First commit

This commit is contained in:
xxl 2024-12-05 11:46:12 +08:00
parent c77586f78c
commit abd96b1306
20 changed files with 470810 additions and 2 deletions

202
LICENSE Normal file
View File

@ -0,0 +1,202 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

234
README.md
View File

@ -1,3 +1,233 @@
# TableGPT2-7B_a13828707865980928925336 ---
license: apache-2.0
language:
- zh
- en
base_model:
- Qwen/Qwen2.5-7B
---
TableGPT2-7B # TableGPT2-7B
## Model details
We developed and released TableGPT2-7B, a large-scale decoder specifically tailored for data-intensive tasks, with a focus on interpreting and analyzing tabular data. TableGPT2-7B is designed to bridge the gap between conventional LLM capabilities and the real-world demands of tabular/structured data tasks, such as those in business intelligence (BI), automated data-driven analysis, and application tasks tightly involving databases or data warehouses.
**Model Developers**
Zhejiang University
**Variations**
TableGPT2 is available in two configurations—7B and 72B parameters—both derived from the Qwen2.5 model family and optimized for handling structured data in tabular formats. Currently, we have released the 7B version to the public.
**Input**
TableGPT2-7B accepts both text and tabular data as input, with the tabular data structured as text in the format of a df.head() result.
**Output**
TableGPT2-7B produces text-based outputs, specifically optimized for coding tasks, data interpretation, and BI-focused question answering.
**Language**
Our model places a strong emphasis on Chinese corpora, and currently, queries in other languages may have limited support.
**Other Requirements**
We highly recommend exploring [our repository on GitHub](https://github.com/tablegpt/tablegpt-agent), where users can integrate this model into our agent workflow for enhanced performance.
**Model Architecture**
TableGPT2-7B is built upon the Qwen2.5 architecture and includes specialized encoding for tabular data. It features a unique semantic encoder designed to interpret tabular data, capturing insights from rows, columns, and entire tables. Continual Pretraining (CPT) and Supervised Fine-Tuning (SFT) have been applied to equip the model for real-world BI applications and complex query processing.
For now, the standalone decoder is open-sourced and fully functional without having to require assistance from the encoder. The encoder is currently under preparation, pending engineering considerations, primarily because we hope to provide a tighter integration with DeepSpeed and vLLM.
| | Training Data | Params | Context Length | Tokens | Tables |
| ------------ | ------------------------------------------------ | ------ | -------------- | --------------------------------- | ------------- |
| TableGPT2-7B | Multimodal data sources and BI-specific examples | 7B | 128K | 86B tokens CPT, 2.36M SFT samples | 593.8K tables |
**Status**
This model is static, trained on an offline dataset. Future versions may be released to enhance its performance on specialized tasks.
**QuickStart**
This code snippet demonstrates how to build a prompt with table information, and shows how to load the tokenizer, load the model, and generate content.
> Note that you need `transformers>=4.37.0` to use `TableGPT2`:
> ```sh
> pip install transformers>=4.37.0
> ```
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
# Using pandas to read some structured data
import pandas as pd
from io import StringIO
# single table
EXAMPLE_CSV_CONTENT = """
"Loss","Date","Score","Opponent","Record","Attendance"
"Hampton (1412)","September 25","87","Padres","6784","31,193"
"Speier (53)","September 26","31","Padres","6785","30,711"
"Elarton (49)","September 22","31","@ Expos","6583","9,707"
"Lundquist (01)","September 24","1511","Padres","6783","30,774"
"Hampton (1311)","September 6","95","Dodgers","6178","31,407"
"""
csv_file = StringIO(EXAMPLE_CSV_CONTENT)
df = pd.read_csv(csv_file)
model_name = "tablegpt/TableGPT2-7B"
model = AutoModelForCausalLM.from_pretrained(
model_name, torch_dtype="auto", device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
example_prompt_template = """Given access to several pandas dataframes, write the Python code to answer the user's question.
/*
"{var_name}.head(5).to_string(index=False)" as follows:
{df_info}
*/
Question: {user_question}
"""
question = "哪些比赛的战绩达到了40胜40负"
prompt = example_prompt_template.format(
var_name="df",
df_info=df.head(5).to_string(index=False),
user_question=question,
)
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt},
]
text = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(**model_inputs, max_new_tokens=512)
generated_ids = [
output_ids[len(input_ids) :]
for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
**Complex Usage Scenarios**
For complex usage scenarios, we provide a [tablegpt-agent]((https://github.com/tablegpt/tablegpt-agent)) toolkit to help you more conveniently handle various types of tabular inputs.
This agent is built on top of the `Langgraph` library and provides a user-friendly interface for interacting with `TableGPT2`.
**Deployment**
For deployment, we recommend using vLLM.
* **Install vLLM**: You can install vLLM by running the following command.
```bash
pip install "vllm>=0.5.5"
```
* **Model Deployment**: Use vLLM to deploy your model. For example, you can use the command to set up a server similar to openAI:
```bash
python -m vllm.entrypoints.openai.api_server --served-model-name TableGPT2-7B --model path/to/weights
```
Then you can access the Chat API by:
```bash
curl http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "TableGPT2-7B",
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hey, who are you?"}
]
}'
```
For more details about how to use TableGPT2, please refer to [our repository on GitHub](https://github.com/tablegpt/tablegpt-agent)
**License**
TableGPT2-7B is under apache-2.0 license.
<!-- The TableGPT2-7B license permits both research and commercial use, with further details available in the [GitHub repository](https://github.com/tablegpt/tablegpt-agent). -->
**Research Paper**
TableGPT2-7B is introduced and validated in the paper "[TableGPT2: A Large Multimodal Model with Tabular Data Integration](https://arxiv.org/pdf/2411.02059)" available on arXiv.
**Where to send questions or comments about the model**
Inquiries and feedback are welcome at [j.zhao@zju.edu.cn](mailto:j.zhao@zju.edu.cn).
## Training Data
**Overview**
Training for TableGPT2-7B involved more than 593,800 curated tables, over 86 billion tokens for continual pretraining (CPT) and the construction of over 2.36 million high-quality query-table-output tuples for supervised fine-tuning. This extensive dataset aims to meet the rigorous demands of modern applications involving structured or tabular data.
**Data Freshness**
The training data has a cutoff of October 2024.
## Evaluation Results
Evaluation has shown that TableGPT2-7B performs consistently well across benchmarks for tabular comprehension, code generation, and structured data reasoning, achieving a **35.20%** performance increase over comparable models on standard benchmarks and **49.32%** on BI-focused assessments. The RealTabBench benchmark further demonstrated the models robustness in handling unconventional tables and complex queries. Below, we present the results on public table-related benchmarks.
| **Benchmark** | **Metric** | GPT-4o | TableLLM (Qwen2) | TableLLM (CodeQwen) | TableLLM (LLaMA3) | TableLLM (LLaMA3.1) | TableLLM (DeepSeek) | TableLLM-13B | DeepSeek-lite | Yi-Coder | Qwen2.5-Coder | Qwen2.5-Instruct | **TableGPT2-7B** | **TableGPT2-72B** |
| ----------------------------- | ---------- | ------ | ---------------- | ------------------- | ----------------- | ------------------- | ------------------- | ------------ | ------------- | -------- | ------------- | ---------------- | -------------- | --------------- |
| **Table Understanding** | | | | | | | | | | | | | | |
| Col Type Annot. | F1 | 31.75 | 10.10 | 5.71 | 1.47 | 1.59 | 6.04 | 12.70 | 20.58 | 5.38 | 32.59 | 22.19 | **85.88** | 85.67 |
| Relation Extract. | F1 | 52.95 | 1.60 | 3.79 | 2.39 | 2.00 | 3.34 | 18.16 | 8.67 | 2.25 | 31.00 | 15.92 | **83.35** | 79.50 |
| Entity Linking | Acc | 90.80 | 47.10 | 39.70 | 0.20 | 0.60 | 15.50 | 66.25 | 70.15 | 41.75 | 71.70 | 82.25 | 92.00 | **93.30** |
| Row Pop. | MAP | 53.40 | 2.20 | 5.14 | 1.93 | 6.23 | 3.13 | 14.25 | 1.20 | 1.00 | 13.23 | 12.30 | **59.97** | 55.83 |
| **Question Answering** | | | | | | | | | | | | | | |
| HiTab | Exec Acc | 48.40 | 11.74 | 0.00 | 0.00 | 0.00 | 39.08 | 6.30 | 0.76 | 0.00 | 1.70 | 10.73 | 70.27 | **75.57** |
| FetaQA | BLEU | 21.70 | 12.24 | 8.69 | 2.42 | 3.10 | 7.94 | 10.83 | 15.08 | 11.17 | 13.00 | 16.91 | 28.97 | **32.25** |
| HybridQA | Acc | 58.60 | 27.12 | 20.14 | 27.35 | 27.61 | 19.53 | 51.88 | 42.58 | 29.83 | 51.10 | 51.13 | 53.17 | **56.41** |
| WikiSQL | Acc | 47.60 | 46.50 | 37.20 | 39.26 | 39.00 | 36.14 | 41.10 | 38.30 | 25.34 | 46.90 | 47.42 | 53.74 | **57.32** |
| WikiTQ | Acc | 68.40 | 64.16 | 36.05 | 34.95 | 38.84 | 36.05 | 66.30 | 47.65 | 43.37 | **74.50** | 68.55 | 61.42 | 71.45 |
| **Fact Verification** | | | | | | | | | | | | | | |
| TabFact | Acc | 74.40 | 72.00 | 53.20 | 40.06 | 27.13 | 60.76 | 68.95 | 62.27 | 79.6 | 77.26 | 84.60 | 77.80 | **85.43** |
| FEVEROUS | Acc | 71.60 | 20.10 | 46.90 | 51.50 | 42.30 | 18.39 | 21.45 | 7.80 | 38.10 | 60.70 | 63.30 | **78.05** | 76.80 |
| **Table to Text** | | | | | | | | | | | | | | |
| ToTTo | BLEU | 12.21 | 6.95 | 3.10 | 5.50 | 6.23 | 3.81 | 5.36 | 8.76 | 2.64 | 10.50 | 11.91 | 14.10 | **22.69** |
| **Natural Language to SQL** | | | | | | | | | | | | | | |
| BIRD(dev) | Exec Acc | - | 9.13 | 7.37 | 1.83 | 2.48 | 0.39 | 0.72 | 25.10 | 24.19 | 27.18 | 18.97 | 31.42 | **38.40** |
| BIRD(dev-knowledge) | Exec Acc | - | 15.45 | 18.19 | 3.39 | 3.72 | 0.39 | 1.83 | 36.51 | 39.96 | 42.96 | 31.42 | 49.28 | **60.76** |
| Spider(dev) | Exec Acc | - | 42.26 | 32.88 | 12.86 | 18.96 | 2.71 | 4.26 | 66.44 | 58.12 | 70.99 | 61.70 | 76.31 | **79.40** |
| Spider(test) | Exec Acc | - | 40.29 | 34.93 | 12.02 | 16.35 | 7.33 | 2.93 | 66.65 | 56.87 | 69.73 | 60.18 | 74.38 | **78.48** |
| **Holistic Table Evaluation** | | | | | | | | | | | | | | |
| TableBench | DP | - | 26.62 | 26.44 | 26.71 | 26.73 | 26.15 | 3.88 | 29.60 | 21.94 | 28.67 | 25.18 | 32.03 | **38.90** |
| TableBench | TCoT | - | 37.08 | 31.33 | 29.79 | 30.01 | 28.65 | 3.85 | 30.93 | 22.8 | 36.25 | 29.77 | 42.34 | **50.06** |
| TableBench | SCoT | - | 14.11 | 17.78 | 9.60 | 12.38 | 22.39 | 2.88 | 22.61 | 8.43 | 25.95 | 24.35 | 25.01 | **30.47** |
| TableBench | PoT@1 | - | 21.05 | 26.39 | 31.96 | 25.80 | 28.39 | 2.94 | 10.90 | 11.36 | 16.15 | 22.58 | **33.52** | 28.98 |
## Citation
If you find our work helpful, please cite us by
```bibtex
@misc{su2024tablegpt2largemultimodalmodel,
title={TableGPT2: A Large Multimodal Model with Tabular Data Integration},
author={Aofeng Su and Aowen Wang and Chao Ye and Chen Zhou and Ga Zhang and Guangcheng Zhu and Haobo Wang and Haokai Xu and Hao Chen and Haoze Li and Haoxuan Lan and Jiaming Tian and Jing Yuan and Junbo Zhao and Junlin Zhou and Kaizhe Shou and Liangyu Zha and Lin Long and Liyao Li and Pengzuo Wu and Qi Zhang and Qingyi Huang and Saisai Yang and Tao Zhang and Wentao Ye and Wufang Zhu and Xiaomeng Hu and Xijun Gu and Xinjie Sun and Xiang Li and Yuhang Yang and Zhiqing Xiao},
year={2024},
eprint={2411.02059},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2411.02059},
}
```

24
added_tokens.json Normal file
View File

@ -0,0 +1,24 @@
{
"</tool_call>": 151658,
"<tool_call>": 151657,
"<|box_end|>": 151649,
"<|box_start|>": 151648,
"<|endoftext|>": 151643,
"<|file_sep|>": 151664,
"<|fim_middle|>": 151660,
"<|fim_pad|>": 151662,
"<|fim_prefix|>": 151659,
"<|fim_suffix|>": 151661,
"<|im_end|>": 151645,
"<|im_start|>": 151644,
"<|image_pad|>": 151655,
"<|object_ref_end|>": 151647,
"<|object_ref_start|>": 151646,
"<|quad_end|>": 151651,
"<|quad_start|>": 151650,
"<|repo_name|>": 151663,
"<|video_pad|>": 151656,
"<|vision_end|>": 151653,
"<|vision_pad|>": 151654,
"<|vision_start|>": 151652
}

28
config.json Normal file
View File

@ -0,0 +1,28 @@
{
"_name_or_path": "Qwen/Qwen2.5-7B-Instruct",
"architectures": [
"Qwen2ForCausalLM"
],
"attention_dropout": 0.0,
"bos_token_id": 151643,
"eos_token_id": 151645,
"hidden_act": "silu",
"hidden_size": 3584,
"initializer_range": 0.02,
"intermediate_size": 18944,
"max_position_embeddings": 32768,
"max_window_layers": 28,
"model_type": "qwen2",
"num_attention_heads": 28,
"num_hidden_layers": 28,
"num_key_value_heads": 4,
"rms_norm_eps": 1e-06,
"rope_theta": 1000000.0,
"sliding_window": null,
"tie_word_embeddings": false,
"torch_dtype": "bfloat16",
"transformers_version": "4.44.2",
"use_cache": false,
"use_sliding_window": false,
"vocab_size": 152064
}

1
configuration.json Normal file
View File

@ -0,0 +1 @@
{"framework": "pytorch", "task": "text-generation", "allow_remote": true}

14
generation_config.json Normal file
View File

@ -0,0 +1,14 @@
{
"bos_token_id": 151643,
"do_sample": true,
"eos_token_id": [
151645,
151643
],
"pad_token_id": 151643,
"repetition_penalty": 1.05,
"temperature": 0.7,
"top_k": 20,
"top_p": 0.8,
"transformers_version": "4.44.2"
}

1
latest Normal file
View File

@ -0,0 +1 @@
global_step3200

151388
merges.txt Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:fadafcf557061aacde1f74ab83557eb75746f11ad00a31b28ec18ae579be8892
size 4877660776

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:da28e8fd87bb43d9731e7120ccfd6b13480e82ceb79bbc5ad393e2e37d682d45
size 4932751008

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:e2d81809de94309f8c98df26e106de8e28583a058e70d773df9511e214c89608
size 4330865200

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:7acf52d4b1875f8680ed063f5a932b5b8c04839f355fbc48347efa06a4a39556
size 1089994880

View File

@ -0,0 +1,346 @@
{
"metadata": {
"total_size": 15231233024
},
"weight_map": {
"lm_head.weight": "model-00004-of-00004.safetensors",
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
"model.norm.weight": "model-00003-of-00004.safetensors"
}
}

31
special_tokens_map.json Normal file
View File

@ -0,0 +1,31 @@
{
"additional_special_tokens": [
"<|im_start|>",
"<|im_end|>",
"<|object_ref_start|>",
"<|object_ref_end|>",
"<|box_start|>",
"<|box_end|>",
"<|quad_start|>",
"<|quad_end|>",
"<|vision_start|>",
"<|vision_end|>",
"<|vision_pad|>",
"<|image_pad|>",
"<|video_pad|>"
],
"eos_token": {
"content": "<|im_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
"pad_token": {
"content": "<|endoftext|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
}
}

303283
tokenizer.json Normal file

File diff suppressed because it is too large Load Diff

207
tokenizer_config.json Normal file
View File

@ -0,0 +1,207 @@
{
"add_bos_token": false,
"add_prefix_space": false,
"added_tokens_decoder": {
"151643": {
"content": "<|endoftext|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151644": {
"content": "<|im_start|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151645": {
"content": "<|im_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151646": {
"content": "<|object_ref_start|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151647": {
"content": "<|object_ref_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151648": {
"content": "<|box_start|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151649": {
"content": "<|box_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151650": {
"content": "<|quad_start|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151651": {
"content": "<|quad_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151652": {
"content": "<|vision_start|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151653": {
"content": "<|vision_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151654": {
"content": "<|vision_pad|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151655": {
"content": "<|image_pad|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151656": {
"content": "<|video_pad|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151657": {
"content": "<tool_call>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151658": {
"content": "</tool_call>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151659": {
"content": "<|fim_prefix|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151660": {
"content": "<|fim_middle|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151661": {
"content": "<|fim_suffix|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151662": {
"content": "<|fim_pad|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151663": {
"content": "<|repo_name|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151664": {
"content": "<|file_sep|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
}
},
"additional_special_tokens": [
"<|im_start|>",
"<|im_end|>",
"<|object_ref_start|>",
"<|object_ref_end|>",
"<|box_start|>",
"<|box_end|>",
"<|quad_start|>",
"<|quad_end|>",
"<|vision_start|>",
"<|vision_end|>",
"<|vision_pad|>",
"<|image_pad|>",
"<|video_pad|>"
],
"bos_token": null,
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
"clean_up_tokenization_spaces": false,
"eos_token": "<|im_end|>",
"errors": "replace",
"model_max_length": 131072,
"pad_token": "<|endoftext|>",
"split_special_tokens": false,
"tokenizer_class": "Qwen2Tokenizer",
"unk_token": null
}

14433
trainer_state.json Normal file

File diff suppressed because it is too large Load Diff

3
training_args.bin Normal file
View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:166d1a3a4351e1930981d04b0b25ddf2bde44401c3e111eef665947275edde38
size 7032

1
vocab.json Normal file

File diff suppressed because one or more lines are too long

604
zero_to_fp32.py Normal file
View File

@ -0,0 +1,604 @@
#!/usr/bin/env python
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
# application.
#
# example: python zero_to_fp32.py . pytorch_model.bin
import argparse
import torch
import glob
import math
import os
import re
from collections import OrderedDict
from dataclasses import dataclass
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
# DeepSpeed data structures it has to be available in the current python environment.
from deepspeed.utils import logger
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
@dataclass
class zero_model_state:
buffers: dict()
param_shapes: dict()
shared_params: list
ds_version: int
frozen_param_shapes: dict()
frozen_param_fragments: dict()
debug = 0
# load to cpu
device = torch.device('cpu')
def atoi(text):
return int(text) if text.isdigit() else text
def natural_keys(text):
'''
alist.sort(key=natural_keys) sorts in human order
http://nedbatchelder.com/blog/200712/human_sorting.html
(See Toothy's implementation in the comments)
'''
return [atoi(c) for c in re.split(r'(\d+)', text)]
def get_model_state_file(checkpoint_dir, zero_stage):
if not os.path.isdir(checkpoint_dir):
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
# there should be only one file
if zero_stage <= 2:
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
elif zero_stage == 3:
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
if not os.path.exists(file):
raise FileNotFoundError(f"can't find model states file at '{file}'")
return file
def get_checkpoint_files(checkpoint_dir, glob_pattern):
# XXX: need to test that this simple glob rule works for multi-node setup too
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
if len(ckpt_files) == 0:
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
return ckpt_files
def get_optim_files(checkpoint_dir):
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
def get_model_state_files(checkpoint_dir):
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
def parse_model_states(files):
zero_model_states = []
for file in files:
state_dict = torch.load(file, map_location=device)
if BUFFER_NAMES not in state_dict:
raise ValueError(f"{file} is not a model state checkpoint")
buffer_names = state_dict[BUFFER_NAMES]
if debug:
print("Found buffers:", buffer_names)
# recover just the buffers while restoring them to fp32 if they were saved in fp16
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
param_shapes = state_dict[PARAM_SHAPES]
# collect parameters that are included in param_shapes
param_names = []
for s in param_shapes:
for name in s.keys():
param_names.append(name)
# update with frozen parameters
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
if frozen_param_shapes is not None:
if debug:
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
param_names += list(frozen_param_shapes.keys())
# handle shared params
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
ds_version = state_dict.get(DS_VERSION, None)
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
z_model_state = zero_model_state(buffers=buffers,
param_shapes=param_shapes,
shared_params=shared_params,
ds_version=ds_version,
frozen_param_shapes=frozen_param_shapes,
frozen_param_fragments=frozen_param_fragments)
zero_model_states.append(z_model_state)
return zero_model_states
def parse_optim_states(files, ds_checkpoint_dir):
total_files = len(files)
state_dicts = []
for f in files:
state_dict = torch.load(f, map_location=device)
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
# and also handle the case where it was already removed by another helper script
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
state_dicts.append(state_dict)
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
raise ValueError(f"{files[0]} is not a zero checkpoint")
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
# parameters can be different from data parallelism for non-expert parameters. So we can just
# use the max of the partition_count to get the dp world_size.
if type(world_size) is list:
world_size = max(world_size)
if world_size != total_files:
raise ValueError(
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
)
# the groups are named differently in each stage
if zero_stage <= 2:
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
elif zero_stage == 3:
fp32_groups_key = FP32_FLAT_GROUPS
else:
raise ValueError(f"unknown zero stage {zero_stage}")
if zero_stage <= 2:
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
elif zero_stage == 3:
# if there is more than one param group, there will be multiple flattened tensors - one
# flattened tensor per group - for simplicity merge them into a single tensor
#
# XXX: could make the script more memory efficient for when there are multiple groups - it
# will require matching the sub-lists of param_shapes for each param group flattened tensor
fp32_flat_groups = [
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
]
return zero_stage, world_size, fp32_flat_groups
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
"""
Returns fp32 state_dict reconstructed from ds checkpoint
Args:
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
"""
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
optim_files = get_optim_files(ds_checkpoint_dir)
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
model_files = get_model_state_files(ds_checkpoint_dir)
zero_model_states = parse_model_states(model_files)
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
if zero_stage <= 2:
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
exclude_frozen_parameters)
elif zero_stage == 3:
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
exclude_frozen_parameters)
def _zero2_merge_frozen_params(state_dict, zero_model_states):
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
return
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
if debug:
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
wanted_params = len(frozen_param_shapes)
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
print(f'Frozen params: Have {avail_numel} numels to process.')
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
total_params = 0
total_numel = 0
for name, shape in frozen_param_shapes.items():
total_params += 1
unpartitioned_numel = shape.numel()
total_numel += unpartitioned_numel
state_dict[name] = frozen_param_fragments[name]
if debug:
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
def _has_callable(obj, fn):
attr = getattr(obj, fn, None)
return callable(attr)
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
param_shapes = zero_model_states[0].param_shapes
# Reconstruction protocol:
#
# XXX: document this
if debug:
for i in range(world_size):
for j in range(len(fp32_flat_groups[0])):
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
# XXX: memory usage doubles here (zero2)
num_param_groups = len(fp32_flat_groups[0])
merged_single_partition_of_fp32_groups = []
for i in range(num_param_groups):
merged_partitions = [sd[i] for sd in fp32_flat_groups]
full_single_fp32_vector = torch.cat(merged_partitions, 0)
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
avail_numel = sum(
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
if debug:
wanted_params = sum([len(shapes) for shapes in param_shapes])
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
# not asserting if there is a mismatch due to possible padding
print(f"Have {avail_numel} numels to process.")
print(f"Need {wanted_numel} numels in {wanted_params} params.")
# params
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
# out-of-core computing solution
total_numel = 0
total_params = 0
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
offset = 0
avail_numel = full_single_fp32_vector.numel()
for name, shape in shapes.items():
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
total_numel += unpartitioned_numel
total_params += 1
if debug:
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
offset += unpartitioned_numel
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
# live optimizer object, so we are checking that the numbers are within the right range
align_to = 2 * world_size
def zero2_align(x):
return align_to * math.ceil(x / align_to)
if debug:
print(f"original offset={offset}, avail_numel={avail_numel}")
offset = zero2_align(offset)
avail_numel = zero2_align(avail_numel)
if debug:
print(f"aligned offset={offset}, avail_numel={avail_numel}")
# Sanity check
if offset != avail_numel:
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
exclude_frozen_parameters):
state_dict = OrderedDict()
# buffers
buffers = zero_model_states[0].buffers
state_dict.update(buffers)
if debug:
print(f"added {len(buffers)} buffers")
if not exclude_frozen_parameters:
_zero2_merge_frozen_params(state_dict, zero_model_states)
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
# recover shared parameters
for pair in zero_model_states[0].shared_params:
if pair[1] in state_dict:
state_dict[pair[0]] = state_dict[pair[1]]
return state_dict
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
remainder = unpartitioned_numel % world_size
padding_numel = (world_size - remainder) if remainder else 0
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
return partitioned_numel, padding_numel
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
return
if debug:
for i in range(world_size):
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
wanted_params = len(frozen_param_shapes)
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
print(f'Frozen params: Have {avail_numel} numels to process.')
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
total_params = 0
total_numel = 0
for name, shape in zero_model_states[0].frozen_param_shapes.items():
total_params += 1
unpartitioned_numel = shape.numel()
total_numel += unpartitioned_numel
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
if debug:
print(
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
)
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
param_shapes = zero_model_states[0].param_shapes
avail_numel = fp32_flat_groups[0].numel() * world_size
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
# param, re-consolidating each param, while dealing with padding if any
# merge list of dicts, preserving order
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
if debug:
for i in range(world_size):
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
wanted_params = len(param_shapes)
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
# not asserting if there is a mismatch due to possible padding
avail_numel = fp32_flat_groups[0].numel() * world_size
print(f"Trainable params: Have {avail_numel} numels to process.")
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
# params
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
# out-of-core computing solution
offset = 0
total_numel = 0
total_params = 0
for name, shape in param_shapes.items():
unpartitioned_numel = shape.numel()
total_numel += unpartitioned_numel
total_params += 1
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
if debug:
print(
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
)
# XXX: memory usage doubles here
state_dict[name] = torch.cat(
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
0).narrow(0, 0, unpartitioned_numel).view(shape)
offset += partitioned_numel
offset *= world_size
# Sanity check
if offset != avail_numel:
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
exclude_frozen_parameters):
state_dict = OrderedDict()
# buffers
buffers = zero_model_states[0].buffers
state_dict.update(buffers)
if debug:
print(f"added {len(buffers)} buffers")
if not exclude_frozen_parameters:
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
# recover shared parameters
for pair in zero_model_states[0].shared_params:
if pair[1] in state_dict:
state_dict[pair[0]] = state_dict[pair[1]]
return state_dict
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
"""
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
via a model hub.
Args:
- ``checkpoint_dir``: path to the desired checkpoint folder
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
- ``exclude_frozen_parameters``: exclude frozen parameters
Returns:
- pytorch ``state_dict``
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
the checkpoint.
A typical usage might be ::
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
# do the training and checkpoint saving
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
model = model.cpu() # move to cpu
model.load_state_dict(state_dict)
# submit to model hub or save the model to share with others
In this example the ``model`` will no longer be usable in the deepspeed context of the same
application. i.e. you will need to re-initialize the deepspeed engine, since
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
"""
if tag is None:
latest_path = os.path.join(checkpoint_dir, 'latest')
if os.path.isfile(latest_path):
with open(latest_path, 'r') as fd:
tag = fd.read().strip()
else:
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
if not os.path.isdir(ds_checkpoint_dir):
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
"""
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
Args:
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
- ``exclude_frozen_parameters``: exclude frozen parameters
"""
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
print(f"Saving fp32 state dict to {output_file}")
torch.save(state_dict, output_file)
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
"""
1. Put the provided model to cpu
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
3. Load it into the provided model
Args:
- ``model``: the model object to update
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
Returns:
- ``model`: modified model
Make sure you have plenty of CPU memory available before you call this function. If you don't
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
conveniently placed for you in the checkpoint folder.
A typical usage might be ::
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
# submit to model hub or save the model to share with others
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
"""
logger.info(f"Extracting fp32 weights")
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
logger.info(f"Overwriting model with fp32 weights")
model = model.cpu()
model.load_state_dict(state_dict, strict=False)
return model
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("checkpoint_dir",
type=str,
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
parser.add_argument(
"output_file",
type=str,
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
parser.add_argument("-t",
"--tag",
type=str,
default=None,
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
args = parser.parse_args()
debug = args.debug
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
args.output_file,
tag=args.tag,
exclude_frozen_parameters=args.exclude_frozen_parameters)