first commit
This commit is contained in:
parent
87b2cf9dc6
commit
4a8687829f
96
README.md
96
README.md
|
@ -1,3 +1,95 @@
|
||||||
# Steel-LLM_a13737944229998592552118
|
---
|
||||||
|
license: apache-2.0
|
||||||
|
---
|
||||||
|
<div align="center">
|
||||||
|
|
||||||
Steel-LLM
|
# 开源中文预训练语言模型Steel-LLM
|
||||||
|
由zhanshijin和lishu14创建
|
||||||
|
</div>
|
||||||
|
|
||||||
|
|
||||||
|
## 👋 介绍
|
||||||
|
Steel-LLM是个人发起的利用业余时间从零开始预训练中文大模型的项目。我们使用了1T+的数据预训练一个1B左右参数量的中文LLM,耗时8个月。我们分享了数据收集、数据处理、预训练框架修改、模型设计、模型微调等全过程,并开源全部代码。让每个人在有8~几十张卡的情况下都能复现我们的工作。得益于开源中文数据,Steel LLM在中文benchmark上表现优于一些大几倍的机构发布的LLM,最终在ceval达到了38分,cmmlu达到了33分。
|
||||||
|
<p align="center">
|
||||||
|
🐱 <a href="https://github.com/zhanshijinwat/Steel-LLM">Github</a>  
|
||||||
|
   📑 <a href="https://www.zhihu.com/people/zhan-shi-jin-27">Blog</a>   🌐公众号:炼钢AI
|
||||||
|
|
||||||
|
"Steel(钢)"取名灵感来源于华北平原一只优秀的乐队“万能青年旅店(万青)”。乐队在做一专的时候条件有限,自称是在“土法炼钢”,但却是一张神专。我们训练LLM的条件同样有限,但也希望能炼出好“钢”来。
|
||||||
|
|
||||||
|
## 📖 预训练数据
|
||||||
|
预训练数据方面,Steel-LLM主要使用了wanjuan1.0、Skywork/Skypile-150B数据集、starcoder的python/java/c++数据。另外也加入了中文维基百科、百度百科、知乎问答等数据,转换为token id后占用1.7T硬盘空间。Steel-LLM也对问答数据以及代码数据使用data-juicer进行了数据清洗,数据收集及数据处理的具体细节见我的博客:
|
||||||
|
https://mp.weixin.qq.com/s/yqmtHLuuNV9075qHgzhcPw
|
||||||
|
|
||||||
|
## 🎰 训练框架
|
||||||
|
训练框架方面,我们修改了TinyLlama训练程序,兼容Hugginface格式模型、支持了数据断点续训、支持了追加新的数据等能力。训练前20k checkpoint使用8 * A100,之后使用的是8 * H800
|
||||||
|
具体的技术细节见我的博客:https://mp.weixin.qq.com/s/KPRir6bK3MZZ-vMFTfhUQQ
|
||||||
|
|
||||||
|
## 🤖模型结构
|
||||||
|
|
||||||
|
tokenizer方面,使用了Qwen/Qwen1.5-MoE-A2.7B-Chat的tokenizer。模型结构方面基于Qwen1.5模型进行了以下的新结构的尝试:
|
||||||
|
- FFN层使用softmax moe,相同参数量下有更高的训练速度
|
||||||
|
- 使用双层的SwiGLU
|
||||||
|
具体的技术细节见我的博客:https://mp.weixin.qq.com/s/JaZyf1jOEOtNDCcFqSj8TQ
|
||||||
|
|
||||||
|
## 💡 微调
|
||||||
|
微调阶段主要使用了BAAI/Infinity-Instruct、预训练数据中的wanjuan中文选择题部分(回炉重造)、ruozhiba等数据。尝试了COT/非COT微调、刷榜测试。
|
||||||
|
具体的实验细节见我的博客:https://mp.weixin.qq.com/s/KK0G0spNw0D9rPUESkHMew
|
||||||
|
|
||||||
|
## 🏅 评估
|
||||||
|
Steel-LLM在CEVAL和CMMLU上进行了测试。Steel-LLM旨在训练一个中文LLM,80%的训练数据都是中文,因此并没有在英文benchmark上进行评测。
|
||||||
|
其他模型的指标来自于CEVAL论文、MiniCPM技术报告、MAP-Neo技术报告等途径。更多模型的指标可查看之前的<a href=https://mp.weixin.qq.com/s/KK0G0spNw0D9rPUESkHMew>博客</a>
|
||||||
|
|
||||||
|
| | CEVAL | CMMLU |
|
||||||
|
|------------------------------|--------|-------|
|
||||||
|
| Steel-LLM | 38.57 | 33.48 |
|
||||||
|
| Tiny-Llama-1.1B | 25.02 | 24.03 |
|
||||||
|
| Gemma-2b-it | 32.3 | 33.07 |
|
||||||
|
| Phi2(2B) | 23.37 | 24.18 |
|
||||||
|
| Deepseek-coder-1.3B-instruct | 28.33 | 27.75 |
|
||||||
|
| CT-LLM-SFT-2B | 41.54 | 41.48 |
|
||||||
|
| MiniCPM-2B-sft-fp32 | 49.14 | 51.0 |
|
||||||
|
| Qwen1.5-1.8B-Chat | 56.84 | 54.11 |
|
||||||
|
| ChatGLM-6B | 38.9 | - |
|
||||||
|
| Moss | 33.1 | - |
|
||||||
|
| LLAMA-65B | 34.7 | - |
|
||||||
