1263 lines
56 KiB
Python
1263 lines
56 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2023 the Falcon authors and HuggingFace Inc. team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""PyTorch Falcon model."""
|
||
|
|
||
|
import math
|
||
|
from typing import Optional, Tuple, Union
|
||
|
|
||
|
import torch
|
||
|
import torch.utils.checkpoint
|
||
|
from torch import nn
|
||
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss
|
||
|
from torch.nn import functional as F
|
||
|
|
||
|
from transformers.modeling_outputs import (
|
||
|
BaseModelOutputWithPastAndCrossAttentions,
|
||
|
CausalLMOutputWithCrossAttentions,
|
||
|
QuestionAnsweringModelOutput,
|
||
|
SequenceClassifierOutputWithPast,
|
||
|
TokenClassifierOutput,
|
||
|
)
|
||
|
from transformers.modeling_utils import PreTrainedModel
|
||
|
from transformers.utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
||
|
from .configuration_falcon import FalconConfig
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
||
|
"tiiuae/falcon-40b",
|
||
|
"tiiuae/falcon-40b-instruct",
|
||
|
"tiiuae/falcon-7b",
|
||
|
"tiiuae/falcon-7b-instruct",
|
||
|
"tiiuae/falcon-rw-7b",
|
||
|
"tiiuae/falcon-rw-1b",
|
||
|
]
|
||
|
_CHECKPOINT_FOR_DOC = "Rocketknight1/falcon-rw-1b"
|
||
|
_CONFIG_FOR_DOC = "FalconConfig"
|
||
|
|
||
|
|
||
|
# NOTE(Hesslow): Unfortunately we did not fuse matmul and bias during training, this means that there's one additional quantization to bfloat16 between the operations.
|
||
|
# In order not to degrade the quality of our HF-port, we keep these characteristics in the final model.
|
||
|
class FalconLinear(nn.Linear):
|
||
|
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
||
|
hidden_states = input @ self.weight.T
|
||
|
if self.bias is None:
|
||
|
return hidden_states
|
||
|
return hidden_states + self.bias
|
||
|
|
||
|
|
||
|
# rotary pos emb helpers (torch.jit.script does not seem to support staticmethod...)
|
||
|
def rotate_half(x):
|
||
|
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
|
||
|
return torch.cat((-x2, x1), dim=-1)
|
||
|
|
||
|
|
||
|
class FalconRotaryEmbedding(nn.Module):
|
||
|
"""Implementation of RotaryEmbedding from GPT-NeoX.
|
||
|
This implementation is designed to operate on queries and keys that are compatible with `[batch_size,
|
||
|
n_heads_per_partition, seq_len, head_dim]` (e.g. MinGPTAttention format).
|
||
|
"""
|
||
|
|
||
|
def __init__(self, head_dim: int, base=10000):
|
||
|
super().__init__()
|
||
|
inv_freq = 1.0 / (base ** (torch.arange(0, head_dim, 2).float() / head_dim))
|
||
|
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
||
|
self.head_dim = head_dim
|
||
|
self.seq_len_cached = -1
|
||
|
self.cos_cached: torch.Tensor | None = None
|
||
|
self.sin_cached: torch.Tensor | None = None
|
||
|
|
||
|
def cos_sin(self, seq_len: int, past_key_values_length: int, device="cpu", dtype=torch.bfloat16) -> torch.Tensor:
|
||
|
total_length = seq_len + past_key_values_length
|
||
|
if total_length > self.seq_len_cached:
|
||
|
self.seq_len_cached = total_length
|
||
|
t = torch.arange(total_length, device=device, dtype=self.inv_freq.dtype)
|
||
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
||
|
emb = torch.cat((freqs, freqs), dim=-1).to(device)
|
||
|
|
||
|
if dtype in [torch.float16, torch.bfloat16]:
|
||
|
emb = emb.float()
|
||
|
|
||
|
self.cos_cached = emb.cos()[None, :, :]
|
||
|
self.sin_cached = emb.sin()[None, :, :]
|
||
|
|
||
|
self.cos_cached = self.cos_cached.type(dtype)
|
||
|
self.sin_cached = self.sin_cached.type(dtype)
|
||
|
|
||
|
return (
|
||
|
self.cos_cached[:, past_key_values_length : seq_len + past_key_values_length],
|
||
|
self.sin_cached[:, past_key_values_length : seq_len + past_key_values_length],
|
||
|
)
|
||
|
|
||
|
def forward(self, query, key, past_key_values_length=0):
|
||
|
batch, seq_len, head_dim = query.shape
|
||
|
cos, sin = self.cos_sin(seq_len, past_key_values_length, query.device, query.dtype)
|
||
|
return (query * cos) + (rotate_half(query) * sin), (key * cos) + (rotate_half(key) * sin)
|
||
|
|
||
|
|
||
|
def _make_causal_mask(
|
||
|
input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int
|
||
|
) -> torch.BoolTensor:
|
||
|
"""
|
