs) > 0:
|
|
pos_list, ptrs_list = zip(*pos_and_ptrs)
|
|
# stack object pointers along dim=0 into [ptr_seq_len, B, C] shape
|
|
obj_ptrs = torch.stack(ptrs_list, dim=0)
|
|
# a temporal positional embedding based on how far each object pointer is from
|
|
# the current frame (sine embedding normalized by the max pointer num).
|
|
if self.add_tpos_enc_to_obj_ptrs:
|
|
t_diff_max = max_obj_ptrs_in_encoder - 1
|
|
tpos_dim = C if self.proj_tpos_enc_in_obj_ptrs else self.mem_dim
|
|
obj_pos = torch.tensor(pos_list, device=device)
|
|
obj_pos = get_1d_sine_pe(obj_pos / t_diff_max, dim=tpos_dim)
|
|
obj_pos = self.obj_ptr_tpos_proj(obj_pos)
|
|
obj_pos = obj_pos.unsqueeze(1).expand(-1, B, self.mem_dim)
|
|
else:
|
|
obj_pos = obj_ptrs.new_zeros(len(pos_list), B, self.mem_dim)
|
|
if self.mem_dim < C:
|
|
# split a pointer into (C // self.mem_dim) tokens for self.mem_dim < C
|
|
obj_ptrs = obj_ptrs.reshape(
|
|
-1, B, C // self.mem_dim, self.mem_dim
|
|
)
|
|
obj_ptrs = obj_ptrs.permute(0, 2, 1, 3).flatten(0, 1)
|
|
obj_pos = obj_pos.repeat_interleave(C // self.mem_dim, dim=0)
|
|
to_cat_memory.append(obj_ptrs)
|
|
to_cat_memory_pos_embed.append(obj_pos)
|
|
num_obj_ptr_tokens = obj_ptrs.shape[0]
|
|
else:
|
|
num_obj_ptr_tokens = 0
|
|
else:
|
|
# for initial conditioning frames, encode them without using any previous memory
|
|
if self.directly_add_no_mem_embed:
|
|
# directly add no-mem embedding (instead of using the transformer encoder)
|
|
pix_feat_with_mem = current_vision_feats[-1] + self.no_mem_embed
|
|
pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W)
|
|
return pix_feat_with_mem
|
|
|
|
# Use a dummy token on the first frame (to avoid emtpy memory input to tranformer encoder)
|
|
to_cat_memory = [self.no_mem_embed.expand(1, B, self.mem_dim)]
|
|
to_cat_memory_pos_embed = [self.no_mem_pos_enc.expand(1, B, self.mem_dim)]
|
|
|
|
# Step 2: Concatenate the memories and forward through the transformer encoder
|
|
memory = torch.cat(to_cat_memory, dim=0)
|
|
memory_pos_embed = torch.cat(to_cat_memory_pos_embed, dim=0)
|
|
|
|
pix_feat_with_mem = self.memory_attention(
|
|
curr=current_vision_feats,
|
|
curr_pos=current_vision_pos_embeds,
|
|
memory=memory,
|
|
memory_pos=memory_pos_embed,
|
|
num_obj_ptr_tokens=num_obj_ptr_tokens,
|
|
)
|
|
# reshape the output (HW)BC => BCHW
|
|
pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W)
|
|
return pix_feat_with_mem
|
|
|
|
def _encode_new_memory(
|
|
self,
|
|
current_vision_feats,
|
|
feat_sizes,
|
|
pred_masks_high_res,
|
|
is_mask_from_pts,
|
|
):
|
|
"""Encode the current image and its prediction into a memory feature."""
|
|
B = current_vision_feats[-1].size(1) # batch size on this frame
|
|
C = self.hidden_dim
|
|
H, W = feat_sizes[-1] # top-level (lowest-resolution) feature size
|
|
# top-level feature, (HW)BC => BCHW
|
|
pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W)
|
|
if self.non_overlap_masks_for_mem_enc and not self.training:
|
|
# optionally, apply non-overlapping constraints to the masks (it's applied
|
|
# in the batch dimension and should only be used during eval, where all
|
|
# the objects come from the same video under batch size 1).
|
|
pred_masks_high_res = self._apply_non_overlapping_constraints(
|
|
pred_masks_high_res
|
|
)
|
|
# scale the raw mask logits with a temperature before applying sigmoid
|
|
binarize = self.binarize_mask_from_pts_for_mem_enc and is_mask_from_pts
|
|
if binarize and not self.training:
|
|
mask_for_mem = (pred_masks_high_res > 0).float()
|
|
else:
|
|
# apply sigmoid on the raw mask logits to turn them into range (0, 1)
|
|
mask_for_mem = torch.sigmoid(pred_masks_high_res)
|
|
# apply scale and bias terms to the sigmoid probabilities
|
|
if self.sigmoid_scale_for_mem_enc != 1.0:
|
|
mask_for_mem = mask_for_mem * self.sigmoid_scale_for_mem_enc
|
|
if self.sigmoid_bias_for_mem_enc != 0.0:
|
|
mask_for_mem = mask_for_mem + self.sigmoid_bias_for_mem_enc
|
|
maskmem_out = self.memory_encoder(
|
|
pix_feat, mask_for_mem, skip_mask_sigmoid=True # sigmoid already applied
|
|
)
|
|
maskmem_features = maskmem_out["vision_features"]
|
|
maskmem_pos_enc = maskmem_out["vision_pos_enc"]
|
|
|
|
return maskmem_features, maskmem_pos_enc
|
|
|
|
def track_step(
|
|
self,
|
|
frame_idx,
|
|
is_init_cond_frame,
|
|
current_vision_feats,
|
|
current_vision_pos_embeds,
|
|
feat_sizes,
|
|
point_inputs,
|
|
mask_inputs,
|
|
output_dict,
|
|
num_frames,
|
|
track_in_reverse=False, # tracking in reverse time order (for demo usage)
|
|
# Whether to run the memory encoder on the predicted masks. Sometimes we might want
|
|
# to skip the memory encoder with `run_mem_encoder=False`. For example,
|
|
# in demo we might call `track_step` multiple times for each user click,
|
|
# and only encode the memory when the user finalizes their clicks. And in ablation
|
|
# settings like SAM training on static images, we don't need the memory encoder.
|
|
run_mem_encoder=True,
|
|
# The previously predicted SAM mask logits (which can be fed together with new clicks in demo).
|
|
prev_sam_mask_logits=None,
|
|
):
|
|
current_out = {"point_inputs": point_inputs, "mask_inputs": mask_inputs}
|
|
# High-resolution feature maps for the SAM head, reshape (HW)BC => BCHW
|
|
if len(current_vision_feats) > 1:
|
|
high_res_features = [
|
|
x.permute(1, 2, 0).view(x.size(1), x.size(2), *s)
|
|
for x, s in zip(current_vision_feats[:-1], feat_sizes[:-1])
|
|
]
|
|
else:
|
|
high_res_features = None
|
|
if mask_inputs is not None and self.use_mask_input_as_output_without_sam:
|
|
# When use_mask_input_as_output_without_sam=True, we directly output the mask input
|
|
# (see it as a GT mask) without using a SAM prompt encoder + mask decoder.
|
|
pix_feat = current_vision_feats[-1].permute(1, 2, 0)
|
|
pix_feat = pix_feat.view(-1, self.hidden_dim, *feat_sizes[-1])
|
|
sam_outputs = self._use_mask_as_output(
|
|
pix_feat, high_res_features, mask_inputs
|
|
)
|
|
else:
|
|
# fused the visual feature with previous memory features in the memory bank
|
|
pix_feat_with_mem = self._prepare_memory_conditioned_features(
|
|
frame_idx=frame_idx,
|
|
is_init_cond_frame=is_init_cond_frame,
|
|
current_vision_feats=current_vision_feats[-1:],
|
|
current_vision_pos_embeds=current_vision_pos_embeds[-1:],
|
|
feat_sizes=feat_sizes[-1:],
|
|
output_dict=output_dict,
|
|
num_frames=num_frames,
|
|
track_in_reverse=track_in_reverse,
|
|
)
|
|
# apply SAM-style segmentation head
|
|
# here we might feed previously predicted low-res SAM mask logits into the SAM mask decoder,
|
|
# e.g. in demo where such logits come from earlier interaction instead of correction sampling
|
|
# (in this case, any `mask_inputs` shouldn't reach here as they are sent to _use_mask_as_output instead)
|
|
if prev_sam_mask_logits is not None:
|
|
assert point_inputs is not None and mask_inputs is None
|
|
mask_inputs = prev_sam_mask_logits
|
|
multimask_output = self._use_multimask(is_init_cond_frame, point_inputs)
|
|
sam_outputs = self._forward_sam_heads(
|
|
backbone_features=pix_feat_with_mem,
|
|
point_inputs=point_inputs,
|
|
mask_inputs=mask_inputs,
|
|
high_res_features=high_res_features,
|
|
multimask_output=multimask_output,
|
|
)
|
|
(
|
|
_,
|
|
_,
|
|
_,
|
|
low_res_masks,
|
|
high_res_masks,
|
|
obj_ptr,
|
|
_,
|
|
) = sam_outputs
|
|
|
|
current_out["pred_masks"] = low_res_masks
|
|
current_out["pred_masks_high_res"] = high_res_masks
|
|
current_out["obj_ptr"] = obj_ptr
|
|
|
|
# Finally run the memory encoder on the predicted mask to encode
|
|
# it into a new memory feature (that can be used in future frames)
|
|
if run_mem_encoder and self.num_maskmem > 0:
|
|
high_res_masks_for_mem_enc = high_res_masks
|
|
maskmem_features, maskmem_pos_enc = self._encode_new_memory(
|
|
current_vision_feats=current_vision_feats,
|
|
feat_sizes=feat_sizes,
|
|
pred_masks_high_res=high_res_masks_for_mem_enc,
|
|
is_mask_from_pts=(point_inputs is not None),
|
|
)
|
|
current_out["maskmem_features"] = maskmem_features
|
|
current_out["maskmem_pos_enc"] = maskmem_pos_enc
|
|
else:
|
|
current_out["maskmem_features"] = None
|
|
current_out["maskmem_pos_enc"] = None
|
|
|
|
return current_out
|
|
|
|
def _use_multimask(self, is_init_cond_frame, point_inputs):
|
|
"""Whether to use multimask output in the SAM head."""
|
|
num_pts = 0 if point_inputs is None else point_inputs["point_labels"].size(1)
|
|
multimask_output = (
|
|
self.multimask_output_in_sam
|
|
and (is_init_cond_frame or self.multimask_output_for_tracking)
|
|
and (self.multimask_min_pt_num <= num_pts <= self.multimask_max_pt_num)
|
|
)
|
|
return multimask_output
|
|
|
|
def _apply_non_overlapping_constraints(self, pred_masks):
|
|
"""
|
|
Apply non-overlapping constraints to the object scores in pred_masks. Here we
|
|
keep only the highest scoring object at each spatial location in pred_masks.
|
|
"""
|
|
batch_size = pred_masks.size(0)
|
|
if batch_size == 1:
|
|
return pred_masks
|
|
|
|
device = pred_masks.device
|
|
# "max_obj_inds": object index of the object with the highest score at each location
|
|
max_obj_inds = torch.argmax(pred_masks, dim=0, keepdim=True)
|
|
# "batch_obj_inds": object index of each object slice (along dim 0) in `pred_masks`
|
|
batch_obj_inds = torch.arange(batch_size, device=device)[:, None, None, None]
|
|
keep = max_obj_inds == batch_obj_inds
|
|
# suppress overlapping regions' scores below -10.0 so that the foreground regions
|
|
# don't overlap (here sigmoid(-10.0)=4.5398e-05)
|
|
pred_masks = torch.where(keep, pred_masks, torch.clamp(pred_masks, max=-10.0))
|
|
return pred_masks
|
|
|
|
class SAM2Base(SAM2Base_):
|
|
|
|
def track_step(
|
|
self,
|
|
frame_idx,
|
|
is_init_cond_frame,
|
|
current_vision_feats,
|
|
current_vision_pos_embeds,
|
|
feat_sizes,
|
|
point_inputs,
|
|
mask_inputs,
|
|
output_dict,
|
|
num_frames,
|
|
track_in_reverse=False, # tracking in reverse time order (for demo usage)
|
|
# Whether to run the memory encoder on the predicted masks. Sometimes we might want
|
|
# to skip the memory encoder with `run_mem_encoder=False`. For example,
|
|
# in demo we might call `track_step` multiple times for each user click,
|
|
# and only encode the memory when the user finalizes their clicks. And in ablation
|
|
# settings like SAM training on static images, we don't need the memory encoder.
|
|
run_mem_encoder=True,
|
|
# The previously predicted SAM mask logits (which can be fed together with new clicks in demo).
|
|
prev_sam_mask_logits=None,
|
|
## Extension: LLM prompt
|
|
language_embd=None,
|
|
):
|
|
current_out = {"point_inputs": point_inputs, "mask_inputs": mask_inputs}
|
|
# High-resolution feature maps for the SAM head, reshape (HW)BC => BCHW
|
|
if len(current_vision_feats) > 1:
|
|
high_res_features = [
|
|
x.permute(1, 2, 0).view(x.size(1), x.size(2), *s)
|
|
for x, s in zip(current_vision_feats[:-1], feat_sizes[:-1])
|
|
]
|
|
else:
|
|
high_res_features = None
|
|
if mask_inputs is not None and self.use_mask_input_as_output_without_sam:
|
|
# When use_mask_input_as_output_without_sam=True, we directly output the mask input
|
|
# (see it as a GT mask) without using a SAM prompt encoder + mask decoder.
|
|
pix_feat = current_vision_feats[-1].permute(1, 2, 0)
|
|
pix_feat = pix_feat.view(-1, self.hidden_dim, *feat_sizes[-1])
|
|
sam_outputs = self._use_mask_as_output(
|
|
pix_feat, high_res_features, mask_inputs
|
|
)
|
|
else:
|
|
# fused the visual feature with previous memory features in the memory bank
|
|
pix_feat_with_mem = self._prepare_memory_conditioned_features(
|
|
frame_idx=frame_idx,
|
|
is_init_cond_frame=is_init_cond_frame,
|
|
current_vision_feats=current_vision_feats[-1:],
|
|
current_vision_pos_embeds=current_vision_pos_embeds[-1:],
|
|
feat_sizes=feat_sizes[-1:],
|
|
output_dict=output_dict,
|
|
num_frames=num_frames,
|
|
track_in_reverse=track_in_reverse,
|
|
)
|
|
# apply SAM-style segmentation head
|
|
# here we might feed previously predicted low-res SAM mask logits into the SAM mask decoder,
|
|
# e.g. in demo where such logits come from earlier interaction instead of correction sampling
|
|
# (in this case, any `mask_inputs` shouldn't reach here as they are sent to _use_mask_as_output instead)
|
|
if prev_sam_mask_logits is not None:
|
|
assert point_inputs is not None and mask_inputs is None
|
|
mask_inputs = prev_sam_mask_logits
|
|
multimask_output = self._use_multimask(is_init_cond_frame, point_inputs)
|
|
sam_outputs = self._forward_sam_heads(
|
|
backbone_features=pix_feat_with_mem,
|
|
point_inputs=point_inputs,
|
|
mask_inputs=mask_inputs,
|
|
high_res_features=high_res_features,
|
|
multimask_output=multimask_output,
|
|
# Inject language Embed if possible
|
|
language_embd=language_embd,
|
|
)
|
|
(
|
|
_,
|
|
_,
|
|
_,
|
|
low_res_masks,
|
|
high_res_masks,
|
|
obj_ptr,
|
|
_,
|
|
) = sam_outputs
|
|
|
|
current_out["pred_masks"] = low_res_masks
|
|
current_out["pred_masks_high_res"] = high_res_masks
|
|
current_out["obj_ptr"] = obj_ptr
|
|
|
|
# Finally run the memory encoder on the predicted mask to encode
|
|
# it into a new memory feature (that can be used in future frames)
|
|
if run_mem_encoder and self.num_maskmem > 0:
|
|
high_res_masks_for_mem_enc = high_res_masks
|
|
maskmem_features, maskmem_pos_enc = self._encode_new_memory(
|
|
current_vision_feats=current_vision_feats,
|
|
feat_sizes=feat_sizes,
|
|
pred_masks_high_res=high_res_masks_for_mem_enc,
|
|
is_mask_from_pts=(point_inputs is not None),
|
|
)
|
|
current_out["maskmem_features"] = maskmem_features
|
|
current_out["maskmem_pos_enc"] = maskmem_pos_enc
|
|
else:
|
|
current_out["maskmem_features"] = None
|
|
current_out["maskmem_pos_enc"] = None
|
|
|
|
return current_out
|
|
|
|
|
|
def _forward_sam_heads(
|
|
self,
|
|
backbone_features,
|
|
point_inputs=None,
|
|
mask_inputs=None,
|
|
high_res_features=None,
|
|
multimask_output=False,
|
|
## Extension: LLM prompt
|
|
language_embd=None,
|
|
):
|
|
"""
|
|
Forward SAM prompt encoders and mask heads.