|
| Qwen-7B | 58.96 | 60.35 |
|
||||||
|
| Gemma-7B | 42.57 | 44.20 |
|
||||||
|
| OLMo-7B | 35.18 | 35.55 |
|
||||||
|
| MAP-NEO-7B | 56.97 | 55.01 |
|
||||||
|
|
||||||
|
## ⛏️ 快速使用
|
||||||
|
```python
|
||||||
|
from modelscope import AutoModelForCausalLM, AutoTokenizer
|
||||||
|
|
||||||
|
model_name = "zhanshijin/Steel-LLM"
|
||||||
|
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(
|
||||||
|
model_name,
|
||||||
|
torch_dtype="auto",
|
||||||
|
device_map="auto"
|
||||||
|
)
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||||
|
|
||||||
|
prompt = "你是谁开发的"
|
||||||
|
messages = [
|
||||||
|
{"role": "user", "content": prompt}
|
||||||
|
]
|
||||||
|
text = tokenizer.apply_chat_template(
|
||||||
|
messages,
|
||||||
|
tokenize=False,
|
||||||
|
add_generation_prompt=True
|
||||||
|
)
|
||||||
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
||||||
|
|
||||||
|
generated_ids = model.generate(
|
||||||
|
**model_inputs,
|
||||||
|
max_new_tokens=512
|
||||||
|
)
|
||||||
|
generated_ids = [
|
||||||
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
||||||
|
]
|
||||||
|
|
||||||
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
||||||
|
print(response)
|
||||||
|
|
||||||
|
```
|
|
@ -0,0 +1,5 @@
|
||||||
|
{
|
||||||
|
"<|endoftext|>": 151643,
|
||||||
|
"<|im_end|>": 151645,
|
||||||
|
"<|im_start|>": 151644
|
||||||
|
}
|
|
@ -0,0 +1,38 @@
|
||||||
|
{
|
||||||
|
"FFN_type": "softmoe_v3",
|
||||||
|
"_name_or_path": "/data/model/llm/hf_model/steel-llm-step-1060000-ckpt",
|
||||||
|
"architectures": [
|
||||||
|
"SteelForCausalLM"
|
||||||
|
],
|
||||||
|
"attention_dropout": 0.0,
|
||||||
|
"auto_map": {
|
||||||
|
"AutoConfig": "configuration_steel.SteelConfig",
|
||||||
|
"AutoModel": "modeling_steel.SteelForCausalLM",
|
||||||
|
"AutoModelForCausalLM": "modeling_steel.SteelForCausalLM"
|
||||||
|
},
|
||||||
|
"bos_token_id": 151643,
|
||||||
|
"eos_token_id": 151645,
|
||||||
|
"hidden_act": "silu",
|
||||||
|
"hidden_size": 1792,
|
||||||
|
"initializer_range": 0.02,
|
||||||
|
"intermediate_size": 1792,
|
||||||
|
"max_position_embeddings": 32768,
|
||||||
|
"max_window_layers": 21,
|
||||||
|
"mlp_div_ratio": 4,
|
||||||
|
"mlp_type": "senet",
|
||||||
|
"model_type": "qwen2",
|
||||||
|
"n_experts": 6,
|
||||||
|
"num_attention_heads": 32,
|
||||||
|
"num_hidden_layers": 18,
|
||||||
|
"num_key_value_heads": 32,
|
||||||
|
"rms_norm_eps": 1e-06,
|
||||||
|
"rope_theta": 1000000.0,
|
||||||
|
"sliding_window": 32768,
|
||||||
|
"slots_per_expert": 1,
|
||||||
|
"tie_word_embeddings": false,
|
||||||
|
"torch_dtype": "float32",
|
||||||
|
"transformers_version": "4.43.4",
|
||||||
|
"use_cache": false,
|
||||||
|
"use_sliding_window": false,
|
||||||
|
"vocab_size": 151936
|
||||||
|
}
|
|
@ -0,0 +1,131 @@
|
||||||
|
# coding=utf-8
|