||
|
Make causal mask used for self-attention. This mask does not take the existing attention mask into account - it
|
||
|
just blocks tokens from attending forwards in the sequence. The output shape will be `[batch_size, 1,
|
||
|
target_length, target_length+past_key_values_length]`.
|
||
|
"""
|
||
|
batch_size, target_length = input_ids_shape
|
||
|
|
||
|
mask = torch.triu(torch.ones((target_length, target_length), dtype=torch.bool, device=device), diagonal=1)
|
||
|
# If past_key_values_length is 0 this is an empty tensor and the concatenation is a no-op.
|
||
|
# This code style is an unfortunate consequence of getting your TF engineer to port models; doing it this
|
||
|
# way avoids a data-dependent conditional, which will help me when I have to port this to XLA later.
|
||
|
past_mask = torch.zeros((target_length, past_key_values_length), dtype=torch.bool, device=device)
|
||
|
mask = torch.cat([past_mask, mask], dim=-1)
|
||
|
expanded_mask = mask[None, None, :, :].expand(batch_size, 1, target_length, target_length + past_key_values_length)
|
||
|
return expanded_mask
|
||
|
|
||
|
|
||
|
def _expand_mask(mask: torch.Tensor, past_key_values_length: int) -> torch.BoolTensor:
|
||
|
"""
|
||
|
Expands attention_mask from `[batch_size, seq_length]` to `[batch_size, 1, seq_length, seq_length + past_length]`.
|
||
|
"""
|
||
|
batch_size, total_length = mask.shape
|
||
|
seq_length = total_length - past_key_values_length if past_key_values_length is not None else total_length
|
||
|
|
||
|
expanded_mask = ~(mask[:, None, None, :].to(torch.bool))
|
||
|
return expanded_mask.expand(batch_size, 1, seq_length, total_length)
|
||
|
|
||
|
|
||
|
def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor:
|
||
|
batch_size, seq_length = attention_mask.shape
|
||
|
closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
|
||
|
base = torch.tensor(
|
||
|
2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
|
||
|
)
|
||
|
powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32)
|
||
|
slopes = torch.pow(base, powers)
|
||
|
|
||
|
if closest_power_of_2 != num_heads:
|
||
|
extra_base = torch.tensor(
|
||
|
2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
|
||
|
)
|
||
|
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
|
||
|
extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32)
|
||
|
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
|
||
|
|
||
|
# Note: alibi will added to the attention bias that will be applied to the query, key product of attention
|
||
|
# => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length)
|
||
|
# => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length)
|
||
|
# => the query_length dimension will then be broadcasted correctly
|
||
|
# This is more or less identical to T5's relative position bias:
|
||
|
# https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527
|
||
|
arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :]
|
||
|
alibi = slopes[..., None].bfloat16() * arange_tensor
|
||
|
return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype)
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.bloom.modeling_bloom.dropout_add
|
||
|
def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor:
|
||
|
"""
|
||
|
Dropout add function
|
||
|
|
||
|
Args:
|
||
|
x (`torch.tensor`, *required*):
|
||
|
input tensor
|
||
|
residual (`torch.tensor`, *required*):
|
||
|
residual tensor
|
||
|
prob (`float`, *required*):
|
||
|
dropout probability
|
||
|
training (`bool`, *required*):
|
||
|
training mode
|
||
|
"""
|
||
|
out = F.dropout(x, p=prob, training=training)
|
||
|
out = residual + out
|
||
|
return out
|
||
|
|
||
|
|
||
|
class FalconAttention(nn.Module):
|
||
|
def __init__(self, config: FalconConfig):
|
||
|
super().__init__()
|
||
|
|
||
|
self.hidden_size = config.hidden_size
|
||
|
self.num_heads = config.num_attention_heads
|
||
|
self.head_dim = self.hidden_size // self.num_heads
|
||
|
self.split_size = self.hidden_size
|
||
|
self.hidden_dropout = config.hidden_dropout
|
||
|
|
||
|
if self.head_dim * self.num_heads != self.hidden_size:
|
||
|
raise ValueError(
|
||
|
f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
|
||
|
f" {self.num_heads})."
|
||
|
)
|
||
|
|
||
|
self.maybe_rotary = FalconRotaryEmbedding(config.head_dim) if config.rotary else lambda q, k, t: (q, k)
|
||
|
|
||
|
# Layer-wise attention scaling
|
||
|
self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim)
|
||
|
self.beta = self.inv_norm_factor
|
||
|
if config.new_decoder_architecture:
|
||
|
qkv_out_dim = (config.num_kv_heads * 2 + config.num_attention_heads) * self.head_dim
|
||
|
elif config.multi_query:
|
||
|
qkv_out_dim = self.hidden_size + 2 * self.head_dim
|
||
|
else:
|
||
|
qkv_out_dim = 3 * self.hidden_size
|
||
|
self.query_key_value = FalconLinear(self.hidden_size, qkv_out_dim, bias=config.bias)
|
||
|
self.new_decoder_architecture = config.new_decoder_architecture
|
||
|
self.multi_query = config.multi_query
|
||
|
self.dense = FalconLinear(self.hidden_size, self.hidden_size, bias=config.bias)
|
||
|
self.attention_dropout = nn.Dropout(config.attention_dropout)
|
||
|
self.num_kv_heads = config.num_kv_heads if (self.new_decoder_architecture or not self.multi_query) else 1
|
||
|
|
||
|
def _split_heads(self, fused_qkv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||
|
"""
|
||
|
Split the last dimension into (num_heads, head_dim), results share same memory storage as `fused_qkv`
|
||
|
|
||
|
Args:
|
||
|
fused_qkv (`torch.tensor`, *required*): [batch_size, seq_length, num_heads * 3 * head_dim]
|
||
|
|
||
|
Returns:
|
||
|
query: [batch_size, seq_length, num_heads, head_dim] key: [batch_size, seq_length, num_heads, head_dim]
|
||
|
value: [batch_size, seq_length, num_heads, head_dim]
|
||
|
"""
|
||
|
if self.new_decoder_architecture:
|
||
|
batch, seq_len, _ = fused_qkv.shape
|
||
|
qkv = fused_qkv.view(batch, seq_len, -1, self.num_heads // self.num_kv_heads + 2, self.head_dim)
|
||
|
query = qkv[:, :, :, :-2]
|
||
|
key = qkv[:, :, :, [-2]]
|
||
|
value = qkv[:, :, :, [-1]]
|
||
|
key = torch.broadcast_to(key, query.shape)
|
||
|
value = torch.broadcast_to(value, query.shape)
|
||
|
|
||
|
query, key, value = [x.flatten(2, 3) for x in (query, key, value)]
|
||
|
return query, key, value
|
||
|
elif not self.multi_query:
|
||
|
batch_size, seq_length, three_times_hidden_size = fused_qkv.shape
|
||
|
fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads, 3, self.head_dim)
|
||
|
return fused_qkv[..., 0, :], fused_qkv[..., 1, :], fused_qkv[..., 2, :]
|
||
|
else:
|
||
|
batch_size, seq_length, three_times_hidden_size = fused_qkv.shape
|
||
|
fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads + 2, self.head_dim)
|
||
|
return fused_qkv[..., :-2, :], fused_qkv[..., [-2], :], fused_qkv[..., [-1], :]
|
||
|
|
||
|
# Copied from transformers.models.bloom.modeling_bloom.BloomAttention._merge_heads
|
||
|
def _merge_heads(self, x: torch.Tensor) -> torch.Tensor:
|
||
|
"""
|
||
|
Merge heads together over the last dimenstion
|
||
|
|
||
