619 lines
24 KiB
Python
619 lines
24 KiB
Python
from typing import Optional, Tuple, Union, Dict
|
|
from dataclasses import dataclass
|
|
from functools import partial, reduce
|
|
from PIL import Image
|
|
import os
|
|
from transformers.image_processing_utils import BatchFeature, get_size_dict
|
|
from transformers.image_transforms import (
|
|
convert_to_rgb,
|
|
normalize,
|
|
rescale,
|
|
resize,
|
|
to_channel_dimension_format,
|
|
)
|
|
from transformers.image_utils import (
|
|
ChannelDimension,
|
|
PILImageResampling,
|
|
to_numpy_array,
|
|
)
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torch.utils.checkpoint as checkpoint
|
|
from functools import partial
|
|
try:
|
|
from flash_attn import flash_attn_qkvpacked_func
|
|
except:
|
|
print("You need to install flash_attn")
|
|
from timm.layers import drop_path, to_2tuple, trunc_normal_
|
|
|
|
|
|
|
|
class DropPath(nn.Module):
|
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
|
"""
|
|
def __init__(self, drop_prob=None):
|
|
super(DropPath, self).__init__()
|
|
self.drop_prob = drop_prob
|
|
|
|
def forward(self, x):
|
|
return drop_path(x, self.drop_prob, self.training)
|
|
|
|
def extra_repr(self) -> str:
|
|
return 'p={}'.format(self.drop_prob)
|
|
|
|
|
|
class Mlp(nn.Module):
|
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
|
super().__init__()
|
|
out_features = out_features or in_features
|
|
hidden_features = hidden_features or in_features
|
|
self.fc1 = nn.Linear(in_features, hidden_features)
|
|
self.act = act_layer()
|
|
self.fc2 = nn.Linear(hidden_features, out_features)
|
|
self.drop = nn.Dropout(drop)
|
|
|
|
def forward(self, x):
|
|
x = self.fc1(x)
|
|
x = self.act(x)
|
|
x = self.drop(x)
|
|
x = self.fc2(x)
|
|
x = self.drop(x)
|
|
return x
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(
|
|
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
|
|
proj_drop=0., attn_head_dim=None,
|
|
attn_type='flash_v2'):
|
|
super().__init__()
|
|
self.num_heads = num_heads
|
|
head_dim = dim // num_heads
|
|
if attn_head_dim is not None:
|
|
head_dim = attn_head_dim
|
|
all_head_dim = head_dim * self.num_heads
|
|
self.scale = qk_scale or head_dim ** -0.5
|
|
|
|
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
|
|
if qkv_bias:
|
|
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
|
|
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
|
|
else:
|
|
self.q_bias = None
|
|
self.v_bias = None
|
|
|
|
if attn_type not in ['origin', 'flash_v2']:
|
|
raise NotImplementedError(f"Not support attn_type: {attn_type}")
|
|
|
|
# print('umt:', f'attn_type: {attn_type}')
|
|
|
|
self.attn_type = attn_type
|
|
if attn_type == 'flash_v2':
|
|
self.attn_drop = attn_drop
|
|
else:
|
|
self.attn_drop = nn.Dropout(attn_drop)
|
|
self.proj = nn.Linear(all_head_dim, dim)
|
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
|
|
def forward(self, x):
|
|
B, N, C = x.shape
|
|
qkv_bias = None
|
|
if self.q_bias is not None:
|
|
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
|
|
# qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
|
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
|
|
|
|
if self.attn_type == 'flash_v2':
|
|
qkv = qkv.reshape(B, N, 3, self.num_heads, -1)
|
|
x = flash_attn_qkvpacked_func(qkv, dropout_p=self.attn_drop, softmax_scale=self.scale, causal=False).reshape(B, N, -1)
|
|
else:
|
|
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
|
q, k, v = qkv[0], qkv[1], qkv[
|
|
2] # make torchscript happy (cannot use tensor as tuple)
|
|
# B num_heads N head_dim
|
|
|
|
q = q * self.scale