||||||
|
# Copyright 2024 zhanshijin and lishu. All rights reserved.
|
||||||
|
#
|
||||||
|
# This project copy from qwen1.5
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
""" Steel model configuration"""
|
||||||
|
|
||||||
|
from transformers.configuration_utils import PretrainedConfig
|
||||||
|
from transformers.utils import logging
|
||||||
|
|
||||||
|
|
||||||
|
logger = logging.get_logger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class SteelConfig(PretrainedConfig):
|
||||||
|
r"""
|
||||||
|
This is the configuration class to store the configuration of a [`Qwen2Model`]. It is used to instantiate a
|
||||||
|
Qwen2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
||||||
|
with the defaults will yield a similar configuration to that of
|
||||||
|
Qwen2-7B-beta [Qwen/Qwen2-7B-beta](https://huggingface.co/Qwen/Qwen2-7B-beta).
|
||||||
|
|
||||||
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||||
|
documentation from [`PretrainedConfig`] for more information.
|
||||||
|
|
||||||
|
|
||||||
|
Args:
|
||||||
|
vocab_size (`int`, *optional*, defaults to 151936):
|
||||||
|
Vocabulary size of the Qwen2 model. Defines the number of different tokens that can be represented by the
|
||||||
|
`inputs_ids` passed when calling [`Qwen2Model`]
|
||||||
|
hidden_size (`int`, *optional*, defaults to 4096):
|
||||||
|
Dimension of the hidden representations.
|
||||||
|
intermediate_size (`int`, *optional*, defaults to 22016):
|
||||||
|
Dimension of the MLP representations.
|
||||||
|
num_hidden_layers (`int`, *optional*, defaults to 32):
|
||||||
|
Number of hidden layers in the Transformer encoder.
|
||||||
|
num_attention_heads (`int`, *optional*, defaults to 32):
|
||||||
|
Number of attention heads for each attention layer in the Transformer encoder.
|
||||||
|
num_key_value_heads (`int`, *optional*, defaults to 32):
|
||||||
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
||||||
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
||||||
|
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
||||||
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
||||||
|
by meanpooling all the original heads within that group. For more details checkout [this
|
||||||
|
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
|
||||||
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
||||||
|
The non-linear activation function (function or string) in the decoder.
|
||||||
|
max_position_embeddings (`int`, *optional*, defaults to 32768):
|
||||||
|
The maximum sequence length that this model might ever be used with.
|
||||||
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
||||||
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||||
|
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
||||||
|
The epsilon used by the rms normalization layers.