|
|
|
|
Inputs:
|
|
- backbone_features: image features of [B, C, H, W] shape
|
|
- point_inputs: a dictionary with "point_coords" and "point_labels", where
|
|
1) "point_coords" has [B, P, 2] shape and float32 dtype and contains the
|
|
absolute pixel-unit coordinate in (x, y) format of the P input points
|
|
2) "point_labels" has shape [B, P] and int32 dtype, where 1 means
|
|
positive clicks, 0 means negative clicks, and -1 means padding
|
|
- mask_inputs: a mask of [B, 1, H*16, W*16] shape, float or bool, with the
|
|
same spatial size as the image.
|
|
- high_res_features: either 1) None or 2) or a list of length 2 containing
|
|
two feature maps of [B, C, 4*H, 4*W] and [B, C, 2*H, 2*W] shapes respectively,
|
|
which will be used as high-resolution feature maps for SAM decoder.
|
|
- multimask_output: if it's True, we output 3 candidate masks and their 3
|
|
corresponding IoU estimates, and if it's False, we output only 1 mask and
|
|
its corresponding IoU estimate.
|
|
|
|
Outputs:
|
|
- low_res_multimasks: [B, M, H*4, W*4] shape (where M = 3 if
|
|
`multimask_output=True` and M = 1 if `multimask_output=False`), the SAM
|
|
output mask logits (before sigmoid) for the low-resolution masks, with 4x
|
|
the resolution (1/4 stride) of the input backbone_features.
|
|
- high_res_multimasks: [B, M, H*16, W*16] shape (where M = 3
|
|
if `multimask_output=True` and M = 1 if `multimask_output=False`),
|
|
upsampled from the low-resolution masks, with shape size as the image
|
|
(stride is 1 pixel).
|
|
- ious, [B, M] shape, where (where M = 3 if `multimask_output=True` and M = 1
|
|
if `multimask_output=False`), the estimated IoU of each output mask.
|
|
- low_res_masks: [B, 1, H*4, W*4] shape, the best mask in `low_res_multimasks`.
|
|
If `multimask_output=True`, it's the mask with the highest IoU estimate.
|
|
If `multimask_output=False`, it's the same as `low_res_multimasks`.
|
|
- high_res_masks: [B, 1, H*16, W*16] shape, the best mask in `high_res_multimasks`.
|
|
If `multimask_output=True`, it's the mask with the highest IoU estimate.
|
|
If `multimask_output=False`, it's the same as `high_res_multimasks`.
|
|
- obj_ptr: [B, C] shape, the object pointer vector for the output mask, extracted
|
|
based on the output token from the SAM mask decoder.
|
|
"""
|
|
B = backbone_features.size(0)
|
|
device = backbone_features.device
|
|
assert backbone_features.size(1) == self.sam_prompt_embed_dim
|
|
assert backbone_features.size(2) == self.sam_image_embedding_size
|
|
assert backbone_features.size(3) == self.sam_image_embedding_size
|
|
|
|
# a) Handle point prompts
|
|
if point_inputs is not None:
|
|
sam_point_coords = point_inputs["point_coords"]
|
|
sam_point_labels = point_inputs["point_labels"]
|
|
assert sam_point_coords.size(0) == B and sam_point_labels.size(0) == B
|
|
else:
|
|
# If no points are provide, pad with an empty point (with label -1)
|
|
sam_point_coords = torch.zeros(B, 1, 2, device=device)
|
|
sam_point_labels = -torch.ones(B, 1, dtype=torch.int32, device=device)
|
|
|
|
# b) Handle mask prompts
|
|
if mask_inputs is not None:
|
|
# If mask_inputs is provided, downsize it into low-res mask input if needed
|
|
# and feed it as a dense mask prompt into the SAM mask encoder
|
|
assert len(mask_inputs.shape) == 4 and mask_inputs.shape[:2] == (B, 1)
|
|
if mask_inputs.shape[-2:] != self.sam_prompt_encoder.mask_input_size:
|
|
sam_mask_prompt = F.interpolate(
|
|
mask_inputs.float(),
|
|
size=self.sam_prompt_encoder.mask_input_size,
|
|
align_corners=False,
|
|
mode="bilinear",
|
|
antialias=True, # use antialias for downsampling
|
|
)
|
|
else:
|
|
sam_mask_prompt = mask_inputs
|
|
else:
|
|
# Otherwise, simply feed None (and SAM's prompt encoder will add
|
|
# a learned `no_mask_embed` to indicate no mask input in this case).
|
|
sam_mask_prompt = None
|
|
|
|
sparse_embeddings, dense_embeddings = self.sam_prompt_encoder(
|
|
points=(sam_point_coords, sam_point_labels),
|
|
boxes=None,
|
|
masks=sam_mask_prompt,
|
|
)
|
|
|
|
## Extension: LLM prompt
|
|
if language_embd is not None:
|
|
# B N C
|
|
assert sparse_embeddings.size(0) == language_embd.size(0)
|
|
assert sparse_embeddings.size(2) == language_embd.size(2)
|
|
sparse_embeddings = torch.cat([sparse_embeddings, language_embd], dim=1)
|
|
|
|
(
|
|
low_res_multimasks,
|
|
ious,
|
|
sam_output_tokens,
|
|
object_score_logits,
|
|
) = self.sam_mask_decoder(
|
|
image_embeddings=backbone_features,
|
|
image_pe=self.sam_prompt_encoder.get_dense_pe(),
|
|
sparse_prompt_embeddings=sparse_embeddings,
|
|
dense_prompt_embeddings=dense_embeddings,
|
|
multimask_output=multimask_output,
|
|
repeat_image=False, # the image is already batched
|
|
high_res_features=high_res_features,
|
|
)
|
|
if self.pred_obj_scores:
|
|
is_obj_appearing = object_score_logits > 0
|
|
|
|
# Mask used for spatial memories is always a *hard* choice between obj and no obj,
|
|
# consistent with the actual mask prediction
|
|
# print('Do torch.where !!!')
|
|
# low_res_multimasks = torch.where(
|
|
# is_obj_appearing[:, None, None],
|
|
# low_res_multimasks,
|
|
# NO_OBJ_SCORE,
|
|
# )
|
|
|
|
# convert masks from possibly bfloat16 (or float16) to float32
|
|
# (older PyTorch versions before 2.1 don't support `interpolate` on bf16)
|
|
low_res_multimasks = low_res_multimasks.float()
|
|
high_res_multimasks = F.interpolate(
|
|
low_res_multimasks,
|
|
size=(self.image_size, self.image_size),
|
|
mode="bilinear",
|
|
align_corners=False,
|
|
)
|
|
|
|
sam_output_token = sam_output_tokens[:, 0]
|
|
if multimask_output:
|
|
# take the best mask prediction (with the highest IoU estimation)
|
|
best_iou_inds = torch.argmax(ious, dim=-1)
|
|
batch_inds = torch.arange(B, device=device)
|
|
low_res_masks = low_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
|
|
high_res_masks = high_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
|
|
if sam_output_tokens.size(1) > 1:
|
|
sam_output_token = sam_output_tokens[batch_inds, best_iou_inds]
|
|
else:
|
|
low_res_masks, high_res_masks = low_res_multimasks, high_res_multimasks
|
|
|
|
# Extract object pointer from the SAM output token (with occlusion handling)
|
|
obj_ptr = self.obj_ptr_proj(sam_output_token)
|
|
if self.pred_obj_scores:
|
|
# Allow *soft* no obj ptr, unlike for masks
|
|
if self.soft_no_obj_ptr:
|
|
# Only hard possible with gt
|
|
assert not self.teacher_force_obj_scores_for_mem
|
|
lambda_is_obj_appearing = object_score_logits.sigmoid()
|
|
else:
|
|
lambda_is_obj_appearing = is_obj_appearing.float()
|
|
|
|
if self.fixed_no_obj_ptr:
|
|
obj_ptr = lambda_is_obj_appearing * obj_ptr
|
|
obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr
|
|
|
|
return (
|
|
low_res_multimasks,
|
|
high_res_multimasks,
|
|
ious,
|
|
low_res_masks,
|
|
high_res_masks,
|
|
obj_ptr,
|
|
object_score_logits,
|
|
)
|
|
|
|
|
|
def _obj_id_to_idx(inference_state, obj_id):
|
|
"""Map client-side object id to model-side object index."""
|
|
obj_idx = inference_state["obj_id_to_idx"].get(obj_id, None)
|
|
if obj_idx is not None:
|
|
return obj_idx
|
|
|
|
# This is a new object id not sent to the server before. We only allow adding
|
|
# new objects *before* the tracking starts.
|
|
allow_new_object = not inference_state["tracking_has_started"]
|
|
if allow_new_object:
|
|
# get the next object slot
|
|
obj_idx = len(inference_state["obj_id_to_idx"])
|
|
inference_state["obj_id_to_idx"][obj_id] = obj_idx
|
|
inference_state["obj_idx_to_id"][obj_idx] = obj_id
|
|
inference_state["obj_ids"] = list(inference_state["obj_id_to_idx"])
|
|
# set up input and output structures for this object
|
|
inference_state["point_inputs_per_obj"][obj_idx] = {}
|
|
inference_state["mask_inputs_per_obj"][obj_idx] = {}
|
|
inference_state["output_dict_per_obj"][obj_idx] = {
|
|
"cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
|
|
"non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
|
|
}
|
|
inference_state["temp_output_dict_per_obj"][obj_idx] = {
|
|
"cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
|
|
"non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
|
|
}
|
|
return obj_idx
|
|
else:
|
|
raise RuntimeError(
|
|
f"Cannot add new object id {obj_id} after tracking starts. "
|
|
f"All existing object ids: {inference_state['obj_ids']}. "
|
|
f"Please call 'reset_state' to restart from scratch."
|
|
)
|
|
|
|
|
|
def _get_maskmem_pos_enc(inference_state, current_out):
|
|
"""
|
|
`maskmem_pos_enc` is the same across frames and objects, so we cache it as
|
|
a constant in the inference session to reduce session storage size.
|
|
"""
|
|
model_constants = inference_state["constants"]
|
|
# "out_maskmem_pos_enc" should be either a list of tensors or None
|
|
out_maskmem_pos_enc = current_out["maskmem_pos_enc"]
|
|
if out_maskmem_pos_enc is not None:
|
|
if "maskmem_pos_enc" not in model_constants:
|
|
assert isinstance(out_maskmem_pos_enc, list)
|
|
# only take the slice for one object, since it's same across objects
|
|
maskmem_pos_enc = [x[0:1].clone() for x in out_maskmem_pos_enc]
|
|
model_constants["maskmem_pos_enc"] = maskmem_pos_enc
|
|
else:
|
|
maskmem_pos_enc = model_constants["maskmem_pos_enc"]
|
|
# expand the cached maskmem_pos_enc to the actual batch size
|
|
batch_size = out_maskmem_pos_enc[0].size(0)
|
|
expanded_maskmem_pos_enc = [
|
|
x.expand(batch_size, -1, -1, -1) for x in maskmem_pos_enc
|
|
]
|
|
else:
|
|
expanded_maskmem_pos_enc = None
|
|
return expanded_maskmem_pos_enc
|
|
|
|
|
|
def _obj_idx_to_id(inference_state, obj_idx):
|
|
"""Map model-side object index to client-side object id."""
|
|
return inference_state["obj_idx_to_id"][obj_idx]
|
|
|
|
|
|
def _get_obj_num(inference_state):
|
|
"""Get the total number of unique object ids received so far in this session."""
|
|
return len(inference_state["obj_idx_to_id"])
|
|
|
|
|
|
class SAM2VideoPredictor(SAM2Base):
|
|
"""The predictor class to handle user interactions and manage inference states."""
|
|
|
|
def __init__(
|
|
self,
|
|
fill_hole_area=0,
|
|
# whether to apply non-overlapping constraints on the output object masks
|
|
non_overlap_masks=False,
|
|
# whether to clear non-conditioning memory of the surrounding frames (which may contain outdated information) after adding correction clicks;
|
|
# note that this would only apply to *single-object tracking* unless `clear_non_cond_mem_for_multi_obj` is also set to True)
|
|
clear_non_cond_mem_around_input=False,
|
|
# whether to also clear non-conditioning memory of the surrounding frames (only effective when `clear_non_cond_mem_around_input` is True).
|
|
clear_non_cond_mem_for_multi_obj=False,
|
|
**kwargs,
|
|
):
|
|
super().__init__(**kwargs)
|
|
self.fill_hole_area = fill_hole_area
|
|
self.non_overlap_masks = non_overlap_masks
|
|
self.clear_non_cond_mem_around_input = clear_non_cond_mem_around_input
|
|
self.clear_non_cond_mem_for_multi_obj = clear_non_cond_mem_for_multi_obj
|
|
|
|
def _get_image_feature(self, inference_state, frame_idx, batch_size):
|
|
"""Compute the image features on a given frame."""
