first commit

This commit is contained in:
xxl 2024-11-13 11:10:24 +08:00
parent a7efa2bf4b
commit 97dd36a344
9 changed files with 50151 additions and 2 deletions

View File

@ -1,3 +1,62 @@
# bart-base_a13579706051194880100888
---
license: apache-2.0
language: en
---
bart-base
# BART (base-sized model)
BART model pre-trained on English language. It was introduced in the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Lewis et al. and first released in [this repository](https://github.com/pytorch/fairseq/tree/master/examples/bart).
Disclaimer: The team releasing BART did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
BART is a transformer encoder-decoder (seq2seq) model with a bidirectional (BERT-like) encoder and an autoregressive (GPT-like) decoder. BART is pre-trained by (1) corrupting text with an arbitrary noising function, and (2) learning a model to reconstruct the original text.
BART is particularly effective when fine-tuned for text generation (e.g. summarization, translation) but also works well for comprehension tasks (e.g. text classification, question answering).
## Intended uses & limitations
You can use the raw model for text infilling. However, the model is mostly meant to be fine-tuned on a supervised dataset. See the [model hub](https://huggingface.co/models?search=bart) to look for fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model in PyTorch:
```python
from transformers import BartTokenizer, BartModel
tokenizer = BartTokenizer.from_pretrained('facebook/bart-base')
model = BartModel.from_pretrained('facebook/bart-base')
inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
outputs = model(**inputs)
last_hidden_states = outputs.last_hidden_state
```
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1910-13461,
author = {Mike Lewis and
Yinhan Liu and
Naman Goyal and
Marjan Ghazvininejad and
Abdelrahman Mohamed and
Omer Levy and
Veselin Stoyanov and
Luke Zettlemoyer},
title = {{BART:} Denoising Sequence-to-Sequence Pre-training for Natural Language
Generation, Translation, and Comprehension},
journal = {CoRR},
volume = {abs/1910.13461},
year = {2019},
url = {http://arxiv.org/abs/1910.13461},
eprinttype = {arXiv},
eprint = {1910.13461},
timestamp = {Thu, 31 Oct 2019 14:02:26 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1910-13461.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```

75
config.json Normal file
View File

@ -0,0 +1,75 @@
{
"_name_or_path": "bart-base",
"activation_dropout": 0.1,
"activation_function": "gelu",
"add_bias_logits": false,
"add_final_layer_norm": false,
"architectures": [
"BartModel"
],
"attention_dropout": 0.1,
"bos_token_id": 0,
"classif_dropout": 0.1,
"classifier_dropout": 0.0,
"d_model": 768,
"decoder_attention_heads": 12,
"decoder_ffn_dim": 3072,
"decoder_layerdrop": 0.0,
"decoder_layers": 6,
"decoder_start_token_id": 2,
"dropout": 0.1,
"early_stopping": true,
"encoder_attention_heads": 12,
"encoder_ffn_dim": 3072,
"encoder_layerdrop": 0.0,
"encoder_layers": 6,
"eos_token_id": 2,
"forced_eos_token_id": 2,
"forced_bos_token_id": 0,
"gradient_checkpointing": false,
"id2label": {
"0": "LABEL_0",
"1": "LABEL_1",
"2": "LABEL_2"
},
"init_std": 0.02,
"is_encoder_decoder": true,
"label2id": {
"LABEL_0": 0,
"LABEL_1": 1,
"LABEL_2": 2
},
"max_position_embeddings": 1024,
"model_type": "bart",
"no_repeat_ngram_size": 3,
"normalize_before": false,
"normalize_embedding": true,
"num_beams": 4,
"num_hidden_layers": 6,
"pad_token_id": 1,
"scale_embedding": false,
"task_specific_params": {
"summarization": {
"length_penalty": 1.0,
"max_length": 128,
"min_length": 12,
"num_beams": 4
},
"summarization_cnn": {
"length_penalty": 2.0,
"max_length": 142,
"min_length": 56,
"num_beams": 4
},
"summarization_xsum": {
"length_penalty": 1.0,
"max_length": 62,
"min_length": 11,
"num_beams": 6
}
},
"torch_dtype": "float32",
"transformers_version": "4.12.0.dev0",
"use_cache": true,
"vocab_size": 50265
}

BIN
flax_model.msgpack (Stored with Git LFS) Normal file

Binary file not shown.

50001
merges.txt Normal file

File diff suppressed because it is too large Load Diff

BIN
model.safetensors (Stored with Git LFS) Normal file

Binary file not shown.

BIN
pytorch_model.bin (Stored with Git LFS) Normal file

Binary file not shown.

BIN
tf_model.h5 (Stored with Git LFS) Normal file

Binary file not shown.

1
tokenizer.json Normal file

File diff suppressed because one or more lines are too long

1
vocab.json Normal file

File diff suppressed because one or more lines are too long