|
||||||
|
use_cache (`bool`, *optional*, defaults to `True`):
|
||||||
|
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
||||||
|
relevant if `config.is_decoder=True`.
|
||||||
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
||||||
|
Whether the model's input and output word embeddings should be tied.
|
||||||
|
rope_theta (`float`, *optional*, defaults to 10000.0):
|
||||||
|
The base period of the RoPE embeddings.
|
||||||
|
use_sliding_window (`bool`, *optional*, defaults to `False`):
|
||||||
|
Whether to use sliding window attention.
|
||||||
|
sliding_window (`int`, *optional*, defaults to 4096):
|
||||||
|
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
|
||||||
|
max_window_layers (`int`, *optional*, defaults to 28):
|
||||||
|
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
|
||||||
|
attention_dropout (`float`, *optional*, defaults to 0.0):
|
||||||
|
The dropout ratio for the attention probabilities.
|
||||||
|
"""
|
||||||
|
|
||||||
|
model_type = "qwen2"
|
||||||
|
keys_to_ignore_at_inference = ["past_key_values"]
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
vocab_size=151936,
|
||||||
|
hidden_size=4096,
|
||||||
|
intermediate_size=22016,
|
||||||
|
num_hidden_layers=32,
|
||||||
|
num_attention_heads=32,
|
||||||
|
num_key_value_heads=32,
|
||||||
|
hidden_act="silu",
|
||||||
|
max_position_embeddings=32768,
|
||||||
|
initializer_range=0.02,
|
||||||
|
rms_norm_eps=1e-6,
|
||||||
|
use_cache=True,
|
||||||
|
tie_word_embeddings=False,
|
||||||
|
rope_theta=10000.0,
|
||||||
|
use_sliding_window=False,
|
||||||
|
sliding_window=4096,
|
||||||
|
max_window_layers=28,
|
||||||
|
attention_dropout=0.0,
|
||||||
|
**kwargs,
|
||||||
|
):
|
||||||
|
self.vocab_size = vocab_size
|
||||||
|
self.max_position_embeddings = max_position_embeddings
|
||||||
|
self.hidden_size = hidden_size
|
||||||
|
self.intermediate_size = intermediate_size
|
||||||
|
self.num_hidden_layers = num_hidden_layers
|
||||||
|
self.num_attention_heads = num_attention_heads
|
||||||
|
self.use_sliding_window = use_sliding_window
|
||||||
|
self.sliding_window = sliding_window
|
||||||
|
self.max_window_layers = max_window_layers
|
||||||
|
|
||||||
|
# for backward compatibility
|
||||||
|
if num_key_value_heads is None:
|
||||||
|
num_key_value_heads = num_attention_heads
|
||||||
|
|
||||||
|
self.num_key_value_heads = num_key_value_heads
|
||||||
|
self.hidden_act = hidden_act
|
||||||
|
self.initializer_range = initializer_range
|
||||||
|
self.rms_norm_eps = rms_norm_eps
|
||||||
|
self.use_cache = use_cache
|
||||||
|
self.rope_theta = rope_theta
|
||||||
|
self.attention_dropout = attention_dropout
|
||||||
|
|
||||||
|
super().__init__(
|
||||||
|
tie_word_embeddings=tie_word_embeddings,
|
||||||
|
**kwargs,
|
||||||
|
)
|
|
@ -0,0 +1,6 @@
|
||||||
|
{
|
||||||
|
"_from_model_config": true,
|
||||||
|
"bos_token_id": 151643,
|
||||||
|
"eos_token_id": 151645,
|
||||||
|
"transformers_version": "4.43.4"
|
||||||
|
}
|
File diff suppressed because it is too large
Load Diff
Binary file not shown.
