852 lines
34 KiB
Python
852 lines
34 KiB
Python
from PIL import Image
|
|
from io import BytesIO
|
|
import base64
|
|
import math
|
|
import ast
|
|
import re
|
|
import torch
|
|
from transformers import StoppingCriteria
|
|
from .constants import IMAGE_TOKEN_INDEX
|
|
import random
|
|
import os
|
|
import io
|
|
import av
|
|
import cv2
|
|
import imageio
|
|
from decord import VideoReader
|
|
import numpy as np
|
|
|
|
|
|
|
|
######################## load video ########################
|
|
|
|
def get_index(num_frames, num_segments):
|
|
seg_size = float(num_frames - 1) / num_segments
|
|
start = int(seg_size / 2)
|
|
offsets = np.array([
|
|
start + int(np.round(seg_size * idx)) for idx in range(num_segments)
|
|
])
|
|
return offsets
|
|
|
|
|
|
def pts_to_secs(pts: int, time_base: float, start_pts: int) -> float:
|
|
"""
|
|
Converts a present time with the given time base and start_pts offset to seconds.
|
|
|
|
Returns:
|
|
time_in_seconds (float): The corresponding time in seconds.
|
|
|
|
https://github.com/facebookresearch/pytorchvideo/blob/main/pytorchvideo/data/utils.py#L54-L64
|
|
"""
|
|
if pts == math.inf:
|
|
return math.inf
|
|
|
|
return int(pts - start_pts) * time_base
|
|
|
|
|
|
def get_pyav_video_duration(video_reader):
|
|
video_stream = video_reader.streams.video[0]
|
|
video_duration = pts_to_secs(
|
|
video_stream.duration,
|
|
video_stream.time_base,
|
|
video_stream.start_time
|
|
)
|
|
return float(video_duration)
|
|
|
|
|
|
|
|
def get_frame_indices(num_frames, vlen, sample='middle', fix_start=None, input_fps=1, min_num_frames=1, max_num_frames=-1, local_num_frames=8):
|
|
|
|
if min_num_frames > vlen:
|
|
if sample == 'dynamic_fps1':
|
|
min_num_frames = (vlen // local_num_frames) * local_num_frames
|
|
else:
|
|
min_num_frames = vlen
|
|
|
|
|
|
if sample == 'dynamic_fps1':
|
|
|
|
duration = float(vlen) / input_fps
|
|
num_segments = int(duration // local_num_frames)
|
|
if num_segments == 0:
|
|
num_frames = local_num_frames
|
|
else:
|
|
num_frames = local_num_frames * num_segments
|
|
|
|
if max_num_frames > 0:
|
|
num_frames = min(num_frames, max_num_frames)
|
|
sample = "middle" # NOTE
|
|
|
|
# logger.info(f"? is OK (img), duation={duration} frames={num_frames}!!!!")
|
|
|
|
num_frames = max(min_num_frames, num_frames)
|
|
|
|
# print(f"\033[0;31m vlen={vlen}, input_fps={input_fps} num_frames={num_frames} \033[0m")
|
|
|
|
if sample in ["rand", "middle"]: # uniform sampling
|
|
acc_samples = min(num_frames, vlen)
|
|
# split the video into `acc_samples` intervals, and sample from each interval.
|
|
intervals = np.linspace(start=0, stop=vlen, num=acc_samples + 1).astype(int)
|
|
ranges = []
|
|
for idx, interv in enumerate(intervals[:-1]):
|
|
ranges.append((interv, intervals[idx + 1] - 1))
|
|
if sample == 'rand':
|
|
try:
|
|
frame_indices = [random.choice(range(x[0], x[1])) for x in ranges]
|
|
except:
|
|
frame_indices = np.random.permutation(vlen)[:acc_samples]
|
|
frame_indices.sort()
|
|
frame_indices = list(frame_indices)
|
|
elif fix_start is not None:
|
|
frame_indices = [x[0] + fix_start for x in ranges]
|
|
elif sample == 'middle':
|
|
frame_indices = [(x[0] + x[1]) // 2 for x in ranges]
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
if len(frame_indices) < num_frames: # padded with last frame
|
|
padded_frame_indices = [frame_indices[-1]] * num_frames
|
|
padded_frame_indices[:len(frame_indices)] = frame_indices
|
|
frame_indices = padded_frame_indices
|
|
elif "fps" in sample: # fps0.5, sequentially sample frames at 0.5 fps
|
|
output_fps = float(sample[3:])
|
|
duration = float(vlen) / input_fps
|
|
delta = 1 / output_fps # gap between frames, this is also the clip length each frame represents
|
|
frame_seconds = np.arange(0 + delta / 2, duration + delta / 2, delta)
|
|
frame_indices = np.around(frame_seconds * input_fps).astype(int)
|
|
frame_indices = [e for e in frame_indices if e < vlen]
|
|
if max_num_frames > 0 and len(frame_indices) > max_num_frames:
|
|
frame_indices = frame_indices[:max_num_frames]
|
|
# frame_indices = np.linspace(0 + delta / 2, duration + delta / 2, endpoint=False, num=max_num_frames)
|
|
else:
|
|
raise ValueError(f"Not support sample type: {sample}")
|
|
|
|
|
|
return frame_indices
|
|
|
|
|
|
def read_frames_av(video_path, num_frames, sample='rand', client=None, fix_start=None, min_num_frames=1, max_num_frames=-1, clip=None, local_num_frames=8):
|
|
if clip is not None:
|
|
raise NotImplementedError("av don't support clip!!!")