|
|
attn = (q @ k.transpose(-2, -1))
|
|
|
|
attn = attn.softmax(dim=-1)
|
|
attn = self.attn_drop(attn)
|
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
|
|
|
|
x = self.proj(x)
|
|
x = self.proj_drop(x)
|
|
return x
|
|
|
|
|
|
|
|
|
|
class Block(nn.Module):
|
|
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
|
drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
|
|
attn_head_dim=None):
|
|
super().__init__()
|
|
self.norm1 = norm_layer(dim)
|
|
self.attn = Attention(
|
|
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
|
attn_drop=attn_drop, proj_drop=drop, attn_head_dim=attn_head_dim)
|
|
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
self.norm2 = norm_layer(dim)
|
|
mlp_hidden_dim = int(dim * mlp_ratio)
|
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
|
|
|
if init_values > 0:
|
|
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
|
|
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
|
|
else:
|
|
self.gamma_1, self.gamma_2 = None, None
|
|
|
|
def forward(self, x):
|
|
if self.gamma_1 is None:
|
|
x = x + self.drop_path(self.attn(self.norm1(x)))
|
|
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
|
else:
|
|
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x)))
|
|
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
|
|
return x
|
|
|
|
|
|
class PatchEmbed(nn.Module):
|
|
""" Image to Patch Embedding
|
|
"""
|
|
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, num_frames=16, tubelet_size=2):
|
|
super().__init__()
|
|
img_size = to_2tuple(img_size)
|
|
patch_size = to_2tuple(patch_size)
|
|
self.tubelet_size = int(tubelet_size)
|
|
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) * (num_frames // self.tubelet_size)
|
|
self.img_size = img_size
|
|
self.patch_size = patch_size
|
|
self.num_patches = num_patches
|
|
self.proj = nn.Conv3d(
|
|
in_channels=in_chans, out_channels=embed_dim,
|
|
kernel_size=(self.tubelet_size, patch_size[0], patch_size[1]),
|
|
stride=(self.tubelet_size, patch_size[0], patch_size[1])
|
|
)
|
|
# print('umt:', f'Num of patches: {num_patches}')
|
|
|
|
def forward(self, x, **kwargs):
|
|
B, C, T, H, W = x.shape
|
|
# FIXME look at relaxing size constraints
|
|
# assert H == self.img_size[0] and W == self.img_size[1], \
|
|
# f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
|
x = self.proj(x).flatten(2).transpose(1, 2)
|
|
return x
|
|
|
|
# sin-cos position encoding
|
|
# https://github.com/jadore801120/attention-is-all-you-need-pytorch/blob/master/transformer/Models.py#L31
|
|
def get_sinusoid_encoding_table(n_position, d_hid, ckpt_num_frame=-1, cur_frame=12):
|
|
''' Sinusoid position encoding table '''
|
|
# TODO: make it with torch instead of numpy
|
|
def get_position_angle_vec(position):
|
|
return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)]
|
|
|
|
if ckpt_num_frame != -1 and ckpt_num_frame != cur_frame:
|
|
# print('umt:', f"Interpolate position embedding")
|
|
# print('umt:', f"Testing frame: {cur_frame}")
|
|
# print('umt:', f"Checkpoint frame: {ckpt_num_frame}")
|
|
|
|
T = ckpt_num_frame # checkpoint frame
|
|
new_T = cur_frame # testing frame
|
|
n_position = n_position // new_T * T # generate checkpoint position embedding
|
|
sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)])
|
|
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
|
|
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
|
|
sinusoid_table = torch.tensor(sinusoid_table, dtype=torch.float, requires_grad=False).unsqueeze(0)
|
|
# interpolate
|
|
P = int((n_position // T) ** 0.5)
|
|
C = d_hid
|
|
sinusoid_table = sinusoid_table.reshape(-1, T, P, P, C)
|
|
sinusoid_table = sinusoid_table.permute(0, 2, 3, 4, 1).reshape(-1, C, T) # BHW, C, T
|
|
sinusoid_table = torch.nn.functional.interpolate(sinusoid_table, size=new_T, mode='linear')
|
|
sinusoid_table = sinusoid_table.reshape(1, P, P, C, new_T).permute(0, 4, 1, 2, 3) # B, T, H, W, C
|
|
sinusoid_table = sinusoid_table.flatten(1, 3)
|
|
return sinusoid_table
|
|
else:
|
|
sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)])
|
|
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
|
|
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
|
|
return torch.tensor(sinusoid_table, dtype=torch.float, requires_grad=False).unsqueeze(0)
|
|
|
|
|
|
def get_sinusoid_encoding_table2(n_position=784, d_hid=1024, cur_frame=8, ckpt_num_frame=4, pre_n_position=784):
|
|
''' Sinusoid position encoding table '''
|
|
# TODO: make it with torch instead of numpy
|
|
def get_position_angle_vec(position):
|
|
return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)]
|
|
|
|
# generate checkpoint position embedding
|
|
sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(pre_n_position)])
|
|
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
|
|
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
|
|
sinusoid_table = torch.tensor(sinusoid_table, dtype=torch.float, requires_grad=False).unsqueeze(0)
|
|
|
|
# print(f"n_position: {n_position}")
|
|
# print(f"pre_n_position: {pre_n_position}")
|
|
|
|
if n_position != pre_n_position:
|
|
T = ckpt_num_frame # checkpoint frame
|
|
P = 14 # checkpoint size
|
|
C = d_hid
|
|
new_P = int((n_position // cur_frame) ** 0.5) # testing size
|
|
# print(f'Pretraining uses 14x14, but current version is {new_P}x{new_P}')
|
|
# print(f'Interpolate the position embedding')
|
|
sinusoid_table = sinusoid_table.reshape(-1, T, P, P, C)
|
|
sinusoid_table = sinusoid_table.reshape(-1, P, P, C).permute(0, 3, 1, 2)
|
|
sinusoid_table = torch.nn.functional.interpolate(
|
|
sinusoid_table, size=(new_P, new_P), mode='bicubic', align_corners=False)
|
|
# BT, C, H, W -> BT, H, W, C -> B, T, H, W, C
|
|
sinusoid_table = sinusoid_table.permute(0, 2, 3, 1).reshape(-1, T, new_P, new_P, C)
|
|
sinusoid_table = sinusoid_table.flatten(1, 3) # B, THW, C
|
|
|
|
if cur_frame != ckpt_num_frame:
|
|
# print(f'Pretraining uses 4 frames, but current frame is {cur_frame}')
|
|
# print(f'Interpolate the position embedding')
|
|
T = ckpt_num_frame # checkpoint frame
|
|
new_T = cur_frame # testing frame
|
|
# interpolate
|
|
P = int((n_position // cur_frame) ** 0.5) # testing size
|
|
C = d_hid
|
|
sinusoid_table = sinusoid_table.reshape(-1, T, P, P, C)
|
|
sinusoid_table = sinusoid_table.permute(0, 2, 3, 4, 1).reshape(-1, C, T) # BHW, C, T
|
|
sinusoid_table = torch.nn.functional.interpolate(sinusoid_table, size=new_T, mode='linear')
|
|
sinusoid_table = sinusoid_table.reshape(1, P, P, C, new_T).permute(0, 4, 1, 2, 3) # B, T, H, W, C
|
|
sinusoid_table = sinusoid_table.flatten(1, 3) # B, THW, C
|
|
|
|
return sinusoid_table
|
|
|
|
|
|
class PretrainVisionTransformerEncoder(nn.Module):
|
|
""" Vision Transformer with support for patch or hybrid CNN input stage
|
|
"""
|
|
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, depth=12,
|
|
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
|
|
drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, num_frames=8, tubelet_size=1,
|
|
use_learnable_pos_emb=False,
|
|
use_checkpoint=False, checkpoint_num=0,
|
|
ckpt_num_frame=-1, with_ln=True, return_index=-1
|
|
):
|
|