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,112 @@
|
||||||
|
from typing import Callable
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
|
||||||
|
def softmax(x: torch.Tensor, dim: int | tuple[int, ...]) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Compute the softmax along the specified dimensions.
|
||||||
|
This function adds the option to specify multiple dimensions
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x (torch.Tensor): Input tensor.
|
||||||
|
dims (int or tuple[int]): The dimension or list of dimensions along which the softmax probabilities are computed.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
torch.Tensor: Output tensor containing softmax probabilities along the specified dimensions.
|
||||||
|
"""
|
||||||
|
dtype = x.dtype
|
||||||
|
x = x.to(torch.float32)
|
||||||
|
max_vals = torch.amax(x, dim=dim, keepdim=True)
|
||||||
|
e_x = torch.exp(x - max_vals)
|
||||||
|
sum_exp = e_x.sum(dim=dim, keepdim=True)
|
||||||
|
return (e_x / sum_exp).to(dtype)
|
||||||
|
|
||||||
|
# copy from https://github.com/bwconrad/soft-moe
|
||||||
|
class SteelSoftMoEV3(nn.Module):
|
||||||
|
"""
|
||||||
|
A wrapper class to create a Soft Mixture of Experts layer.
|
||||||
|
|
||||||
|
From "From Sparse to Soft Mixtures of Experts"
|
||||||
|
https://arxiv.org/pdf/2308.00951.pdf
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
config,
|
||||||
|
layer: Callable,
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
dim (int): Dimensionality of input features.
|
||||||
|
num_experts (int): Number of experts.
|
||||||
|
slots_per_expert (int): Number of token slots per expert.
|
||||||
|
layer (Callable): Network layer of the experts.
|
||||||
|
normalize (bool): Normalize input and phi (sec. 2.3 from paper)
|
||||||
|
**layer_kwargs: Additional keyword arguments for the layer class.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.dim = config.hidden_size
|
||||||
|
self.num_experts = config.n_experts
|
||||||
|
self.slots_per_expert = config.slots_per_expert if hasattr(config, "slots_per_expert") else 1
|
||||||
|
self.normalize = True
|
||||||
|
|
||||||
|
# Initialize phi and normalization scaling factor
|
||||||
|
self.phi = nn.Parameter(torch.zeros(self.dim, self.num_experts, self.slots_per_expert))
|
||||||
|
if self.normalize:
|
||||||
|
self.scale = nn.Parameter(torch.ones(1))
|
||||||
|
|
||||||
|
# Initialize phi using LeCun normal initialization
|
||||||
|
# https://github.com/google-research/vmoe/blob/662341d007650d5bbb7c6a2bef7f3c759a20cc7e/vmoe/projects/soft_moe/router.py#L49C1-L49C1
|
||||||
|
nn.init.normal_(self.phi, mean=0, std=1 / self.dim**0.5)
|
||||||
|
|
||||||
|
# Create a list of expert networks
|
||||||
|
self.experts = nn.ModuleList(
|
||||||
|
[layer(config) for _ in range(self.num_experts)]
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Forward pass through the Soft-MoE layer (algorithm 1 from paper).
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x (torch.Tensor): Input tensor of shape [batch_size, seq_len, input_dim].
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
torch.Tensor: Output tensor of shape [batch_size, seq_len, input_dim].
