TangoFlux/tangoflux

62 lines
1.9 KiB
Plaintext
Raw Permalink Normal View History

2025-01-10 12:57:39 +08:00
from diffusers import AutoencoderOobleck
import torch
from transformers import T5EncoderModel,T5TokenizerFast
from diffusers import FluxTransformer2DModel
from torch import nn
from typing import List
from diffusers import FlowMatchEulerDiscreteScheduler
from diffusers.training_utils import compute_density_for_timestep_sampling
import copy
import torch.nn.functional as F
import numpy as np
from src.model import TangoFlux
from huggingface_hub import snapshot_download
from tqdm import tqdm
from typing import Optional,Union,List
from datasets import load_dataset, Audio
from math import pi
import json
import inspect
import yaml
from safetensors.torch import load_file
class TangoFluxInference:
def __init__(self,name='declare-lab/TangoFlux',device="cuda"):
self.vae = AutoencoderOobleck()
paths = snapshot_download(repo_id=name)
vae_weights = load_file("{}/vae.safetensors".format(paths))
self.vae.load_state_dict(vae_weights)
weights = load_file("{}/tangoflux.safetensors".format(paths))
with open('{}/config.json'.format(paths),'r') as f:
config = json.load(f)
self.model = TangoFlux(config)
self.model.load_state_dict(weights,strict=False)
# _IncompatibleKeys(missing_keys=['text_encoder.encoder.embed_tokens.weight'], unexpected_keys=[]) this behaviour is expected
self.vae.to(device)
self.model.to(device)
def generate(self,prompt,steps=25,duration=10,guidance_scale=4.5):
with torch.no_grad():
latents = self.model.inference_flow(prompt,
duration=duration,
num_inference_steps=steps,
guidance_scale=guidance_scale)
wave = self.vae.decode(latents.transpose(2,1)).sample.cpu()[0]
waveform_end = int(duration * self.vae.config.sampling_rate)
wave = wave[:, :waveform_end]
return wave