super().__init__()
|
|
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
|
self.patch_embed = PatchEmbed(
|
|
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
|
|
num_frames=num_frames, tubelet_size=tubelet_size
|
|
)
|
|
num_patches = self.patch_embed.num_patches
|
|
self.depth = depth + return_index + 1
|
|
self.use_checkpoint = use_checkpoint
|
|
self.checkpoint_num = checkpoint_num
|
|
# print('umt:', f"Use checkpoint: {use_checkpoint}")
|
|
# print('umt:', f"Checkpoint number: {checkpoint_num}")
|
|
# print('UMT:', f"Real runing depth: {self.depth}")
|
|
|
|
# TODO: Add the cls token
|
|
if use_learnable_pos_emb:
|
|
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
|
|
self.img_pos_embed = nn.Parameter(torch.zeros(1, num_patches//(num_frames//tubelet_size) + 1, embed_dim))
|
|
else:
|
|
# sine-cosine positional embeddings
|
|
if img_size != 224:
|
|
self.pos_embed = get_sinusoid_encoding_table2(num_patches, embed_dim, ckpt_num_frame=ckpt_num_frame, cur_frame=num_frames//tubelet_size)
|
|
self.img_pos_embed = get_sinusoid_encoding_table2(num_patches//(num_frames//tubelet_size), embed_dim, cur_frame=1, ckpt_num_frame=1, pre_n_position=14*14)
|
|
else:
|
|
self.pos_embed = get_sinusoid_encoding_table(num_patches, embed_dim, ckpt_num_frame=ckpt_num_frame, cur_frame=num_frames//tubelet_size)
|
|
self.img_pos_embed = get_sinusoid_encoding_table(num_patches//(num_frames//tubelet_size), embed_dim)
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
|
self.blocks = nn.ModuleList([
|
|
Block(
|
|
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
|
|
init_values=init_values)
|
|
for i in range(self.depth)])
|
|
|
|
if with_ln:
|
|
self.vision_layernorm = nn.LayerNorm(embed_dim, eps=1e-12)
|
|
else:
|
|
self.vision_layernorm = nn.Identity()
|
|
|
|
if use_learnable_pos_emb:
|
|
trunc_normal_(self.pos_embed, std=.02)
|
|
|
|
@torch.jit.ignore
|
|
def no_weight_decay(self):
|
|
return {'pos_embed', 'cls_token'}
|
|
|
|
def forward_features(self, x, use_image=False):
|
|
x = self.patch_embed(x)
|
|
|
|
if use_image:
|
|
x = x + self.img_pos_embed.type_as(x).to(x.device).clone().detach()
|
|
else:
|
|
x = x + self.pos_embed.type_as(x).to(x.device).clone().detach()
|
|
|
|
B, _, C = x.shape
|
|
x_vis = x
|
|
|
|
for idx, blk in enumerate(self.blocks):
|
|
if self.use_checkpoint and idx < self.checkpoint_num:
|
|
x_vis = checkpoint.checkpoint(blk, x_vis)
|
|
else:
|
|
x_vis = blk(x_vis)
|
|
|
|
# with ln ot not
|
|
x_vis = self.vision_layernorm(x_vis)
|
|
return x_vis
|
|
|
|
def forward(self, x, use_image=False):
|
|
x_vis = self.forward_features(x, use_image)
|
|
return x_vis
|
|
|
|
|
|
class PretrainVisionTransformer(nn.Module):
|
|
""" Vision Transformer with support for patch or hybrid CNN input stage
|
|
"""
|
|
def __init__(self,
|
|
img_size=224,
|
|
patch_size=16,
|
|
encoder_in_chans=3,
|
|
encoder_embed_dim=768,
|
|
encoder_depth=12,
|
|
encoder_num_heads=12,
|
|
mlp_ratio=4.,
|
|
qkv_bias=True,
|
|
qk_scale=None,
|
|
drop_rate=0.,
|
|
attn_drop_rate=0.,
|
|
drop_path_rate=0.,
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
|
init_values=0.,
|
|
use_learnable_pos_emb=False,
|
|
num_frames=8,
|
|
tubelet_size=1,
|
|
use_checkpoint=False,
|
|
checkpoint_num=0,
|
|
ckpt_num_frame=4, # the pretrained model uses 4 frames
|
|
return_index=-1,
|
|
with_ln=False
|
|
):
|
|
super().__init__()
|
|
|
|
self.encoder = PretrainVisionTransformerEncoder(
|
|
img_size=img_size,
|
|
patch_size=patch_size,
|
|
in_chans=encoder_in_chans,
|
|
embed_dim=encoder_embed_dim,
|
|
depth=encoder_depth,
|
|
num_heads=encoder_num_heads,
|
|
mlp_ratio=mlp_ratio,
|
|
qkv_bias=qkv_bias,
|
|
qk_scale=qk_scale,
|
|
drop_rate=drop_rate,
|
|
attn_drop_rate=attn_drop_rate,
|
|
drop_path_rate=drop_path_rate,
|
|
norm_layer=norm_layer,
|
|
init_values=init_values,
|
|
num_frames=num_frames,
|
|
tubelet_size=tubelet_size,
|
|
use_learnable_pos_emb=use_learnable_pos_emb,
|
|
use_checkpoint=use_checkpoint,
|
|
checkpoint_num=checkpoint_num,
|
|
ckpt_num_frame=ckpt_num_frame,
|
|
with_ln=with_ln,
|
|
return_index=return_index
|
|
)
|
|
# print('umt:', f'With LN: {with_ln}')
|
|
# print('UMT:', f'Total {encoder_depth} layer')
|
|
# print('UMT:', f'Return {encoder_depth+return_index+1}-th layer')
|
|
|
|
self.apply(self._init_weights)
|
|
|
|
def _init_weights(self, m):
|
|
if isinstance(m, nn.Linear):
|
|
nn.init.xavier_uniform_(m.weight)
|
|
if isinstance(m, nn.Linear) and m.bias is not None:
|
|
nn.init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.LayerNorm):
|
|
nn.init.constant_(m.bias, 0)
|
|
nn.init.constant_(m.weight, 1.0)
|
|
|
|
@torch.jit.ignore
|
|
def no_weight_decay(self):
|
|
return {'pos_embed', 'cls_token', 'clip_pos_embed'}
|
|
|
|
def forward(self, x, use_image=False):
|
|
T = x.shape[2]
|
|
x_vis = self.encoder(x, use_image) # [B, N_vis, C_e]
|
|
B, TL, C = x_vis.shape
|
|
x_vis = x_vis.view(B, T, TL // T, C)
|
|
|
|
return x_vis
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class UMTImageProcessor:
|
|
def __init__(self, image_mean=(0.485, 0.456, 0.406), image_std=(0.229, 0.224, 0.225), size=(224, 224), crop_size: Dict[str, int] = None, resample=PILImageResampling.BICUBIC, rescale_factor=1 / 255, data_format=ChannelDimension.FIRST):
|
|
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
|
|
crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size")
|
|
|
|
self.image_mean = image_mean
|
|
self.image_std = image_std
|
|
self.size = size
|
|
self.resample = resample
|
|
self.rescale_factor = rescale_factor
|
|
self.data_format = data_format
|
|
self.crop_size = crop_size
|
|
|
|
def preprocess(self, images, return_tensors, target_size=None):
|
|
if isinstance(images, Image.Image):
|
|
images = [images]
|
|
else:
|
|
# to adapt video data
|
|
images = [to_numpy_array(image) for image in images]
|
|
assert isinstance(images, list)
|
|
|
|
if target_size is None:
|
|
target_size = self.size
|
|
|
|
transforms = [
|
|
convert_to_rgb,
|
|
to_numpy_array,
|
|
partial(resize, size=target_size, resample=self.resample, data_format=self.data_format),
|
|
partial(rescale, scale=self.rescale_factor, data_format=self.data_format),
|
|
partial(normalize, mean=self.image_mean, std=self.image_std, data_format=self.data_format),
|
|
partial(to_channel_dimension_format, channel_dim=self.data_format, input_channel_dim=self.data_format),
|
|
]
|
|
|
|
images = reduce(lambda x, f: [*map(f, x)], transforms, images)
|
|
data = {"pixel_values": images}
|
|
|
|
return BatchFeature(data=data, tensor_type=return_tensors)
|
|
|
|
|
|
class UMTVisionConfig:
|
|
model_type = "umt_vision_model"
|
|
|
|
def __init__(
|
|
self,
|
|
num_frames=4,
|
|
hidden_size=1024,
|
|
num_hidden_layers=24,
|
|
num_attention_heads=16,
|
|
num_channels=3,
|
|
image_size=224,
|
|
patch_size=16,
|
|
return_idx=-2
|
|
# **kwargs,
|
|
):
|
|
# super().__init__(**kwargs)
|
|
self.num_frames = num_frames
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.num_channels = num_channels
|
|
self.patch_size = patch_size
|
|
self.image_size = image_size
|
|
self.return_idx = return_idx
|
|
|
|
|
|
def build_vit(config, pt_type='origin'):