|
|
if 's3://' in video_path:
|
|
video_bytes = client.get(video_path)
|
|
byteio = io.BytesIO(video_bytes)
|
|
byteio.seek(0)
|
|
reader = av.open(byteio)
|
|
else:
|
|
byteio = None
|
|
reader = av.open(video_path)
|
|
frames = [f.to_rgb().to_ndarray() for f in reader.decode(video=0)]
|
|
vlen = len(frames)
|
|
duration = get_pyav_video_duration(reader)
|
|
fps = vlen / float(duration)
|
|
frame_indices = get_frame_indices(
|
|
num_frames, vlen, sample=sample, fix_start=fix_start,
|
|
input_fps=fps, min_num_frames=min_num_frames, max_num_frames=max_num_frames, local_num_frames=local_num_frames
|
|
)
|
|
frames = np.stack([frames[idx] for idx in frame_indices]) # (T, H, W, C), torch.uint8
|
|
# frames = frames.permute(0, 3, 1, 2) # (T, C, H, W), torch.uint8
|
|
if byteio != None:
|
|
byteio.close()
|
|
|
|
reader.close()
|
|
|
|
return frames, frame_indices, float(fps), duration
|
|
|
|
|
|
def read_frames_gif(
|
|
video_path, num_frames, sample='rand', fix_start=None,
|
|
min_num_frames=1, max_num_frames=-1, client=None, clip=None, local_num_frames=8
|
|
):
|
|
if clip is not None:
|
|
raise NotImplementedError("Gif don't support clip!!!")
|
|
if 's3://' in video_path:
|
|
video_bytes = client.get(video_path)
|
|
byteio = io.BytesIO(video_bytes)
|
|
gif = imageio.get_reader(byteio)
|
|
else:
|
|
byteio = None
|
|
gif = imageio.get_reader(video_path)
|
|
vlen = len(gif)
|
|
fps = 1.
|
|
duration = vlen / fps
|
|
frame_indices = get_frame_indices(
|
|
num_frames, vlen, sample=sample, fix_start=fix_start,
|
|
min_num_frames=min_num_frames,
|
|
max_num_frames=max_num_frames, local_num_frames=local_num_frames,
|
|
input_fps=fps
|
|
)
|
|
frames = []
|
|
|
|
min_h = min_w = 100000
|
|
hw_set = set()
|
|
for index, frame in enumerate(gif):
|
|
# for index in frame_idxs:
|
|
if index in frame_indices:
|
|
frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
|
|
frame = frame.astype(np.uint8)
|
|
# # (H x W x C) to (C x H x W)
|
|
# frame = frame.permute(2, 0, 1)
|
|
frames.append(frame)
|
|
hw_set.add(frame.shape)
|
|
if frame.shape[0] < min_h:
|
|
min_h = frame.shape[0]
|
|
if frame.shape[1] < min_w:
|
|
min_w = frame.shape[1]
|
|
# print(hw_set, min_h, min_w)
|
|
if len(hw_set) > 1:
|
|
frames = [i[:min_h, :min_w] for i in frames]
|
|
|
|
frames = np.stack(frames) # .float() / 255
|
|
|
|
if byteio != None:
|
|
byteio.close()
|
|
|
|
return frames, frame_indices, float(fps), duration # for tgif
|
|
|
|
|
|
|
|
def read_frames_decord(
|
|
video_path, num_frames, sample='rand', fix_start=None, min_num_frames=1,
|
|
max_num_frames=-1, client=None, clip=None, local_num_frames=8
|
|
):
|
|
|
|
if video_path.endswith('.avi'):
|
|
return read_frames_av(video_path=video_path, num_frames=num_frames, sample=sample,
|
|
fix_start=fix_start, min_num_frames=min_num_frames, max_num_frames=max_num_frames,
|
|
client=client, clip=clip, local_num_frames=local_num_frames)
|
|
if 's3://' in video_path:
|
|
video_bytes = client.get(video_path)
|
|
if video_bytes is None or len(video_bytes) == 0:
|
|
raise ValueError(f"Can't read byte from {video_path}!")
|
|
byteio = io.BytesIO(video_bytes)
|
|
video_reader = VideoReader(byteio, num_threads=1)
|
|
else:
|
|
byteio = None
|
|
video_reader = VideoReader(video_path, num_threads=1)
|
|
vlen = len(video_reader)
|
|
fps = video_reader.get_avg_fps()
|
|
duration = vlen / float(fps)
|
|
|
|
|
|
if clip:
|
|
start, end = clip
|
|
start = max(0, start)
|
|
end = min(duration - 0.1, end)
|
|
duration = end - start
|
|
vlen = int(duration * fps)
|
|
start_index = int(start * fps)
|
|
|
|
frame_indices = get_frame_indices(
|
|
num_frames, vlen, sample=sample, fix_start=fix_start,
|
|
input_fps=fps, min_num_frames=min_num_frames, max_num_frames=max_num_frames, local_num_frames=local_num_frames
|
|
)
|
|
if clip:
|
|
frame_indices = [f + start_index for f in frame_indices]
|
|
|
|
# print(fps, frame_indices)
|
|
frames = video_reader.get_batch(frame_indices).asnumpy() # (T, H, W, C), torch.uint8
|
|
# https://github.com/dmlc/decord/issues/208
|
|
video_reader.seek(0)
|
|
|
|
if byteio != None:
|
|
byteio.close()
|
|
# frames = frames.permute(0, 3, 1, 2) # (T, C, H, W), torch.uint8
|
|
return frames, frame_indices, float(fps), duration
|
|
|
|
|
|
|
|
def read_frames_img(
|
|
video_path, num_frames, sample='rand', fix_start=None, min_num_frames=1,
|
|
max_num_frames=-1, client=None, clip=None, local_num_frames=8
|
|
):
|
|
def extract_frame_number(filename):
|
|
# Extract the numeric part from the filename using regular expressions
|
|
if filename.endswith('.jpg'):
|
|
match = re.search(r'_(\d+).jpg$', filename)
|
|
elif filename.endswith('.jpeg'):
|
|
match = re.search(r'_(\d+).jpeg$', filename)
|
|
elif filename.endswith('.png'):
|
|
match = re.search(r'_(\d+).png$', filename)
|
|
else:
|
|
raise NotImplementedError(f"Wrong filename: {filename}")
|
|
|
|
return int(match.group(1)) if match else -1
|
|
|
|
|
|
def sort_frames(frame_paths):
|
|
# Extract filenames from each path and sort by their numeric part
|
|
return sorted(frame_paths, key=lambda x: extract_frame_number(os.path.basename(x)))
|
|
|
|
# img_list=[]
|
|
|
|
if "s3://" in video_path:
|
|
img_list = sort_frames(client.list(video_path))
|
|
else:
|
|
img_list = sort_frames(list(os.listdir(video_path)))
|
|
|
|
|
|
if 'tvqa' in video_path.lower():
|
|
fps = 3.0
|
|
else:
|
|
fps = 1.0
|
|
|
|
if clip is not None:
|
|
start = float(clip[0])
|
|
end = float(clip[1])
|
|
start = max(0, start)
|
|
end = min(len(img_list) / fps, end)
|
|
vlen = (end - start) * fps
|
|
else:
|
|
vlen = len(img_list)
|
|
|
|
duration = vlen / fps
|
|
|
|
if min_num_frames > vlen:
|
|
if sample == 'dynamic_fps1':
|
|
min_num_frames = (vlen // local_num_frames) * local_num_frames
|
|
else:
|
|
min_num_frames = vlen
|
|
|
|
if sample == 'dynamic_fps1':
|
|
num_segments = int(duration // local_num_frames)
|
|
if num_segments == 0:
|
|
num_frames = local_num_frames
|
|
else:
|
|
num_frames = local_num_frames * num_segments
|
|
num_frames = min(num_frames, max_num_frames)
|
|
num_frames = max(min_num_frames, num_frames)
|
|
|
|
num_frames = int(num_frames)
|
|
if clip is not None:
|
|
def _get_index_by_time(start_sec, end_sec, num_segments=8, fps=1., max_frame=9999):
|
|
start_idx = max(1, round(start_sec * fps))
|
|
end_idx = min(round(end_sec * fps), max_frame)
|
|
seg_size = float(end_idx - start_idx) / (num_segments - 1)
|
|
offsets = np.array([start_idx + int(np.round(seg_size * idx)) for idx in range(num_segments)])
|
|
return offsets
|
|
|
|
frame_indices = _get_index_by_time(float(clip[0]), float(clip[1]), num_segments=num_frames, fps=fps, max_frame=len(img_list)-1)
|
|
else:
|
|
frame_indices = get_frame_indices(
|
|
num_frames, vlen, sample=sample, fix_start=fix_start,
|
|
min_num_frames=min_num_frames,
|
|
max_num_frames=max_num_frames, local_num_frames=local_num_frames
|
|
)
|
|
|
|
imgs = []
|
|
for idx in frame_indices:
|
|
frame_fname = os.path.join(video_path, img_list[idx])
|
|
if "s3://" in video_path:
|
|
img_bytes = client.get(frame_fname)
|
|
else:
|
|
with open(frame_fname, 'rb') as f:
|
|
img_bytes = f.read()
|
|
img_np = np.frombuffer(img_bytes, np.uint8)
|
|
img = cv2.imdecode(img_np, cv2.IMREAD_COLOR)
|
|
cv2.cvtColor(img, cv2.COLOR_BGR2RGB, img)
|
|
imgs.append(img)
|
|
|
|
frames = np.array(imgs, dtype=np.uint8)
|
|
|
|
|
|
return frames, frame_indices, fps, duration
|
|
|
|
|
|
|
|
VIDEO_READER_FUNCS = {
|
|
'av': read_frames_av,
|
|
'decord': read_frames_decord,
|
|
'gif': read_frames_gif,
|
|
'img': read_frames_img,
|
|
'frame': read_frames_img
|
|
}
|
|
|
|
|
|
|
|
def load_video(video_path, max_num_frames=512, media_dict=None): #, media_dict):
|
|
|
|
if media_dict is None:
|
|
media_dict = {'video_read_type': 'decord'}
|
|
|
|
if type(video_path) != str:
|
|
assert len(video_path) == 1, video_path
|
|
video_path = video_path[0]
|
|
|
|
if 'start' in media_dict:
|
|
clip = [media_dict['start'], media_dict['end']]
|
|
else:
|
|
clip = None
|
|
|
|
client = None
|
|
|
|
frames, frame_indices, fps, duration = VIDEO_READER_FUNCS[media_dict['video_read_type']](video_path=video_path, num_frames=max_num_frames, sample='dynamic_fps1', fix_start=None, min_num_frames=64, max_num_frames=max_num_frames, client=client, clip=clip, local_num_frames=8)
|
|
|
|
sec = [str(round(f / fps, 1)) for f in frame_indices]
|
|
|
|
msg = f"\nThe video lasts for {duration:.2f} seconds, and {len(sec)} frames are uniformly sampled from it. "
|
|
|
|
return frames, msg
|
|
|
|
|
|
######################## load video ########################
|
|
|
|
|
|
def resize_and_center_crop(image, shortest_edge_length):
|
|
# Calculate new dimensions and resize
|
|
aspect_ratio = float(image.width) / float(image.height)
|
|
if aspect_ratio > 1:
|
|
new_width = int(shortest_edge_length * aspect_ratio)
|
|
new_height = shortest_edge_length
|
|
else:
|
|
new_width = shortest_edge_length
|
|
new_height = int(shortest_edge_length / aspect_ratio)
|
|
resized_image = image.resize((new_width, new_height), Image.ANTIALIAS)
|
|
|
|
# Calculate the position and perform the center crop
|
|
left = (new_width - shortest_edge_length) / 2
|
|
top = (new_height - shortest_edge_length) / 2
|
|
right = (new_width + shortest_edge_length) / 2
|
|
bottom = (new_height + shortest_edge_length) / 2
|
|
cropped_image = resized_image.crop((left, top, right, bottom))
|
|
|
|
return cropped_image
|
|
|
|
|
|
def auto_pad_images(image, grid_params):
|
|
assert isinstance(image, Image.Image), "Input should be a Pillow Image"
|
|
assert len(grid_params) > 0, "Grid parameters should not be empty"
|
|
|
|
# Step 1: Calculate and find the closest aspect ratio
|
|
input_width, input_height = image.size
|
|
input_aspect_ratio = input_width / input_height
|
|
candidate_resolutions = [(w / h, w, h) for w in grid_params for h in grid_params]
|
|
closest_aspect_ratio = min(candidate_resolutions, key=lambda x: abs(input_aspect_ratio - x[0]))
|
|
|
|
candidate_resolutions = [(x[1], x[2]) for x in candidate_resolutions if abs(x[0] - closest_aspect_ratio[0]) < 1e-3]
|
|
|
|
target_resolution = min(candidate_resolutions, key=lambda res: abs(max(input_width, input_height) / max(res) - 1))
|
|
|
|
resize_width, resize_height = target_resolution
|
|
if input_width > input_height:
|
|
resize_height = int(resize_width / input_aspect_ratio)
|
|
else:
|
|
resize_width = int(resize_height * input_aspect_ratio)
|
|
resized_image = image.resize((resize_width, resize_height), Image.ANTIALIAS)
|
|
|
|
# Step 5: Pad the resized image if necessary to match the target resolution
|
|
pad_width = target_resolution[0] - resize_width
|
|
pad_height = target_resolution[1] - resize_height
|
|
padded_image = Image.new("RGB", target_resolution, color=(0, 0, 0))
|
|
padded_image.paste(resized_image, (pad_width // 2, pad_height // 2))
|
|
|
|
return padded_image
|
|
|
|
|
|
def extract_patches(image, patch_size, overlap_ratio):
|
|
assert isinstance(image, Image.Image), "Input should be a Pillow Image"
|
|
assert patch_size > 0, "Patch size should be greater than 0"
|
|
assert 0 <= overlap_ratio < 1, "Overlap ratio should be between 0 and 1"
|
|
|
|
W, H = image.size
|
|
patches = []
|
|
|
|