|
||||||
|
"""
|
||||||
|
assert (
|
||||||
|
x.shape[-1] == self.dim
|
||||||
|
), f"Input feature dim of {x.shape[-1]} does not match layer dim of {self.dim}"
|
||||||
|
assert (
|
||||||
|
len(x.shape) == 3
|
||||||
|
), f"Input expected to have 3 dimensions but has {len(x.shape)}"
|
||||||
|
|
||||||
|
phi = self.phi
|
||||||
|
|
||||||
|
# Normalize input and phi
|
||||||
|
if self.normalize:
|
||||||
|
x = F.normalize(x, dim=2) # [b, m, d]
|
||||||
|
phi = self.scale * F.normalize(phi, dim=0) # [d, n, p]
|
||||||
|
|
||||||
|
# Compute dispatch and combine weights
|
||||||
|
logits = torch.einsum("bmd,dnp->bmnp", x, phi)
|
||||||
|
d = softmax(logits, dim=1)
|
||||||
|
c = softmax(logits, dim=(2, 3))
|
||||||
|
# tmp = c[0,:,:,0].reshape([c.shape[1],-1])
|
||||||
|
# print("num:",tmp, "shape:",tmp.shape, "sum:",tmp.sum(dim=1))
|
||||||
|
# Compute input slots as weighted average of input tokens using dispatch weights
|
||||||
|
xs = torch.einsum("bmd,bmnp->bnpd", x, d)
|
||||||
|
|
||||||
|
# Apply expert to corresponding slots
|
||||||
|
ys = torch.stack(
|
||||||
|
[f_i(xs[:, i, :, :]) for i, f_i in enumerate(self.experts)], dim=1
|
||||||
|
)
|
||||||
|
|
||||||
|
# Compute output tokens as weighted average of output slots using combine weights
|
||||||
|
y = torch.einsum("bnpd,bmnp->bmd", ys, c)
|
||||||
|
|
||||||
|
return y
|
|
@ -0,0 +1,20 @@
|
||||||
|
{
|
||||||
|
"additional_special_tokens": [
|
||||||
|
"<|im_start|>",
|
||||||
|
"<|im_end|>"
|
||||||
|
],
|
||||||
|
"eos_token": {
|
||||||
|
"content": "<|im_end|>",
|
||||||
|
"lstrip": false,
|
||||||
|
"normalized": false,
|
||||||
|
"rstrip": false,
|
||||||
|
"single_word": false
|
||||||
|
},
|
||||||
|
"pad_token": {
|
||||||
|
"content": "<|endoftext|>",
|
||||||
|
"lstrip": false,
|
||||||
|
"normalized": false,
|
||||||
|
"rstrip": false,
|
||||||
|
"single_word": false
|
||||||
|
}
|
||||||
|
}
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,44 @@
|
||||||
|
{
|
||||||
|
"add_prefix_space": false,
|
||||||
|
"added_tokens_decoder": {
|
||||||
|
"151643": {
|
||||||
|
"content": "<|endoftext|>",
|
||||||
|
"lstrip": false,
|
||||||
|
"normalized": false,
|
||||||
|
"rstrip": false,
|
||||||
|
"single_word": false,
|
||||||
|
"special": true
|
||||||
|
},
|
||||||
|
"151644": {
|
||||||
|
"content": "<|im_start|>",
|
||||||
|
"lstrip": false,
|
||||||
|
"normalized": false,
|
||||||
|
"rstrip": false,
|
||||||
|
"single_word": false,
|
||||||
|
"special": true
|
||||||
|
},
|
||||||
|
"151645": {
|
||||||
|
"content": "<|im_end|>",
|
||||||
|
"lstrip": false,
|
||||||
|
"normalized": false,
|
||||||
|
"rstrip": false,
|
||||||
|
"single_word": false,
|
||||||
|
"special": true
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"additional_special_tokens": [
|
||||||
|
"<|im_start|>",
|
||||||
|
"<|im_end|>"
|
||||||
|
],
|
||||||
|
"bos_token": null,
|
||||||
|
"chat_template": "{% set system_message = 'You are a helpful assistant.' %}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% endif %}{% if system_message is defined %}{{ '<|im_start|>system\n' + system_message + '<|im_end|>\n' }}{% endif %}{% for message in loop_messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|im_start|>user\n' + content + '<|im_end|>\n<|im_start|>assistant\n' }}{% elif message['role'] == 'assistant' %}{{ content + '<|im_end|>' + '\n' }}{% endif %}{% endfor %}",
|
||||||
|
"clean_up_tokenization_spaces": false,
|
||||||
|
"eos_token": "<|im_end|>",
|
||||||
|
"errors": "replace",
|
||||||
|
"model_max_length": 32768,
|
||||||
|
"pad_token": "<|endoftext|>",
|
||||||
|
"padding_side": "right",
|
||||||
|
"split_special_tokens": false,
|
||||||
|
"tokenizer_class": "Qwen2Tokenizer",
|
||||||
|
"unk_token": null
|
||||||
|
}
|
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue