first commit
This commit is contained in:
parent
2586f12357
commit
9a32288c26
545
README.md
545
README.md
|
@ -1,3 +1,544 @@
|
|||
# canary-1b
|
||||
---
|
||||
license: cc-by-nc-4.0
|
||||
language:
|
||||
- en
|
||||
- de
|
||||
- es
|
||||
- fr
|
||||
library_name: nemo
|
||||
datasets:
|
||||
- librispeech_asr
|
||||
- fisher_corpus
|
||||
- Switchboard-1
|
||||
- WSJ-0
|
||||
- WSJ-1
|
||||
- National-Singapore-Corpus-Part-1
|
||||
- National-Singapore-Corpus-Part-6
|
||||
- vctk
|
||||
- voxpopuli
|
||||
- europarl
|
||||
- multilingual_librispeech
|
||||
- mozilla-foundation/common_voice_8_0
|
||||
- MLCommons/peoples_speech
|
||||
thumbnail: null
|
||||
tags:
|
||||
- automatic-speech-recognition
|
||||
- automatic-speech-translation
|
||||
- speech
|
||||
- audio
|
||||
- Transformer
|
||||
- FastConformer
|
||||
- Conformer
|
||||
- pytorch
|
||||
- NeMo
|
||||
- hf-asr-leaderboard
|
||||
widget:
|
||||
- example_title: Librispeech sample 1
|
||||
src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
|
||||
- example_title: Librispeech sample 2
|
||||
src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
|
||||
model-index:
|
||||
- name: canary-1b
|
||||
results:
|
||||
- task:
|
||||
name: Automatic Speech Recognition
|
||||
type: automatic-speech-recognition
|
||||
dataset:
|
||||
name: LibriSpeech (other)
|
||||
type: librispeech_asr
|
||||
config: other
|
||||
split: test
|
||||
args:
|
||||
language: en
|
||||
metrics:
|
||||
- name: Test WER
|
||||
type: wer
|
||||
value: 2.89
|
||||
- task:
|
||||
type: Automatic Speech Recognition
|
||||
name: automatic-speech-recognition
|
||||
dataset:
|
||||
name: SPGI Speech
|
||||
type: kensho/spgispeech
|
||||
config: test
|
||||
split: test
|
||||
args:
|
||||
language: en
|
||||
metrics:
|
||||
- name: Test WER
|
||||
type: wer
|
||||
value: 4.79
|
||||
- task:
|
||||
type: Automatic Speech Recognition
|
||||
name: automatic-speech-recognition
|
||||
dataset:
|
||||
name: Mozilla Common Voice 16.1
|
||||
type: mozilla-foundation/common_voice_16_1
|
||||
config: en
|
||||
split: test
|
||||
args:
|
||||
language: en
|
||||
metrics:
|
||||
- name: Test WER (En)
|
||||
type: wer
|
||||
value: 7.97
|
||||
- task:
|
||||
type: Automatic Speech Recognition
|
||||
name: automatic-speech-recognition
|
||||
dataset:
|
||||
name: Mozilla Common Voice 16.1
|
||||
type: mozilla-foundation/common_voice_16_1
|
||||
config: de
|
||||
split: test
|
||||
args:
|
||||
language: de
|
||||
metrics:
|
||||
- name: Test WER (De)
|
||||
type: wer
|
||||
value: 4.61
|
||||
- task:
|
||||
type: Automatic Speech Recognition
|
||||
name: automatic-speech-recognition
|
||||
dataset:
|
||||
name: Mozilla Common Voice 16.1
|
||||
type: mozilla-foundation/common_voice_16_1
|
||||
config: es
|
||||
split: test
|
||||
args:
|
||||
language: es
|
||||
metrics:
|
||||
- name: Test WER (ES)
|
||||
type: wer
|
||||
value: 3.99
|
||||
- task:
|
||||
type: Automatic Speech Recognition
|
||||
name: automatic-speech-recognition
|
||||
dataset:
|
||||
name: Mozilla Common Voice 16.1
|
||||
type: mozilla-foundation/common_voice_16_1
|
||||
config: fr
|
||||
split: test
|
||||
args:
|
||||
language: fr
|
||||
metrics:
|
||||
- name: Test WER (Fr)
|
||||
type: wer
|
||||
value: 6.53
|
||||
- task:
|
||||
type: Automatic Speech Translation
|
||||
name: automatic-speech-translation
|
||||
dataset:
|
||||
name: FLEURS
|
||||
type: google/fleurs
|
||||
config: en_us
|
||||
split: test
|
||||
args:
|
||||
language: en-de
|
||||
metrics:
|
||||
- name: Test BLEU (En->De)
|
||||
type: bleu
|
||||
value: 32.15
|
||||
- task:
|
||||
type: Automatic Speech Translation
|
||||
name: automatic-speech-translation
|
||||
dataset:
|
||||
name: FLEURS
|
||||
type: google/fleurs
|
||||
config: en_us
|
||||
split: test
|
||||
args:
|
||||
language: en-de
|
||||
metrics:
|
||||
- name: Test BLEU (En->Es)
|
||||
type: bleu
|
||||
value: 22.66
|
||||
- task:
|
||||
type: Automatic Speech Translation
|
||||
name: automatic-speech-translation
|
||||
dataset:
|
||||
name: FLEURS
|
||||
type: google/fleurs
|
||||
config: en_us
|
||||
split: test
|
||||
args:
|
||||
language: en-de
|
||||
metrics:
|
||||
- name: Test BLEU (En->Fr)
|
||||
type: bleu
|
||||
value: 40.76
|
||||
- task:
|
||||
type: Automatic Speech Translation
|
||||
name: automatic-speech-translation
|
||||
dataset:
|
||||
name: FLEURS
|
||||
type: google/fleurs
|
||||
config: de_de
|
||||
split: test
|
||||
args:
|
||||
language: de-en
|
||||
metrics:
|
||||
- name: Test BLEU (De->En)
|
||||
type: bleu
|
||||
value: 33.98
|
||||
- task:
|
||||
type: Automatic Speech Translation
|
||||
name: automatic-speech-translation
|
||||
dataset:
|
||||
name: FLEURS
|
||||
type: google/fleurs
|
||||
config: es_419
|
||||
split: test
|
||||
args:
|
||||
language: es-en
|
||||
metrics:
|
||||
- name: Test BLEU (Es->En)
|
||||
type: bleu
|
||||
value: 21.80
|
||||
- task:
|
||||
type: Automatic Speech Translation
|
||||
name: automatic-speech-translation
|
||||
dataset:
|
||||
name: FLEURS
|
||||
type: google/fleurs
|
||||
config: fr_fr
|
||||
split: test
|
||||
args:
|
||||
language: fr-en
|
||||
metrics:
|
||||
- name: Test BLEU (Fr->En)
|
||||
type: bleu
|
||||
value: 30.95
|
||||
- task:
|
||||
type: Automatic Speech Translation
|
||||
name: automatic-speech-translation
|
||||
dataset:
|
||||
name: COVOST
|
||||
type: covost2
|
||||
config: de_de
|
||||
split: test
|
||||
args:
|
||||
language: de-en
|
||||
metrics:
|
||||
- name: Test BLEU (De->En)
|
||||
type: bleu
|
||||
value: 37.67
|
||||
- task:
|
||||
type: Automatic Speech Translation
|
||||
name: automatic-speech-translation
|
||||
dataset:
|
||||
name: COVOST
|
||||
type: covost2
|
||||
config: es_419
|
||||
split: test
|
||||
args:
|
||||
language: es-en
|
||||
metrics:
|
||||
- name: Test BLEU (Es->En)
|
||||
type: bleu
|
||||
value: 40.7
|
||||
- task:
|
||||
type: Automatic Speech Translation
|
||||
name: automatic-speech-translation
|
||||
dataset:
|
||||
name: COVOST
|
||||
type: covost2
|
||||
config: fr_fr
|
||||
split: test
|
||||
args:
|
||||
language: fr-en
|
||||
metrics:
|
||||
- name: Test BLEU (Fr->En)
|
||||
type: bleu
|
||||
value: 40.42
|
||||
|
||||
metrics:
|
||||
- wer
|
||||
- bleu
|
||||
pipeline_tag: automatic-speech-recognition
|
||||
---
|
||||
|
||||
canary-1b
|
||||
|
||||
# Canary 1B
|
||||
|
||||
<style>
|
||||
img {
|
||||
display: inline;
|
||||
}
|
||||
</style>
|
||||
|
||||
[](#model-architecture)
|
||||
| [](#model-architecture)
|
||||
| [](#datasets)
|
||||
|
||||
NVIDIA [NeMo Canary](https://nvidia.github.io/NeMo/blogs/2024/2024-02-canary/) is a family of multi-lingual multi-tasking models that achieves state-of-the art performance on multiple benchmarks. With 1 billion parameters, Canary-1B supports automatic speech-to-text recognition (ASR) in 4 languages (English, German, French, Spanish) and translation from English to German/French/Spanish and from German/French/Spanish to English with or without punctuation and capitalization (PnC).
|
||||
|
||||
## Model Architecture
|
||||
|
||||
Canary is an encoder-decoder model with FastConformer [1] encoder and Transformer Decoder [2].
|
||||
With audio features extracted from the encoder, task tokens such as `<source language>`, `<target language>`, `<task>` and `<toggle PnC>`
|
||||
are fed into the Transformer Decoder to trigger the text generation process. Canary uses a concatenated tokenizer [5] from individual
|
||||
SentencePiece [3] tokenizers of each language, which makes it easy to scale up to more languages.
|
||||
The Canay-1B model has 24 encoder layers and 24 layers of decoder layers in total.
|
||||
|
||||
|
||||
|
||||
## NVIDIA NeMo
|
||||
|
||||
To train, fine-tune or Transcribe with Canary, you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed Cython and latest PyTorch version.
|
||||
```
|
||||
pip install git+https://github.com/NVIDIA/NeMo.git@r1.23.0#egg=nemo_toolkit[asr]
|
||||
```
|
||||
|
||||
|
||||
## How to Use this Model
|
||||
|
||||
The model is available for use in the NeMo toolkit [4], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
|
||||
|
||||
### Loading the Model
|
||||
|
||||
```python
|
||||
from nemo.collections.asr.models import EncDecMultiTaskModel
|
||||
|
||||
# load model
|
||||
canary_model = EncDecMultiTaskModel.from_pretrained('nvidia/canary-1b')
|
||||
|
||||
# update dcode params
|
||||
decode_cfg = canary_model.cfg.decoding
|
||||
decode_cfg.beam.beam_size = 1
|
||||
canary_model.change_decoding_strategy(decode_cfg)
|
||||
```
|
||||
|
||||
### Input Format
|
||||
Input to Canary can be either a list of paths to audio files or a jsonl manifest file.
|
||||
|
||||
If the input is a list of paths, Canary assumes that the audio is English and Transcribes it. I.e., Canary default behaviour is English ASR.
|
||||
```python
|
||||
predicted_text = canary_model.transcribe(
|
||||
paths2audio_files=['path1.wav', 'path2.wav'],
|
||||
batch_size=16, # batch size to run the inference with
|
||||
)[0].text
|
||||
```
|
||||
|
||||
To use Canary for transcribing other supported languages or perform Speech-to-Text translation, specify the input as jsonl manifest file, where each line in the file is a dictionary containing the following fields:
|
||||
|
||||
```yaml
|
||||
# Example of a line in input_manifest.json
|
||||
{
|
||||
"audio_filepath": "/path/to/audio.wav", # path to the audio file
|
||||
"duration": 1000, # duration of the audio, can be set to `None` if using NeMo main branch
|
||||
"taskname": "asr", # use "s2t_translation" for speech-to-text translation with r1.23, or "ast" if using the NeMo main branch
|
||||
"source_lang": "en", # language of the audio input, set `source_lang`==`target_lang` for ASR, choices=['en','de','es','fr']
|
||||
"target_lang": "en", # language of the text output, choices=['en','de','es','fr']
|
||||
"pnc": "yes", # whether to have PnC output, choices=['yes', 'no']
|
||||
"answer": "na",
|
||||
}
|
||||
```
|
||||
|
||||
and then use:
|
||||
```python
|
||||
predicted_text = canary_model.transcribe(
|
||||
"<path to input manifest file>",
|
||||
batch_size=16, # batch size to run the inference with
|
||||
)[0].text
|
||||
```
|
||||
|
||||
|
||||
### Automatic Speech-to-text Recognition (ASR)
|
||||
|
||||
An example manifest for transcribing English audios can be:
|
||||
|
||||
```yaml
|
||||
# Example of a line in input_manifest.json
|
||||
{
|
||||
"audio_filepath": "/path/to/audio.wav", # path to the audio file
|
||||
"duration": 1000, # duration of the audio, can be set to `None` if using NeMo main branch
|
||||
"taskname": "asr",
|
||||
"source_lang": "en", # language of the audio input, set `source_lang`==`target_lang` for ASR, choices=['en','de','es','fr']
|
||||
"target_lang": "en", # language of the text output, choices=['en','de','es','fr']
|
||||
"pnc": "yes", # whether to have PnC output, choices=['yes', 'no']
|
||||
"answer": "na",
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
### Automatic Speech-to-text Translation (AST)
|
||||
|
||||
An example manifest for transcribing English audios into German text can be:
|
||||
|
||||
```yaml
|
||||
# Example of a line in input_manifest.json
|
||||
{
|
||||
"audio_filepath": "/path/to/audio.wav", # path to the audio file
|
||||
"duration": 1000, # duration of the audio, can be set to `None` if using NeMo main branch
|
||||
"taskname": "s2t_translation", # r1.23 only recognizes "s2t_translation", but "ast" is supported if using the NeMo main branch
|
||||
"source_lang": "en", # language of the audio input, choices=['en','de','es','fr']
|
||||
"target_lang": "de", # language of the text output, choices=['en','de','es','fr']
|
||||
"pnc": "yes", # whether to have PnC output, choices=['yes', 'no']
|
||||
"answer": "na"
|
||||
}
|
||||
```
|
||||
|
||||
Alternatively, one can use `transcribe_speech.py` script to do the same.
|
||||
|
||||
```bash
|
||||
python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py
|
||||
pretrained_name="nvidia/canary-1b"
|
||||
audio_dir="<path to audio_directory>" # transcribes all the wav files in audio_directory
|
||||
```
|
||||
|
||||
|
||||
```bash
|
||||
python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py
|
||||
pretrained_name="nvidia/canary-1b"
|
||||
dataset_manifest="<path to manifest file>"
|
||||
```
|
||||
|
||||
|
||||
### Input
|
||||
|
||||
This model accepts single channel (mono) audio sampled at 16000 Hz, along with the task/languages/PnC tags as input.
|
||||
|
||||
### Output
|
||||
|
||||
The model outputs the transcribed/translated text corresponding to the input audio, in the specified target language and with or without punctuation and capitalization.
|
||||
|
||||
|
||||
|
||||
## Training
|
||||
|
||||
Canary-1B is trained using the NVIDIA NeMo toolkit [4] for 150k steps with dynamic bucketing and a batch duration of 360s per GPU on 128 NVIDIA A100 80GB GPUs.
|
||||
The model can be trained using this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/speech_multitask/speech_to_text_aed.py) and [base config](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/speech_multitask/fast-conformer_aed.yaml).
|
||||
|
||||
The tokenizers for these models were built using the text transcripts of the train set with this [script](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py).
|
||||
|
||||
|
||||
### Datasets
|
||||
|
||||
The Canary-1B model is trained on a total of 85k hrs of speech data. It consists of 31k hrs of public data, 20k hrs collected by [Suno](https://suno.ai/), and 34k hrs of in-house data.
|
||||
|
||||
The constituents of public data are as follows.
|
||||
|
||||
#### English (25.5k hours)
|
||||
- Librispeech 960 hours
|
||||
- Fisher Corpus
|
||||
- Switchboard-1 Dataset
|
||||
- WSJ-0 and WSJ-1
|
||||
- National Speech Corpus (Part 1, Part 6)
|
||||
- VCTK
|
||||
- VoxPopuli (EN)
|
||||
- Europarl-ASR (EN)
|
||||
- Multilingual Librispeech (MLS EN) - 2,000 hour subset
|
||||
- Mozilla Common Voice (v7.0)
|
||||
- People's Speech - 12,000 hour subset
|
||||
- Mozilla Common Voice (v11.0) - 1,474 hour subset
|
||||
|
||||
#### German (2.5k hours)
|
||||
- Mozilla Common Voice (v12.0) - 800 hour subset
|
||||
- Multilingual Librispeech (MLS DE) - 1,500 hour subset
|
||||
- VoxPopuli (DE) - 200 hr subset
|
||||
|
||||
#### Spanish (1.4k hours)
|
||||
- Mozilla Common Voice (v12.0) - 395 hour subset
|
||||
- Multilingual Librispeech (MLS ES) - 780 hour subset
|
||||
- VoxPopuli (ES) - 108 hour subset
|
||||
- Fisher - 141 hour subset
|
||||
|
||||
#### French (1.8k hours)
|
||||
- Mozilla Common Voice (v12.0) - 708 hour subset
|
||||
- Multilingual Librispeech (MLS FR) - 926 hour subset
|
||||
- VoxPopuli (FR) - 165 hour subset
|
||||
|
||||
|
||||
## Performance
|
||||
|
||||
In both ASR and AST experiments, predictions were generated using beam search with width 5 and length penalty 1.0.
|
||||
|
||||
### ASR Performance (w/o PnC)
|
||||
|
||||
The ASR performance is measured with word error rate (WER), and we process the groundtruth and predicted text with [whisper-normalizer](https://pypi.org/project/whisper-normalizer/).
|
||||
|
||||
WER on [MCV-16.1](https://commonvoice.mozilla.org/en/datasets) test set:
|
||||
|
||||
| **Version** | **Model** | **En** | **De** | **Es** | **Fr** |
|
||||
|:---------:|:-----------:|:------:|:------:|:------:|:------:|
|
||||
| 1.23.0 | canary-1b | 7.97 | 4.61 | 3.99 | 6.53 |
|
||||
|
||||
|
||||
WER on [MLS](https://huggingface.co/datasets/facebook/multilingual_librispeech) test set:
|
||||
|
||||
| **Version** | **Model** | **En** | **De** | **Es** | **Fr** |
|
||||
|:---------:|:-----------:|:------:|:------:|:------:|:------:|
|
||||
| 1.23.0 | canary-1b | 3.06 | 4.19 | 3.15 | 4.12 |
|
||||
|
||||
|
||||
More details on evaluation can be found at [HuggingFace ASR Leaderboard](https://huggingface.co/spaces/hf-audio/open_asr_leaderboard)
|
||||
|
||||
### AST Performance
|
||||
|
||||
We evaluate AST performance with [BLEU score](https://lightning.ai/docs/torchmetrics/stable/text/sacre_bleu_score.html), and use native annotations with punctuation and capitalization in the datasets.
|
||||
|
||||
BLEU score on [FLEURS](https://huggingface.co/datasets/google/fleurs) test set:
|
||||
|
||||
| **Version** | **Model** | **En->De** | **En->Es** | **En->Fr** | **De->En** | **Es->En** | **Fr->En** |
|
||||
|:-----------:|:---------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|
|
||||
| 1.23.0 | canary-1b | 32.15 | 22.66 | 40.76 | 33.98 | 21.80 | 30.95 |
|
||||
|
||||
|
||||
BLEU score on [COVOST-v2](https://github.com/facebookresearch/covost) test set:
|
||||
|
||||
| **Version** | **Model** | **De->En** | **Es->En** | **Fr->En** |
|
||||
|:-----------:|:---------:|:----------:|:----------:|:----------:|
|
||||
| 1.23.0 | canary-1b | 37.67 | 40.7 | 40.42 |
|
||||
|
||||
BLEU score on [mExpresso](https://huggingface.co/facebook/seamless-expressive#mexpresso-multilingual-expresso) test set:
|
||||
|
||||
| **Version** | **Model** | **En->De** | **En->Es** | **En->Fr** |
|
||||
|:-----------:|:---------:|:----------:|:----------:|:----------:|
|
||||
| 1.23.0 | canary-1b | 23.84 | 35.74 | 28.29 |
|
||||
|
||||
## Model Fairness Evaluation
|
||||
|
||||
As outlined in the paper "Towards Measuring Fairness in AI: the Casual Conversations Dataset", we assessed the Canary-1B model for fairness. The model was evaluated on the CausalConversations-v1 dataset, and the results are reported as follows:
|
||||
|
||||
### Gender Bias:
|
||||
|
||||
| Gender | Male | Female | N/A | Other |
|
||||
| :--- | :--- | :--- | :--- | :--- |
|
||||
| Num utterances | 19325 | 24532 | 926 | 33 |
|
||||
| % WER | 14.64 | 12.92 | 17.88 | 126.92 |
|
||||
|
||||
### Age Bias:
|
||||
|
||||
| Age Group | (18-30) | (31-45) | (46-85) | (1-100) |
|
||||
| :--- | :--- | :--- | :--- | :--- |
|
||||
| Num utterances | 15956 | 14585 | 13349 | 43890 |
|
||||
| % WER | 14.64 | 13.07 | 13.47 | 13.76 |
|
||||
|
||||
(Error rates for fairness evaluation are determined by normalizing both the reference and predicted text, similar to the methods used in the evaluations found at https://github.com/huggingface/open_asr_leaderboard.)
|
||||
|
||||
## NVIDIA Riva: Deployment
|
||||
|
||||
[NVIDIA Riva](https://developer.nvidia.com/riva), is an accelerated speech AI SDK deployable on-prem, in all clouds, multi-cloud, hybrid, on edge, and embedded.
|
||||
Additionally, Riva provides:
|
||||
|
||||
* World-class out-of-the-box accuracy for the most common languages with model checkpoints trained on proprietary data with hundreds of thousands of GPU-compute hours
|
||||
* Best in class accuracy with run-time word boosting (e.g., brand and product names) and customization of acoustic model, language model, and inverse text normalization
|
||||
* Streaming speech recognition, Kubernetes compatible scaling, and enterprise-grade support
|
||||
|
||||
Canary is available as a NIM endpoint via Riva. Try the model yourself here: [https://build.nvidia.com/nvidia/canary-1b-asr](https://build.nvidia.com/nvidia/canary-1b-asr).
|
||||
|
||||
|
||||
## References
|
||||
[1] [Fast Conformer with Linearly Scalable Attention for Efficient Speech Recognition](https://arxiv.org/abs/2305.05084)
|
||||
|
||||
[2] [Attention is all you need](https://arxiv.org/abs/1706.03762)
|
||||
|
||||
[3] [Google Sentencepiece Tokenizer](https://github.com/google/sentencepiece)
|
||||
|
||||
[4] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
|
||||
|
||||
[5] [Unified Model for Code-Switching Speech Recognition and Language Identification Based on Concatenated Tokenizer](https://aclanthology.org/2023.calcs-1.7.pdf)
|
||||
|
||||
## Licence
|
||||
|
||||
License to use this model is covered by the [CC-BY-NC-4.0](https://creativecommons.org/licenses/by-nc/4.0/deed.en#:~:text=NonCommercial%20%E2%80%94%20You%20may%20not%20use,doing%20anything%20the%20license%20permits.). By downloading the public and release version of the model, you accept the terms and conditions of the CC-BY-NC-4.0 license.
|
Binary file not shown.
After Width: | Height: | Size: 128 KiB |
Loading…
Reference in New Issue