stride = int(patch_size * (1 - overlap_ratio))
|
|
|
|
num_patches_y = (H - patch_size) // stride + 1
|
|
num_patches_x = (W - patch_size) // stride + 1
|
|
|
|
y_start = (H - (num_patches_y - 1) * stride - patch_size) // 2
|
|
x_start = (W - (num_patches_x - 1) * stride - patch_size) // 2
|
|
|
|
for y in range(y_start, y_start + num_patches_y * stride, stride):
|
|
for x in range(x_start, x_start + num_patches_x * stride, stride):
|
|
patch = image.crop((x, y, x + patch_size, y + patch_size))
|
|
patches.append(patch)
|
|
|
|
return patches
|
|
|
|
|
|
def process_highres_image_crop_split(image, data_args, processor=None):
|
|
crop_resolution = data_args.image_crop_resolution
|
|
split_resolution = data_args.image_split_resolution
|
|
if processor is None:
|
|
processor = data_args.image_processor
|
|
image_crop = resize_and_center_crop(image, crop_resolution)
|
|
image_patches = extract_patches(image_crop, patch_size=split_resolution, overlap_ratio=0)
|
|
image_patches = [processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0] for image_patch in image_patches]
|
|
return torch.stack(image_patches, dim=0)
|
|
|
|
|
|
def process_highres_image(image, processor, grid_pinpoints):
|
|
grid_params = [int(x) for x in grid_pinpoints.split(",")]
|
|
width_height = max(image.size)
|
|
fit_grid_params = [x for x in grid_params if x >= width_height]
|
|
if len(fit_grid_params) == 0:
|
|
select_size = max(grid_params)
|
|
else:
|
|
select_size = min(fit_grid_params)
|
|
# FIXME: always select the 448
|
|
select_size = max(grid_params)
|
|
image_padded = expand2square(image, tuple(int(x * 255) for x in processor.image_mean))
|
|
|
|
# FIXME: this seems to be a bug that it always resizes instead of padding
|
|
image_original_resize = image.resize((processor.size["shortest_edge"], processor.size["shortest_edge"]))
|
|
image_padded = image_padded.resize((select_size, select_size))
|
|
image_patches = extract_patches(image_padded, patch_size=processor.size["shortest_edge"], overlap_ratio=0)
|
|
image_patches = [image_original_resize] + image_patches
|
|
image_patches = [processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0] for image_patch in image_patches]
|
|
return torch.stack(image_patches, dim=0)
|
|
|
|
|
|
def select_best_resolution(original_size, possible_resolutions, max_resolutions, patch_size):
|
|
"""
|
|
Selects the best resolution from a list of possible resolutions based on the original size.
|
|
|
|
Args:
|
|
original_size (tuple): The original size of the image in the format (width, height).
|
|
possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
|
|
|
|
Returns:
|
|
tuple: The best fit resolution in the format (width, height).
|
|
"""
|
|
original_width, original_height = original_size
|
|
best_fit = None
|
|
max_effective_resolution = 0
|
|
min_wasted_resolution = float("inf")
|
|
|
|
for width, height in possible_resolutions:
|
|
if max_resolutions != None and (width * height != patch_size * patch_size):
|
|
if (width * height+patch_size*patch_size) > max_resolutions: # NOTE 要算一个global
|
|
continue
|
|
# Calculate the downscaled size to keep the aspect ratio
|
|
scale = min(width / original_width, height / original_height)
|
|
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
|
|
|
|
# Calculate effective and wasted resolutions
|
|
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
|
|
wasted_resolution = (width * height) - effective_resolution
|
|
|
|
if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
|
|
max_effective_resolution = effective_resolution
|
|
min_wasted_resolution = wasted_resolution
|
|
best_fit = (width, height)
|
|
|
|
# print(f"original_size={original_size}, possible_resolutions={possible_resolutions}, max_resolutions={max_resolutions}, best_fit={best_fit}")
|
|
assert best_fit is not None, f"Can't find suitable fit in {possible_resolutions} at max:{max_resolutions}"
|
|
return best_fit
|
|
|
|
|
|
def resize_and_pad_image(image, target_resolution):
|
|
"""
|
|
Resize and pad an image to a target resolution while maintaining aspect ratio.
|
|
|
|
Args:
|
|
image (PIL.Image.Image): The input image.
|
|
target_resolution (tuple): The target resolution (width, height) of the image.
|
|
|
|
Returns:
|
|
PIL.Image.Image: The resized and padded image.
|
|
"""
|
|
original_width, original_height = image.size
|
|
target_width, target_height = target_resolution
|
|
|
|
# Determine which dimension (width or height) to fill
|
|
scale_w = target_width / original_width
|
|
scale_h = target_height / original_height
|
|
|
|
if scale_w < scale_h:
|
|
# Width will be filled completely
|
|
new_width = target_width
|
|
new_height = min(math.ceil(original_height * scale_w), target_height)
|
|
else:
|
|
# Height will be filled completely
|
|
new_height = target_height
|
|
new_width = min(math.ceil(original_width * scale_h), target_width)
|
|
|
|
# Resize the image
|
|
resized_image = image.resize((new_width, new_height))
|
|
|
|
# Create a new image with the target size and paste the resized image onto it
|
|
new_image = Image.new("RGB", (target_width, target_height), (0, 0, 0))
|
|
paste_x = (target_width - new_width) // 2
|
|
paste_y = (target_height - new_height) // 2
|
|
new_image.paste(resized_image, (paste_x, paste_y))
|
|
|
|
return new_image
|
|
|
|
|
|
def divide_to_patches(image, patch_size):
|
|
"""
|
|
Divides an image into patches of a specified size.
|
|
|
|
Args:
|
|
image (PIL.Image.Image): The input image.
|
|
patch_size (int): The size of each patch.
|
|
|
|
Returns:
|
|
list: A list of PIL.Image.Image objects representing the patches.
|
|
"""
|
|
patches = []
|
|
width, height = image.size
|
|
for i in range(0, height, patch_size):
|
|
for j in range(0, width, patch_size):
|
|
box = (j, i, j + patch_size, i + patch_size)
|
|
patch = image.crop(box)
|
|
patches.append(patch)
|
|
|
|
return patches
|
|
|
|
|
|
def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size, max_resolutions=None):
|
|
"""
|
|
Calculate the shape of the image patch grid after the preprocessing for images of any resolution.
|
|
|
|
Args:
|
|
image_size (tuple): The size of the input image in the format (width, height).
|
|
grid_pinpoints (str): A string representation of a list of possible resolutions.
|
|
patch_size (int): The size of each image patch.
|
|
|
|
Returns:
|
|
tuple: The shape of the image patch grid in the format (width, height).
|
|
"""
|
|
if isinstance(grid_pinpoints, str) and "x" in grid_pinpoints:
|
|
assert patch_size in [224, 336, 384, 448, 512], "patch_size should be in [224, 336, 384, 448, 512]"
|
|
# Use regex to extract the range from the input string
|
|
matches = re.findall(r"\((\d+)x(\d+)\)", grid_pinpoints)
|
|
range_start = tuple(map(int, matches[0]))
|
|
range_end = tuple(map(int, matches[-1]))
|
|
# Generate a matrix of tuples from (range_start[0], range_start[1]) to (range_end[0], range_end[1])
|
|
grid_pinpoints = [(i, j) for i in range(range_start[0], range_end[0] + 1) for j in range(range_start[1], range_end[1] + 1)]
|
|
# Multiply all elements by patch_size
|
|
grid_pinpoints = [[dim * patch_size for dim in pair] for pair in grid_pinpoints]
|
|
if type(grid_pinpoints) is list:
|
|
possible_resolutions = grid_pinpoints
|
|
else:
|
|
possible_resolutions = ast.literal_eval(grid_pinpoints)
|
|
width, height = select_best_resolution(image_size, possible_resolutions, max_resolutions=max_resolutions, patch_size=patch_size)
|
|
|
|
# print("get width/patch size", width, patch_size, flush=True)
|
|
|
|
return width // patch_size, height // patch_size
|
|
|
|
|
|
def process_anyres_image(image, processor, grid_pinpoints):
|
|
"""
|
|
Process an image with variable resolutions.
|
|
|
|
Args:
|
|
image (PIL.Image.Image): The input image to be processed.
|
|
processor: The image processor object.
|
|
grid_pinpoints (str): A string representation of a list of possible resolutions.
|
|
|
|
Returns:
|
|
torch.Tensor: A tensor containing the processed image patches.