|
|
model = PretrainVisionTransformer(
|
|
img_size=config.image_size,
|
|
patch_size=16,
|
|
encoder_embed_dim=1024,
|
|
encoder_depth=24,
|
|
encoder_num_heads=16,
|
|
drop_path_rate=0.,
|
|
num_frames=config.num_frames,
|
|
tubelet_size=1,
|
|
use_checkpoint=False,
|
|
checkpoint_num=24,
|
|
return_index=config.return_idx,
|
|
with_ln=True, # merge vision_layernorm in it
|
|
)
|
|
|
|
# no need to load pt
|
|
|
|
return model
|
|
|
|
|
|
|
|
class UMTVisionTower(nn.Module):
|
|
def __init__(self, vision_tower, vision_tower_cfg, delay_load=False, pt_type='origin', image_size=224):
|
|
super().__init__()
|
|
|
|
self.is_loaded = False
|
|
self.pt_type = pt_type
|
|
|
|
self.config = UMTVisionConfig(num_frames=vision_tower_cfg.mm_local_num_frames, return_idx=vision_tower_cfg.mm_vision_select_layer, image_size=image_size)
|
|
|
|
self.vision_tower_name = vision_tower
|
|
|
|
self.image_processor = UMTImageProcessor(size=(image_size, image_size))
|
|
|
|
if not delay_load:
|
|
print(f"Loading vision tower: {vision_tower}")
|
|
self.load_model()
|
|
elif getattr(vision_tower_cfg, "unfreeze_mm_vision_tower", False):
|
|
# TODO: better detector is needed.
|
|
print(f"The checkpoint seems to contain `vision_tower` weights: `unfreeze_mm_vision_tower`: True.")
|
|
self.load_model()
|
|
elif hasattr(vision_tower_cfg, "mm_tunable_parts") and "mm_vision_tower" in vision_tower_cfg.mm_tunable_parts:
|
|
print(f"The checkpoint seems to contain `vision_tower` weights: `mm_tunable_parts` contains `mm_vision_tower`.")
|
|
self.load_model()
|
|
else:
|
|
self.cfg_only = self.config
|
|
|
|
def load_model(self, device_map=None):
|
|
if self.is_loaded:
|
|
print("{} is already loaded, `load_model` called again, skipping.".format(self.vision_tower_name))
|
|
return
|
|
|
|
self.vision_tower = build_vit(self.config, pt_type=self.pt_type)
|
|
self.vision_tower.requires_grad_(False)
|
|
|
|
self.is_loaded = True
|
|
|
|
def forward(self, images):
|
|
if type(images) is list:
|
|
raise NotImplementedError
|
|
else:
|
|
# input: B T C H W
|
|
# output: B T*L C
|
|
T = images.shape[1]
|
|
images = images.permute(0, 2, 1, 3, 4)
|
|
image_embeds = self.vision_tower(images, use_image=(T == 1))
|
|
B, T, L, C = image_embeds.shape
|
|
image_embeds = image_embeds.reshape(B, -1, C)
|
|
|
|
return image_embeds
|
|
|
|
@property
|
|
def dummy_feature(self):
|
|
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
|
|
|
|
@property
|
|
def dtype(self):
|
|
for p in self.vision_tower.parameters():
|
|
return p.dtype
|
|
|
|
@property
|
|
def device(self):
|
|
for p in self.vision_tower.parameters():
|
|
return p.device
|
|
|
|
@property
|
|
def hidden_size(self):
|
|
return self.config.hidden_size
|
|
|
|
@property
|
|
def num_patches(self):
|
|
return (self.config.image_size // self.config.patch_size) ** 2
|
|
|
|
@property
|
|
def num_patches_per_side(self):
|
|
return self.config.image_size // self.config.patch_size
|
|
|
|
@property
|
|
def image_size(self):
|
|
return self.config.image_size
|
|
|
|
|
|
def build_vision_tower(vision_tower_cfg, **kwargs):
|
|
vision_tower = getattr(vision_tower_cfg, "mm_vision_tower", getattr(vision_tower_cfg, "vision_tower", None))
|
|
|
|
|
|
if "umt-hd" in vision_tower:
|
|
return UMTVisionTower(vision_tower, vision_tower_cfg=vision_tower_cfg, image_size=448, **kwargs)
|
|
elif "umt" in vision_tower:
|
|
raise NotImplementedError
|
|
return UMTVisionTower(vision_tower, vision_tower_cfg=vision_tower_cfg, **kwargs)
|
|
|
|
raise ValueError(f"Unknown vision tower: {vision_tower}") |