first commit
This commit is contained in:
parent
33be4bf146
commit
df22d41f6d
176
README.md
176
README.md
|
@ -1,3 +1,175 @@
|
|||
# aya-vision-8b
|
||||
---
|
||||
inference: false
|
||||
library_name: transformers
|
||||
language:
|
||||
- en
|
||||
- fr
|
||||
- de
|
||||
- es
|
||||
- it
|
||||
- pt
|
||||
- ja
|
||||
- ko
|
||||
- zh
|
||||
- ar
|
||||
- el
|
||||
- fa
|
||||
- pl
|
||||
- id
|
||||
- cs
|
||||
- he
|
||||
- hi
|
||||
- nl
|
||||
- ro
|
||||
- ru
|
||||
- tr
|
||||
- uk
|
||||
- vi
|
||||
license: cc-by-nc-4.0
|
||||
extra_gated_prompt: >-
|
||||
By submitting this form, you agree to the [License
|
||||
Agreement](https://cohere.com/c4ai-cc-by-nc-license) and acknowledge that the
|
||||
information you provide will be collected, used, and shared in accordance with
|
||||
Cohere’s [Privacy Policy]( https://cohere.com/privacy). You’ll receive email
|
||||
updates about C4AI and Cohere research, events, products and services. You can
|
||||
unsubscribe at any time.
|
||||
extra_gated_fields:
|
||||
Name: text
|
||||
Affiliation: text
|
||||
Country: country
|
||||
I agree to use this model for non-commercial use ONLY: checkbox
|
||||
pipeline_tag: image-text-to-text
|
||||
---
|
||||
|
||||
aya-vision-8b
|
||||
# Model Card for Aya Vision 8B
|
||||
|
||||
<img src="aya-vision-8B.png" width="650" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
|
||||
|
||||
**C4AI Aya Vision 8B** is an open weights research release of an 8-billion parameter model with advanced capabilities optimized for a variety of vision-language use cases, including OCR, captioning, visual reasoning, summarization, question answering, code, and more.
|
||||
It is a multilingual model trained to excel in 23 languages in vision and language.
|
||||
|
||||
This model card corresponds to the 8-billion version of the Aya Vision model. We also released a 32-billion version which you can find [here](https://huggingface.co/CohereForAI/aya-vision-32B).
|
||||
|
||||
- Developed by: [Cohere For AI](https://cohere.for.ai/)
|
||||
- Point of Contact: Cohere For AI: [cohere.for.ai](https://cohere.for.ai/)
|
||||
- License: [CC-BY-NC](https://cohere.com/c4ai-cc-by-nc-license), requires also adhering to [C4AI's Acceptable Use Policy](https://docs.cohere.com/docs/c4ai-acceptable-use-policy)
|
||||
- Model: c4ai-aya-vision-8b
|
||||
- Model Size: 8 billion parameters
|
||||
- Context length: 16K
|
||||
|
||||
## Try it: Aya Vision in Action
|
||||
|
||||
Before downloading the weights, you can try Aya Vision chat in the [Cohere playground](https://dashboard.cohere.com/playground/chat) or our dedicated [Hugging Face Space](https://huggingface.co/spaces/CohereForAI/aya_expanse) for interactive exploration.
|
||||
|
||||
## WhatsApp Integration
|
||||
|
||||
You can also talk to Aya Vision through the popular messaging service WhatsApp. Use this [link](https://wa.me/14313028498) to open a WhatsApp chatbox with Aya Vision.
|
||||
|
||||
If you don’t have WhatsApp downloaded on your machine you might need to do that, or, if you have it on your phone, you can follow the on-screen instructions to link your phone and WhatsApp Web.
|
||||
By the end, you should see a text window which you can use to chat with the model.
|
||||
More details about our WhatsApp integration are available [here](https://docs.cohere.com/v2/docs/aya#aya-expanse-integration-with-whatsapp).
|
||||
|
||||
## Example Notebook
|
||||
|
||||
You can also check out the following [notebook](https://colab.research.google.com/github/cohere-ai/cohere-developer-experience/blob/main/notebooks/guides/aya_vision_intro.ipynb) to understand how to use Aya Vision for different use cases.
|
||||
|
||||
## How to Use Aya Vision
|
||||
|
||||
Please install `transformers` from the source repository that includes the necessary changes for this model:
|
||||
|
||||
```python
|
||||
# pip install 'git+https://github.com/huggingface/transformers.git@v4.49.0-AyaVision'
|
||||
from transformers import AutoProcessor, AutoModelForImageTextToText
|
||||
import torch
|
||||
|
||||
model_id = "CohereForAI/aya-vision-8b"
|
||||
|
||||
processor = AutoProcessor.from_pretrained(model_id)
|
||||
model = AutoModelForImageTextToText.from_pretrained(
|
||||
model_id, device_map="auto", torch_dtype=torch.float16
|
||||
)
|
||||
|
||||
# Format message with the aya-vision chat template
|
||||
messages = [
|
||||
{"role": "user",
|
||||
"content": [
|
||||
{"type": "image", "url": "https://pbs.twimg.com/media/Fx7YvfQWYAIp6rZ?format=jpg&name=medium"},
|
||||
{"type": "text", "text": "चित्र में लिखा पाठ क्या कहता है?"},
|
||||
]},
|
||||
]
|
||||
|
||||
inputs = processor.apply_chat_template(
|
||||
messages, padding=True, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt"
|
||||
).to(model.device)
|
||||
|
||||
gen_tokens = model.generate(
|
||||
**inputs,
|
||||
max_new_tokens=300,
|
||||
do_sample=True,
|
||||
temperature=0.3,
|
||||
)
|
||||
|
||||
print(processor.tokenizer.decode(gen_tokens[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
||||
```
|
||||
|
||||
|
||||
You can also use the model directly using transformers `pipeline` abstraction:
|
||||
|
||||
```python
|
||||
from transformers import pipeline
|
||||
|
||||
pipe = pipeline(model="CohereForAI/aya-vision-8b", task="image-text-to-text", device_map="auto")
|
||||
|
||||
# Format message with the aya-vision chat template
|
||||
messages = [
|
||||
{"role": "user",
|
||||
"content": [
|
||||
{"type": "image", "url": "https://media.istockphoto.com/id/458012057/photo/istanbul-turkey.jpg?s=612x612&w=0&k=20&c=qogAOVvkpfUyqLUMr_XJQyq-HkACXyYUSZbKhBlPrxo="},
|
||||
{"type": "text", "text": "Bu resimde hangi anıt gösterilmektedir?"},
|
||||
]},
|
||||
]
|
||||
outputs = pipe(text=messages, max_new_tokens=300, return_full_text=False)
|
||||
|
||||
print(outputs)
|
||||
```
|
||||
|
||||
## Model Details
|
||||
|
||||
**Input:** Model accepts input text and images.
|
||||
|
||||
**Output:** Model generates text.
|
||||
|
||||
**Model Architecture:** This is a vision-language model that uses a multilingual language model based on [C4AI Command R7B](https://huggingface.co/CohereForAI/c4ai-command-r7b-12-2024) and further post-trained with the [Aya Expanse recipe](https://arxiv.org/abs/2412.04261), paired with [SigLIP2-patch14-384](https://huggingface.co/google/siglip2-so400m-patch14-384) vision encoder through a multimodal adapter for vision-language understanding.
|
||||
|
||||
**Image Processing:** We use **169 visual tokens** to encode an image tile with a resolution of **364x364 pixels**. Input images of arbitrary sizes are mapped to the nearest supported resolution based on the aspect ratio. Aya Vision uses up to 12 input tiles and a thumbnail (resized to 364x364) (2197 image tokens).
|
||||
|
||||
**Languages covered:** The model has been trained on 23 languages: English, French, Spanish, Italian, German, Portuguese, Japanese, Korean, Arabic, Chinese (Simplified and Traditional), Russian, Polish, Turkish, Vietnamese, Dutch, Czech, Indonesian, Ukrainian, Romanian, Greek, Hindi, Hebrew, and Persian.
|
||||
|
||||
**Context length**: Aya Vision 8B supports a context length of 16K.
|
||||
|
||||
For more details about how the model was trained, check out [our blogpost](https://huggingface.co/blog/aya-vision).
|
||||
|
||||
|
||||
## Evaluation
|
||||
|
||||
We evaluated Aya Vision 8B against [Pangea 7B](https://huggingface.co/neulab/Pangea-7B), [Llama-3.2 11B Vision](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision), [Molmo-D 7B](https://huggingface.co/allenai/Molmo-7B-D-0924), [Qwen2.5-VL 7B](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct), [Pixtral 12B](https://huggingface.co/mistralai/Pixtral-12B-2409), and [Gemini Flash 1.5 8B](https://developers.googleblog.com/en/gemini-15-flash-8b-is-now-generally-available-for-use/) using [Aya Vision Benchmark](https://huggingface.co/datasets/CohereForAI/AyaVisionBench) and [m-WildVision](https://huggingface.co/datasets/CohereForAI/m-WildVision).
|
||||
Win-rates were determined using claude-3-7-sonnet-20250219 as a judge, based on the superior judge performance compared to other models.
|
||||
|
||||
We also evaluated Aya Vision 8B’s performance for text-only input against the same models using [m-ArenaHard](https://huggingface.co/datasets/CohereForAI/m-ArenaHard), a challenging open-ended generation evaluation, measured using win-rates using gpt-4o-2024-11-20 as a judge.
|
||||
|
||||
<!-- <img src="Aya_Vision_8B_Combined_Win_Rates.png" width="650" style="margin-left:'auto' margin-right:'auto' display:'block'"/> -->
|
||||
<img src="AyaVision8BWinRates(AyaVisionBench).png" width="650" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
|
||||
<img src="AyaVision8BWinRates(m-WildVision).png" width="650" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
|
||||
<img src="Aya_Vision_8BvsPangea(AyaVisionBench).png" width="650" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
|
||||
<img src="EfficiencyvsPerformance.png" width="650" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
|
||||
|
||||
|
||||
### Model Card Contact
|
||||
|
||||
For errors or additional questions about details in this model card, contact info@for.ai.
|
||||
|
||||
### Terms of Use
|
||||
|
||||
We hope that the release of this model will make community-based research efforts more accessible by releasing the weights of a highly performant 8 billion parameter Vision-Language Model to researchers all over the world.
|
||||
|
||||
This model is governed by a [CC-BY-NC](https://cohere.com/c4ai-cc-by-nc-license) License with an acceptable use addendum, and also requires adhering to [C4AI's Acceptable Use Policy](https://docs.cohere.com/docs/c4ai-acceptable-use-policy).
|
Loading…
Reference in New Issue