|
|
"""
|
|
raise NotImplementedError
|
|
# Convert grid_pinpoints from string to list
|
|
if isinstance(grid_pinpoints, str) and "x" in grid_pinpoints:
|
|
try:
|
|
patch_size = processor.size[0]
|
|
except Exception as e:
|
|
patch_size = processor.size["shortest_edge"]
|
|
assert patch_size in [224, 336, 384, 448, 512], "patch_size should be in [224, 336, 384, 448, 512]"
|
|
# Use regex to extract the range from the input string
|
|
matches = re.findall(r"\((\d+)x(\d+)\)", grid_pinpoints)
|
|
range_start = tuple(map(int, matches[0]))
|
|
range_end = tuple(map(int, matches[-1]))
|
|
# Generate a matrix of tuples from (range_start[0], range_start[1]) to (range_end[0], range_end[1])
|
|
grid_pinpoints = [(i, j) for i in range(range_start[0], range_end[0] + 1) for j in range(range_start[1], range_end[1] + 1)]
|
|
# Multiply all elements by patch_size
|
|
grid_pinpoints = [[dim * patch_size for dim in pair] for pair in grid_pinpoints]
|
|
|
|
if type(grid_pinpoints) is list:
|
|
possible_resolutions = grid_pinpoints
|
|
else:
|
|
possible_resolutions = ast.literal_eval(grid_pinpoints)
|
|
best_resolution = select_best_resolution(image.size, possible_resolutions)
|
|
image_padded = resize_and_pad_image(image, best_resolution)
|
|
|
|
patches = divide_to_patches(image_padded, processor.crop_size["height"])
|
|
|
|
# FIXME: this seems to be a bug that it resizes instead of pad.
|
|
# but to keep it consistent with previous, i will keep it as it is
|
|
# TODO: uncomment below to ablate with the padding
|
|
if isinstance(processor.size, dict):
|
|
shortest_edge = processor.size["shortest_edge"]
|
|
else:
|
|
shortest_edge = min(processor.size)
|
|
image_original_resize = image.resize((shortest_edge, shortest_edge))
|
|
# image_padded_square = expand2square(image, tuple(int(x*255) for x in processor.image_mean))
|
|
# image_original_resize = image_padded_square.resize((processor.size['shortest_edge'], processor.size['shortest_edge']))
|
|
|
|
image_patches = [image_original_resize] + patches
|
|
image_patches = [processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0] for image_patch in image_patches]
|
|
|
|
# print("image.size", image.size, "len(image_patches):", len(image_patches), "patch_size:", image_patches[0].shape)
|
|
return torch.stack(image_patches, dim=0)
|
|
|
|
def process_anyres_image_nopad(image, processor, grid_pinpoints):
|
|
"""
|
|
Process an image with variable resolutions.
|
|
|
|
Args:
|
|
image (PIL.Image.Image): The input image to be processed.
|
|
processor: The image processor object.
|
|
grid_pinpoints (str): A string representation of a list of possible resolutions.
|
|
|
|
Returns:
|
|
torch.Tensor: A tensor containing the processed image patches.
|
|
"""
|
|
# Convert grid_pinpoints from string to list
|
|
try:
|
|
patch_size = processor.size[0]
|
|
except Exception as e:
|
|
patch_size = processor.size["shortest_edge"]
|
|
|
|
assert patch_size in [224, 336, 384, 448, 512], "patch_size should be in [224, 336, 384, 448, 512]"
|
|
|
|
if isinstance(grid_pinpoints, str) and "x" in grid_pinpoints:
|
|
|
|
# Use regex to extract the range from the input string
|
|
matches = re.findall(r"\((\d+)x(\d+)\)", grid_pinpoints)
|
|
range_start = tuple(map(int, matches[0]))
|
|
range_end = tuple(map(int, matches[-1]))
|
|
# Generate a matrix of tuples from (range_start[0], range_start[1]) to (range_end[0], range_end[1])
|
|
grid_pinpoints = [(i, j) for i in range(range_start[0], range_end[0] + 1) for j in range(range_start[1], range_end[1] + 1)]
|
|
# Multiply all elements by patch_size
|
|
grid_pinpoints = [[dim * patch_size for dim in pair] for pair in grid_pinpoints]
|
|
|
|
if type(grid_pinpoints) is list:
|
|
possible_resolutions = grid_pinpoints
|
|
else:
|
|
possible_resolutions = ast.literal_eval(grid_pinpoints)
|
|
best_resolution = select_best_resolution(image.size, possible_resolutions, max_resolutions=None, patch_size=patch_size) # 目前图像无限制
|
|
# image_padded = resize_and_pad_image(image, best_resolution)
|
|
|
|
patches = divide_to_patches(image.resize(best_resolution), patch_size)