|
|
# Look up in the cache first
|
|
image, backbone_out = inference_state["cached_features"].get(
|
|
frame_idx, (None, None)
|
|
)
|
|
if backbone_out is None:
|
|
# Cache miss -- we will run inference on a single image
|
|
# image = inference_state["images"][frame_idx].cuda().float().unsqueeze(0)
|
|
image = inference_state["images"][frame_idx].cuda().unsqueeze(0)
|
|
backbone_out = self.forward_image(image)
|
|
# Cache the most recent frame's feature (for repeated interactions with
|
|
# a frame; we can use an LRU cache for more frames in the future).
|
|
inference_state["cached_features"] = {frame_idx: (image, backbone_out)}
|
|
|
|
# expand the features to have the same dimension as the number of objects
|
|
expanded_image = image.expand(batch_size, -1, -1, -1)
|
|
expanded_backbone_out = {
|
|
"backbone_fpn": backbone_out["backbone_fpn"].copy(),
|
|
"vision_pos_enc": backbone_out["vision_pos_enc"].copy(),
|
|
}
|
|
for i, feat in enumerate(expanded_backbone_out["backbone_fpn"]):
|
|
expanded_backbone_out["backbone_fpn"][i] = feat.expand(
|
|
batch_size, -1, -1, -1
|
|
)
|
|
for i, pos in enumerate(expanded_backbone_out["vision_pos_enc"]):
|
|
pos = pos.expand(batch_size, -1, -1, -1)
|
|
expanded_backbone_out["vision_pos_enc"][i] = pos
|
|
|
|
features = self._prepare_backbone_features(expanded_backbone_out)
|
|
features = (expanded_image,) + features
|
|
return features
|
|
|
|
|
|
def _run_single_frame_inference(
|
|
self,
|
|
inference_state,
|
|
output_dict,
|
|
frame_idx,
|
|
batch_size,
|
|
is_init_cond_frame,
|
|
point_inputs,
|
|
mask_inputs,
|
|
reverse,
|
|
run_mem_encoder,
|
|
prev_sam_mask_logits=None,
|
|
## Extension: LLM prompt
|
|
language_embd=None,
|
|
):
|
|
"""Run tracking on a single frame based on current inputs and previous memory."""
|
|
# Retrieve correct image features
|
|
(
|
|
_,
|
|
_,
|
|
current_vision_feats,
|
|
current_vision_pos_embeds,
|
|
feat_sizes,
|
|
) = self._get_image_feature(inference_state, frame_idx, batch_size)
|
|
|
|
# point and mask should not appear as input simultaneously on the same frame
|
|
assert point_inputs is None or mask_inputs is None
|
|
current_out = self.track_step(
|
|
frame_idx=frame_idx,
|
|
is_init_cond_frame=is_init_cond_frame,
|
|
current_vision_feats=current_vision_feats,
|
|
current_vision_pos_embeds=current_vision_pos_embeds,
|
|
feat_sizes=feat_sizes,
|
|
point_inputs=point_inputs,
|
|
mask_inputs=mask_inputs,
|
|
output_dict=output_dict,
|
|
num_frames=inference_state["num_frames"],
|
|
track_in_reverse=reverse,
|
|
run_mem_encoder=run_mem_encoder,
|
|
prev_sam_mask_logits=prev_sam_mask_logits,
|
|
language_embd=language_embd,
|
|
)
|
|
|
|
# optionally offload the output to CPU memory to save GPU space
|
|
storage_device = inference_state["storage_device"]
|
|
maskmem_features = current_out["maskmem_features"]
|
|
if maskmem_features is not None:
|
|
maskmem_features = maskmem_features.to(torch.bfloat16)
|
|
maskmem_features = maskmem_features.to(storage_device, non_blocking=True)
|
|
pred_masks_gpu = current_out["pred_masks"]
|
|
# potentially fill holes in the predicted masks
|
|
if self.fill_hole_area > 0:
|
|
pred_masks_gpu = fill_holes_in_mask_scores(
|
|
pred_masks_gpu, self.fill_hole_area
|
|
)
|
|
pred_masks = pred_masks_gpu.to(storage_device, non_blocking=True)
|
|
# "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
|
|
maskmem_pos_enc = _get_maskmem_pos_enc(inference_state, current_out)
|
|
# object pointer is a small tensor, so we always keep it on GPU memory for fast access
|
|
obj_ptr = current_out["obj_ptr"]
|
|
# make a compact version of this frame's output to reduce the state size
|
|
compact_current_out = {
|
|
"maskmem_features": maskmem_features,
|
|
"maskmem_pos_enc": maskmem_pos_enc,
|
|
"pred_masks": pred_masks,
|
|
"obj_ptr": obj_ptr,
|
|
}
|
|
return compact_current_out, pred_masks_gpu
|
|
|
|
|
|
def _consolidate_temp_output_across_obj(
|
|
self,
|
|
inference_state,
|
|
frame_idx,
|
|
is_cond,
|
|
run_mem_encoder,
|
|
consolidate_at_video_res=False,
|
|
):
|
|
"""
|
|
Consolidate the per-object temporary outputs in `temp_output_dict_per_obj` on
|
|
a frame into a single output for all objects, including
|
|
1) fill any missing objects either from `output_dict_per_obj` (if they exist in
|
|
`output_dict_per_obj` for this frame) or leave them as placeholder values
|
|
(if they don't exist in `output_dict_per_obj` for this frame);
|
|
2) if specified, rerun memory encoder after apply non-overlapping constraints
|
|
on the object scores.
|
|
"""
|
|
batch_size = _get_obj_num(inference_state)
|
|
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
|
|
# Optionally, we allow consolidating the temporary outputs at the original
|
|
# video resolution (to provide a better editing experience for mask prompts).
|
|
if consolidate_at_video_res:
|
|
assert not run_mem_encoder, "memory encoder cannot run at video resolution"
|
|
consolidated_H = inference_state["video_height"]
|
|
consolidated_W = inference_state["video_width"]
|
|
consolidated_mask_key = "pred_masks_video_res"
|
|
else:
|
|
consolidated_H = consolidated_W = self.image_size // 4
|
|
consolidated_mask_key = "pred_masks"
|
|
|
|
# Initialize `consolidated_out`. Its "maskmem_features" and "maskmem_pos_enc"
|
|
# will be added when rerunning the memory encoder after applying non-overlapping
|
|
# constraints to object scores. Its "pred_masks" are prefilled with a large
|
|
# negative value (NO_OBJ_SCORE) to represent missing objects.
|
|
consolidated_out = {
|
|
"maskmem_features": None,
|
|
"maskmem_pos_enc": None,
|
|
consolidated_mask_key: torch.full(
|
|
size=(batch_size, 1, consolidated_H, consolidated_W),
|
|
fill_value=NO_OBJ_SCORE,
|
|
dtype=torch.float32,
|
|
device=inference_state["storage_device"],
|
|
),
|
|
"obj_ptr": torch.full(
|
|
size=(batch_size, self.hidden_dim),
|
|
fill_value=NO_OBJ_SCORE,
|
|
dtype=torch.float32,
|
|
device=inference_state["device"],
|
|
),
|
|
}
|
|
empty_mask_ptr = None
|
|
for obj_idx in range(batch_size):
|
|
obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
|
|
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
|
|
out = obj_temp_output_dict[storage_key].get(frame_idx, None)
|
|
# If the object doesn't appear in "temp_output_dict_per_obj" on this frame,
|
|
# we fall back and look up its previous output in "output_dict_per_obj".
|
|
# We look up both "cond_frame_outputs" and "non_cond_frame_outputs" in
|
|
# "output_dict_per_obj" to find a previous output for this object.
|
|
if out is None:
|
|
out = obj_output_dict["cond_frame_outputs"].get(frame_idx, None)
|
|
if out is None:
|
|
out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx, None)
|
|
# If the object doesn't appear in "output_dict_per_obj" either, we skip it
|
|
# and leave its mask scores to the default scores (i.e. the NO_OBJ_SCORE
|
|
# placeholder above) and set its object pointer to be a dummy pointer.
|
|
if out is None:
|
|
# Fill in dummy object pointers for those objects without any inputs or
|
|
# tracking outcomes on this frame (only do it under `run_mem_encoder=True`,
|
|
# i.e. when we need to build the memory for tracking).
|
|
if run_mem_encoder:
|
|
if empty_mask_ptr is None:
|
|
empty_mask_ptr = self._get_empty_mask_ptr(
|
|
inference_state, frame_idx
|
|
)
|
|
# fill object pointer with a dummy pointer (based on an empty mask)
|
|
consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = empty_mask_ptr
|
|
continue
|
|
# Add the temporary object output mask to consolidated output mask
|
|
obj_mask = out["pred_masks"]
|
|
consolidated_pred_masks = consolidated_out[consolidated_mask_key]
|
|
if obj_mask.shape[-2:] == consolidated_pred_masks.shape[-2:]:
|
|
consolidated_pred_masks[obj_idx : obj_idx + 1] = obj_mask
|
|
else:
|
|
# Resize first if temporary object mask has a different resolution
|
|
resized_obj_mask = torch.nn.functional.interpolate(
|
|
obj_mask,
|
|
size=consolidated_pred_masks.shape[-2:],
|
|
mode="bilinear",
|
|
align_corners=False,
|
|
)
|
|
consolidated_pred_masks[obj_idx : obj_idx + 1] = resized_obj_mask
|
|
consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = out["obj_ptr"]
|
|
|
|
# Optionally, apply non-overlapping constraints on the consolidated scores
|
|
# and rerun the memory encoder
|
|
if run_mem_encoder:
|
|
device = inference_state["device"]
|
|
high_res_masks = torch.nn.functional.interpolate(
|
|
consolidated_out["pred_masks"].to(device, non_blocking=True),
|
|
size=(self.image_size, self.image_size),
|
|
mode="bilinear",
|
|
align_corners=False,
|
|
)
|
|
if self.non_overlap_masks_for_mem_enc:
|
|
high_res_masks = self._apply_non_overlapping_constraints(high_res_masks)
|
|
maskmem_features, maskmem_pos_enc = self._run_memory_encoder(
|
|
inference_state=inference_state,
|
|
frame_idx=frame_idx,
|
|
batch_size=batch_size,
|
|
high_res_masks=high_res_masks,
|
|
is_mask_from_pts=True, # these frames are what the user interacted with
|
|
)
|
|
consolidated_out["maskmem_features"] = maskmem_features
|
|
consolidated_out["maskmem_pos_enc"] = maskmem_pos_enc
|
|
|
|
return consolidated_out
|
|
|
|
|
|
def _get_orig_video_res_output(self, inference_state, any_res_masks):
|
|
"""
|
|
Resize the object scores to the original video resolution (video_res_masks)
|
|
and apply non-overlapping constraints for final output.
|
|
"""
|
|
device = inference_state["device"]
|
|
video_H = inference_state["video_height"]
|
|
video_W = inference_state["video_width"]
|
|
any_res_masks = any_res_masks.to(device, non_blocking=True)
|
|
if any_res_masks.shape[-2:] == (video_H, video_W):
|
|
video_res_masks = any_res_masks
|
|
else:
|
|
video_res_masks = torch.nn.functional.interpolate(
|
|
any_res_masks,
|
|
size=(video_H, video_W),
|
|
mode="bilinear",
|
|
align_corners=False,
|
|
)
|
|
if self.non_overlap_masks:
|
|
video_res_masks = self._apply_non_overlapping_constraints(video_res_masks)
|
|
return any_res_masks, video_res_masks
|
|
|
|
def init_state(
|
|
self,
|
|
images
|
|
):
|
|
"""Initialize a inference state."""
|
|
inference_state = {}
|
|
inference_state["images"] = images
|
|
inference_state["num_frames"] = len(images)
|
|
# whether to offload the video frames to CPU memory
|
|
# turning on this option saves the GPU memory with only a very small overhead
|
|
inference_state["offload_video_to_cpu"] = False
|
|
# whether to offload the inference state to CPU memory
|
|
# turning on this option saves the GPU memory at the cost of a lower tracking fps
|
|
# (e.g. in a test case of 768x768 model, fps dropped from 27 to 24 when tracking one object
|
|
# and from 24 to 21 when tracking two objects)
|
|
inference_state["offload_state_to_cpu"] = False
|
|
# the original video height and width, used for resizing final output scores
|
|
inference_state["video_height"] = self.image_size
|
|
inference_state["video_width"] = self.image_size
|
|
inference_state["device"] = torch.device("cuda")
|
|
inference_state["storage_device"] = torch.device("cuda")
|
|
# inputs on each frame
|
|
inference_state["point_inputs_per_obj"] = {}
|
|
inference_state["mask_inputs_per_obj"] = {}
|
|
# visual features on a small number of recently visited frames for quick interactions
|
|
inference_state["cached_features"] = {}
|
|
# values that don't change across frames (so we only need to hold one copy of them)
|
|
inference_state["constants"] = {}
|
|
# mapping between client-side object id and model-side object index
|
|
inference_state["obj_id_to_idx"] = OrderedDict()
|
|
inference_state["obj_idx_to_id"] = OrderedDict()
|
|
inference_state["obj_ids"] = []
|
|
# A storage to hold the model's tracking results and states on each frame
|
|
inference_state["output_dict"] = {
|
|
"cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
|
|
"non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
|
|
}
|
|
# Slice (view) of each object tracking results, sharing the same memory with "output_dict"
|
|
inference_state["output_dict_per_obj"] = {}
|
|
# A temporary storage to hold new outputs when user interact with a frame
|
|
# to add clicks or mask (it's merged into "output_dict" before propagation starts)
|
|
inference_state["temp_output_dict_per_obj"] = {}
|
|
# Frames that already holds consolidated outputs from click or mask inputs
|
|
# (we directly use their consolidated outputs during tracking)
|
|
inference_state["consolidated_frame_inds"] = {
|
|
"cond_frame_outputs": set(), # set containing frame indices
|
|
"non_cond_frame_outputs": set(), # set containing frame indices
|
|
}
|
|
# metadata for each tracking frame (e.g. which direction it's tracked)
|
|
inference_state["tracking_has_started"] = False
|
|
inference_state["frames_already_tracked"] = {}
|
|
return inference_state
|
|
|
|
def add_language_embd(
|
|
self,
|
|
inference_state,
|
|
frame_idx,
|
|
obj_id,
|
|
language_embd,
|
|
inference=False,
|
|
):
|
|
obj_idx = _obj_id_to_idx(inference_state, obj_id)
|
|
|
|
is_init_cond_frame = frame_idx not in inference_state["frames_already_tracked"]
|
|
# whether to track in reverse time order
|
|
if is_init_cond_frame:
|
|
reverse = False
|
|
else:
|
|
reverse = inference_state["frames_already_tracked"][frame_idx]["reverse"]
|
|
|
|
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
|
|
obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
|
|
# Add a frame to conditioning output if it's an initial conditioning frame or
|
|
# if the model sees all frames receiving clicks/mask as conditioning frames.
|
|
is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond
|
|
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
|
|
|
|
# Get any previously predicted mask logits on this object and feed it along with
|
|
# the new clicks into the SAM mask decoder.
|
|
prev_sam_mask_logits = None
|
|
# lookup temporary output dict first, which contains the most recent output
|
|
# (if not found, then lookup conditioning and non-conditioning frame output)
|
|
prev_out = obj_temp_output_dict[storage_key].get(frame_idx)
|
|
if prev_out is None:
|
|
prev_out = obj_output_dict["cond_frame_outputs"].get(frame_idx)
|
|
if prev_out is None:
|
|
prev_out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx)
|
|
|
|
if prev_out is not None and prev_out["pred_masks"] is not None:
|
|
prev_sam_mask_logits = prev_out["pred_masks"].cuda(non_blocking=True)
|
|
# Clamp the scale of prev_sam_mask_logits to avoid rare numerical issues.
|
|
prev_sam_mask_logits = torch.clamp(prev_sam_mask_logits, -32.0, 32.0)