|
|
|
|
# FIXME: this seems to be a bug that it resizes instead of pad.
|
|
# but to keep it consistent with previous, i will keep it as it is
|
|
# TODO: uncomment below to ablate with the padding
|
|
if isinstance(processor.size, dict):
|
|
shortest_edge = processor.size["shortest_edge"]
|
|
else:
|
|
shortest_edge = min(processor.size)
|
|
image_original_resize = image.resize((shortest_edge, shortest_edge))
|
|
# image_padded_square = expand2square(image, tuple(int(x*255) for x in processor.image_mean))
|
|
# image_original_resize = image_padded_square.resize((processor.size['shortest_edge'], processor.size['shortest_edge']))
|
|
|
|
image_patches = [image_original_resize] + patches
|
|
image_patches = [processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0] for image_patch in image_patches]
|
|
|
|
# raise ValueError(f"image.size: {image.size} len(image_patches): {len(image_patches)}, patch_size:, {image_patches[0].shape}, possible_resolutions:, {possible_resolutions}, best: {best_resolution}")
|
|
return torch.stack(image_patches, dim=0)
|
|
|
|
|
|
def load_image_from_base64(image):
|
|
return Image.open(BytesIO(base64.b64decode(image)))
|
|
|
|
|
|
def expand2square(pil_img, background_color):
|
|
width, height = pil_img.size
|
|
if width == height:
|
|
return pil_img
|
|
elif width > height:
|
|
result = Image.new(pil_img.mode, (width, width), background_color)
|
|
result.paste(pil_img, (0, (width - height) // 2))
|
|
return result
|
|
else:
|
|
result = Image.new(pil_img.mode, (height, height), background_color)
|
|
result.paste(pil_img, ((height - width) // 2, 0))
|
|
return result
|
|
|
|
|
|
def process_images(images, image_processor, model_cfg):
|
|
image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None)
|
|
new_images = []
|
|
if image_aspect_ratio == "highres":
|
|
raise NotImplementedError
|
|
for image in images:
|
|
image = process_highres_image(image, image_processor, model_cfg.image_grid_pinpoints)
|
|
new_images.append(image)
|
|
elif "anyres" in image_aspect_ratio:
|
|
for image in images:
|
|
if "nopad" in image_aspect_ratio:
|
|
image = process_anyres_image_nopad(image, image_processor, model_cfg.image_grid_pinpoints)
|
|
else:
|
|
image = process_anyres_image(image, image_processor, model_cfg.image_grid_pinpoints)
|
|
new_images.append(image)
|
|
elif image_aspect_ratio == "crop_split":
|
|
raise NotImplementedError
|
|
for image in images:
|
|
image = process_highres_image_crop_split(image, model_cfg, image_processor)
|
|
new_images.append(image)
|
|
elif image_aspect_ratio == "pad":
|
|
for image in images:
|
|
image = expand2square(image, tuple(int(x * 255) for x in image_processor.image_mean))
|
|
image = image_processor.preprocess(image, return_tensors="pt")["pixel_values"][0]
|
|
new_images.append(image)
|
|
else:
|
|
return image_processor.preprocess(images, return_tensors="pt")["pixel_values"]
|
|
if all(x.shape == new_images[0].shape for x in new_images):
|
|
new_images = torch.stack(new_images, dim=0)
|
|
return new_images
|
|
|
|
|
|
def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
|
|
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split("<image>")]
|
|
|
|
def insert_separator(X, sep):
|
|
return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1]
|
|
|
|
input_ids = []
|
|
offset = 0
|
|
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
|
|
offset = 1
|
|
input_ids.append(prompt_chunks[0][0])
|
|
|
|
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
|
|
input_ids.extend(x[offset:])
|
|
|
|
if return_tensors is not None:
|
|
if return_tensors == "pt":
|
|
return torch.tensor(input_ids, dtype=torch.long)
|
|
raise ValueError(f"Unsupported tensor type: {return_tensors}")
|
|
return input_ids
|
|
|
|
|
|
def get_model_name_from_path(model_path):
|
|
model_path = model_path.strip("/")
|
|
model_paths = model_path.split("/")
|
|
if model_paths[-1].startswith("checkpoint-"):
|
|
return model_paths[-2] + "_" + model_paths[-1]
|
|
else:
|
|
return model_paths[-1]
|
|
|
|
|
|
class KeywordsStoppingCriteria(StoppingCriteria):
|
|
def __init__(self, keywords, tokenizer, input_ids):
|
|
self.keywords = keywords
|
|
self.keyword_ids = []
|
|
for keyword in keywords:
|
|
cur_keyword_ids = tokenizer(keyword).input_ids
|
|
if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id:
|
|
cur_keyword_ids = cur_keyword_ids[1:]
|
|
self.keyword_ids.append(torch.tensor(cur_keyword_ids))
|
|
self.tokenizer = tokenizer
|
|
self.start_len = input_ids.shape[1]
|
|
|
|
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
|
assert output_ids.shape[0] == 1, "Only support batch size 1 (yet)" # TODO
|
|
offset = min(output_ids.shape[1] - self.start_len, 3)
|
|
self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids]
|
|
for keyword_id in self.keyword_ids:
|
|
if output_ids[0, -keyword_id.shape[0] :] == keyword_id:
|
|
return True
|
|
outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0]
|
|
for keyword in self.keywords:
|
|
if keyword in outputs:
|
|
return True
|
|
return False
|