|
|
|
|
current_out, pred_mask_gpu = self._run_single_frame_inference(
|
|
inference_state=inference_state,
|
|
output_dict=obj_output_dict, # run on the slice of a single object
|
|
frame_idx=frame_idx,
|
|
batch_size=1, # run on the slice of a single object
|
|
is_init_cond_frame=is_init_cond_frame,
|
|
point_inputs=None,
|
|
mask_inputs=None,
|
|
reverse=reverse,
|
|
# Skip the memory encoder when adding clicks or mask. We execute the memory encoder
|
|
# at the beginning of `propagate_in_video` (after user finalize their clicks). This
|
|
# allows us to enforce non-overlapping constraints on all objects before encoding
|
|
# them into memory.
|
|
run_mem_encoder=False,
|
|
prev_sam_mask_logits=prev_sam_mask_logits,
|
|
## Extension: LLM prompt
|
|
language_embd=language_embd,
|
|
)
|
|
# Add the output to the output dict (to be used as future memory)
|
|
obj_temp_output_dict[storage_key][frame_idx] = current_out
|
|
|
|
# Resize the output mask to the original video resolution
|
|
obj_ids = inference_state["obj_ids"]
|
|
if inference:
|
|
_consolidated_out = self._consolidate_temp_output_across_obj(
|
|
inference_state,
|
|
frame_idx,
|
|
is_cond=is_cond,
|
|
run_mem_encoder=False,
|
|
consolidate_at_video_res=False,
|
|
)
|
|
# _, video_res_masks = self._get_orig_video_res_output(
|
|
# inference_state, consolidated_out["pred_masks_video_res"]
|
|
# )
|
|
return frame_idx, obj_ids, pred_mask_gpu
|
|
|
|
|
|
def _clear_non_cond_mem_around_input(self, inference_state, frame_idx):
|
|
"""
|
|
Remove the non-conditioning memory around the input frame. When users provide
|
|
correction clicks, the surrounding frames' non-conditioning memories can still
|
|
contain outdated object appearance information and could confuse the model.
|
|
|
|
This method clears those non-conditioning memories surrounding the interacted
|
|
frame to avoid giving the model both old and new information about the object.
|
|
"""
|
|
r = self.memory_temporal_stride_for_eval
|
|
frame_idx_begin = frame_idx - r * self.num_maskmem
|
|
frame_idx_end = frame_idx + r * self.num_maskmem
|
|
output_dict = inference_state["output_dict"]
|
|
non_cond_frame_outputs = output_dict["non_cond_frame_outputs"]
|
|
for t in range(frame_idx_begin, frame_idx_end + 1):
|
|
non_cond_frame_outputs.pop(t, None)
|
|
for obj_output_dict in inference_state["output_dict_per_obj"].values():
|
|
obj_output_dict["non_cond_frame_outputs"].pop(t, None)
|
|
|
|
def _run_memory_encoder(
|
|
self, inference_state, frame_idx, batch_size, high_res_masks, is_mask_from_pts
|
|
):
|
|
"""
|
|
Run the memory encoder on `high_res_masks`. This is usually after applying
|
|
non-overlapping constraints to object scores. Since their scores changed, their
|
|
memory also need to be computed again with the memory encoder.
|
|
"""
|
|
# Retrieve correct image features
|
|
_, _, current_vision_feats, _, feat_sizes = self._get_image_feature(
|
|
inference_state, frame_idx, batch_size
|
|
)
|
|
maskmem_features, maskmem_pos_enc = self._encode_new_memory(
|
|
current_vision_feats=current_vision_feats,
|
|
feat_sizes=feat_sizes,
|
|
pred_masks_high_res=high_res_masks,
|
|
is_mask_from_pts=is_mask_from_pts,
|
|
)
|
|
|
|
# optionally offload the output to CPU memory to save GPU space
|
|
storage_device = inference_state["storage_device"]
|
|
maskmem_features = maskmem_features.to(torch.bfloat16)
|
|
maskmem_features = maskmem_features.to(storage_device, non_blocking=True)
|
|
# "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
|
|
maskmem_pos_enc = _get_maskmem_pos_enc(
|
|
inference_state, {"maskmem_pos_enc": maskmem_pos_enc}
|
|
)
|
|
return maskmem_features, maskmem_pos_enc
|
|
|
|
def _add_output_per_object(
|
|
self, inference_state, frame_idx, current_out, storage_key
|
|
):
|
|
"""
|
|
Split a multi-object output into per-object output slices and add them into
|
|
`output_dict_per_obj`. The resulting slices share the same tensor storage.
|
|
"""
|
|
maskmem_features = current_out["maskmem_features"]
|
|
assert maskmem_features is None or isinstance(maskmem_features, torch.Tensor)
|
|
|
|
maskmem_pos_enc = current_out["maskmem_pos_enc"]
|
|
assert maskmem_pos_enc is None or isinstance(maskmem_pos_enc, list)
|
|
|
|
output_dict_per_obj = inference_state["output_dict_per_obj"]
|
|
for obj_idx, obj_output_dict in output_dict_per_obj.items():
|
|
obj_slice = slice(obj_idx, obj_idx + 1)
|
|
obj_out = {
|
|
"maskmem_features": None,
|
|
"maskmem_pos_enc": None,
|
|
"pred_masks": current_out["pred_masks"][obj_slice],
|
|
"obj_ptr": current_out["obj_ptr"][obj_slice],
|
|
}
|
|
if maskmem_features is not None:
|
|
obj_out["maskmem_features"] = maskmem_features[obj_slice]
|
|
if maskmem_pos_enc is not None:
|
|
obj_out["maskmem_pos_enc"] = [x[obj_slice] for x in maskmem_pos_enc]
|
|
obj_output_dict[storage_key][frame_idx] = obj_out
|
|
|
|
@torch.inference_mode()
|
|
def propagate_in_video_preflight(self, inference_state):
|
|
"""Prepare inference_state and consolidate temporary outputs before tracking."""
|
|
# Tracking has started and we don't allow adding new objects until session is reset.
|
|
inference_state["tracking_has_started"] = True
|
|
batch_size = _get_obj_num(inference_state)
|
|
|
|
# Consolidate per-object temporary outputs in "temp_output_dict_per_obj" and
|
|
# add them into "output_dict".
|
|
temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"]
|
|
output_dict = inference_state["output_dict"]
|
|
# "consolidated_frame_inds" contains indices of those frames where consolidated
|
|
# temporary outputs have been added (either in this call or any previous calls
|
|
# to `propagate_in_video_preflight`).
|
|
consolidated_frame_inds = inference_state["consolidated_frame_inds"]
|
|
for is_cond in [False, True]:
|
|
# Separately consolidate conditioning and non-conditioning temp outptus
|
|
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
|
|
# Find all the frames that contain temporary outputs for any objects
|
|
# (these should be the frames that have just received clicks for mask inputs
|
|
# via `add_new_points` or `add_new_mask`)
|
|
temp_frame_inds = set()
|
|
for obj_temp_output_dict in temp_output_dict_per_obj.values():
|
|
temp_frame_inds.update(obj_temp_output_dict[storage_key].keys())
|
|
consolidated_frame_inds[storage_key].update(temp_frame_inds)
|
|
# consolidate the temprary output across all objects on this frame
|
|
for frame_idx in temp_frame_inds:
|
|
consolidated_out = self._consolidate_temp_output_across_obj(
|
|
inference_state, frame_idx, is_cond=is_cond, run_mem_encoder=True
|
|
)
|
|
# merge them into "output_dict" and also create per-object slices
|
|
output_dict[storage_key][frame_idx] = consolidated_out
|
|
self._add_output_per_object(
|
|
inference_state, frame_idx, consolidated_out, storage_key
|
|
)
|
|
clear_non_cond_mem = self.clear_non_cond_mem_around_input and (
|
|
self.clear_non_cond_mem_for_multi_obj or batch_size <= 1
|
|
)
|
|
if clear_non_cond_mem:
|
|
# clear non-conditioning memory of the surrounding frames
|
|
self._clear_non_cond_mem_around_input(inference_state, frame_idx)
|
|
|
|
# clear temporary outputs in `temp_output_dict_per_obj`
|
|
for obj_temp_output_dict in temp_output_dict_per_obj.values():
|
|
obj_temp_output_dict[storage_key].clear()
|
|
|
|
# edge case: if an output is added to "cond_frame_outputs", we remove any prior
|
|
# output on the same frame in "non_cond_frame_outputs"
|
|
for frame_idx in output_dict["cond_frame_outputs"]:
|
|
output_dict["non_cond_frame_outputs"].pop(frame_idx, None)
|
|
for obj_output_dict in inference_state["output_dict_per_obj"].values():
|
|
for frame_idx in obj_output_dict["cond_frame_outputs"]:
|
|
obj_output_dict["non_cond_frame_outputs"].pop(frame_idx, None)
|
|
for frame_idx in consolidated_frame_inds["cond_frame_outputs"]:
|
|
assert frame_idx in output_dict["cond_frame_outputs"]
|
|
consolidated_frame_inds["non_cond_frame_outputs"].discard(frame_idx)
|
|
|
|
# Make sure that the frame indices in "consolidated_frame_inds" are exactly those frames
|
|
# with either points or mask inputs (which should be true under a correct workflow).
|
|
all_consolidated_frame_inds = (
|
|
consolidated_frame_inds["cond_frame_outputs"]
|
|
| consolidated_frame_inds["non_cond_frame_outputs"]
|
|
)
|
|
input_frames_inds = set()
|
|
for point_inputs_per_frame in inference_state["point_inputs_per_obj"].values():
|
|
input_frames_inds.update(point_inputs_per_frame.keys())
|
|
for mask_inputs_per_frame in inference_state["mask_inputs_per_obj"].values():
|
|
input_frames_inds.update(mask_inputs_per_frame.keys())
|
|
|
|
# with language embd as input, there may not be point or box
|
|
# assert all_consolidated_frame_inds == input_frames_inds
|
|
|
|
@torch.inference_mode()
|
|
def propagate_in_video(
|
|
self,
|
|
inference_state,
|
|
start_frame_idx=None,
|
|
max_frame_num_to_track=None,
|
|
reverse=False,
|
|
):
|
|
"""Propagate the input points across frames to track in the entire video."""
|
|
self.propagate_in_video_preflight(inference_state)
|
|
|
|
output_dict = inference_state["output_dict"]
|
|
consolidated_frame_inds = inference_state["consolidated_frame_inds"]
|
|
obj_ids = inference_state["obj_ids"]
|
|
num_frames = inference_state["num_frames"]
|
|
batch_size = _get_obj_num(inference_state)
|
|
if len(output_dict["cond_frame_outputs"]) == 0:
|
|
raise RuntimeError("No points are provided; please add points first")
|
|
clear_non_cond_mem = self.clear_non_cond_mem_around_input and (
|
|
self.clear_non_cond_mem_for_multi_obj or batch_size <= 1
|
|
)
|
|
|
|
# set start index, end index, and processing order
|
|
if start_frame_idx is None:
|
|
# default: start from the earliest frame with input points
|
|
start_frame_idx = min(output_dict["cond_frame_outputs"])
|
|
if max_frame_num_to_track is None:
|
|
# default: track all the frames in the video
|
|
max_frame_num_to_track = num_frames
|
|
if reverse:
|
|
end_frame_idx = max(start_frame_idx - max_frame_num_to_track, 0)
|
|
if start_frame_idx > 0:
|
|
processing_order = range(start_frame_idx, end_frame_idx - 1, -1)
|
|
else:
|
|
processing_order = [] # skip reverse tracking if starting from frame 0
|
|
else:
|
|
end_frame_idx = min(
|
|
start_frame_idx + max_frame_num_to_track, num_frames - 1
|
|
)
|
|
processing_order = range(start_frame_idx, end_frame_idx + 1)
|
|
|
|
for frame_idx in tqdm(processing_order, desc="propagate in video"):
|
|
# We skip those frames already in consolidated outputs (these are frames
|
|
# that received input clicks or mask). Note that we cannot directly run
|
|
# batched forward on them via `_run_single_frame_inference` because the
|
|
# number of clicks on each object might be different.
|
|
if frame_idx in consolidated_frame_inds["cond_frame_outputs"]:
|
|
storage_key = "cond_frame_outputs"
|
|
current_out = output_dict[storage_key][frame_idx]
|
|
pred_masks = current_out["pred_masks"]
|
|
if clear_non_cond_mem:
|
|
# clear non-conditioning memory of the surrounding frames
|
|
self._clear_non_cond_mem_around_input(inference_state, frame_idx)
|
|
elif frame_idx in consolidated_frame_inds["non_cond_frame_outputs"]:
|
|
storage_key = "non_cond_frame_outputs"
|
|
current_out = output_dict[storage_key][frame_idx]
|
|
pred_masks = current_out["pred_masks"]
|
|
else:
|
|
storage_key = "non_cond_frame_outputs"
|
|
current_out, pred_masks = self._run_single_frame_inference(
|
|
inference_state=inference_state,
|
|
output_dict=output_dict,
|
|
frame_idx=frame_idx,
|
|
batch_size=batch_size,
|
|
is_init_cond_frame=False,
|
|
point_inputs=None,
|
|
mask_inputs=None,
|
|
reverse=reverse,
|
|
run_mem_encoder=True,
|
|
)
|
|
output_dict[storage_key][frame_idx] = current_out
|
|
# Create slices of per-object outputs for subsequent interaction with each
|
|
# individual object after tracking.
|
|
self._add_output_per_object(
|
|
inference_state, frame_idx, current_out, storage_key
|
|
)
|
|
inference_state["frames_already_tracked"][frame_idx] = {"reverse": reverse}
|
|
|
|
# Resize the output mask to the original video resolution (we directly use
|
|
# the mask scores on GPU for output to avoid any CPU conversion in between)
|
|
_, video_res_masks = self._get_orig_video_res_output(
|
|
inference_state, pred_masks
|
|
)
|
|
yield frame_idx, obj_ids, video_res_masks
|
|
|
|
def fill_holes_in_mask_scores(mask, max_area):
|
|
"""
|
|
A post processor to fill small holes in mask scores with area under `max_area`.
|
|
"""
|
|
# Holes are those connected components in background with area <= self.max_area
|
|
# (background regions are those with mask scores <= 0)
|
|
assert max_area > 0, "max_area must be positive"
|
|
labels, areas = get_connected_components(mask <= 0)
|
|
is_hole = (labels > 0) & (areas <= max_area)
|
|
# We fill holes with a small positive mask score (0.1) to change them to foreground.
|
|
mask = torch.where(is_hole, 0.1, mask)
|
|
return mask
|
|
|
|
def get_connected_components(mask):
|
|
"""
|
|
Get the connected components (8-connectivity) of binary masks of shape (N, 1, H, W).
|
|
|
|
Inputs:
|
|
- mask: A binary mask tensor of shape (N, 1, H, W), where 1 is foreground and 0 is
|
|
background.
|
|
|
|
Outputs:
|
|
- labels: A tensor of shape (N, 1, H, W) containing the connected component labels
|
|
for foreground pixels and 0 for background pixels.
|
|
- counts: A tensor of shape (N, 1, H, W) containing the area of the connected
|
|
components for foreground pixels and 0 for background pixels.
|
|
"""
|
|
from torch.utils.cpp_extension import load
|
|
os.system("wget https://github.com/facebookresearch/sam2/blob/main/sam2/csrc/connected_components.cu")
|
|
get_connected_componnets = load(
|
|
name="get_connected_componnets",
|
|
sources=["./connected_components.cu"],
|
|
verbose=True,
|
|
extra_cuda_cflags=[
|
|
"-DCUDA_HAS_FP16=1",
|
|
"-D__CUDA_NO_HALF_OPERATORS__",
|
|
"-D__CUDA_NO_HALF_CONVERSIONS__",
|
|
"-D__CUDA_NO_HALF2_OPERATORS__",
|
|
]
|
|
)
|
|
|
|
return get_connected_componnets.get_connected_componnets(mask.to(torch.uint8).contiguous()) |