|
Args:
|
||
|
x (`torch.tensor`, *required*): [batch_size * num_heads, seq_length, head_dim]
|
||
|
|
||
|
Returns:
|
||
|
torch.tensor: [batch_size, seq_length, num_heads * head_dim]
|
||
|
"""
|
||
|
# What we want to achieve is:
|
||
|
# batch_size * num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads * head_dim
|
||
|
batch_size_and_num_heads, seq_length, _ = x.shape
|
||
|
batch_size = batch_size_and_num_heads // self.num_heads
|
||
|
|
||
|
# First view to decompose the batch size
|
||
|
# batch_size * num_heads, seq_length, head_dim -> batch_size, num_heads, seq_length, head_dim
|
||
|
x = x.view(batch_size, self.num_heads, seq_length, self.head_dim)
|
||
|
|
||
|
# batch_size, num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads, head_dim
|
||
|
x = x.permute(0, 2, 1, 3)
|
||
|
|
||
|
# batch_size, seq_length, num_heads, head_dim -> batch_size, seq_length, num_heads * head_dim
|
||
|
return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
alibi: Optional[torch.Tensor],
|
||
|
attention_mask: torch.Tensor,
|
||
|
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
use_cache: bool = False,
|
||
|
output_attentions: bool = False,
|
||
|
):
|
||
|
fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size]
|
||
|
num_kv_heads = self.num_heads if self.new_decoder_architecture else self.num_kv_heads
|
||
|
# 3 x [batch_size, seq_length, num_heads, head_dim]
|
||
|
(query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
|
||
|
|
||
|
batch_size, query_length, _, _ = query_layer.shape
|
||
|
|
||
|
query_layer = query_layer.transpose(1, 2).reshape(batch_size * self.num_heads, query_length, self.head_dim)
|
||
|
key_layer = key_layer.transpose(1, 2).reshape(
|
||
|
batch_size * num_kv_heads,
|
||
|
query_length,
|
||
|
self.head_dim,
|
||
|
)
|
||
|
value_layer = value_layer.transpose(1, 2).reshape(batch_size * num_kv_heads, query_length, self.head_dim)
|
||
|
|
||
|
past_kv_length = 0 if layer_past is None else layer_past[0].shape[1]
|
||
|
query_layer, key_layer = self.maybe_rotary(query_layer, key_layer, past_kv_length)
|
||
|
|
||
|
if layer_past is not None:
|
||
|
past_key, past_value = layer_past
|
||
|
# concatenate along seq_length dimension:
|
||
|
# - key: [batch_size * self.num_heads, kv_length, head_dim]
|
||
|
# - value: [batch_size * self.num_heads, kv_length, head_dim]
|
||
|
key_layer = torch.cat((past_key, key_layer), dim=1)
|
||
|
value_layer = torch.cat((past_value, value_layer), dim=1)
|
||
|
|
||
|
_, kv_length, _ = key_layer.shape
|
||
|
if use_cache:
|
||
|
present = (key_layer, value_layer)
|
||
|
else:
|
||
|
present = None
|
||
|
|
||
|
attention_mask_float = (attention_mask * 1.0).masked_fill(attention_mask, float("-1e9")).to(query_layer.dtype)
|
||
|
|
||
|
query_layer_ = query_layer.reshape(batch_size, self.num_heads, -1, self.head_dim)
|
||
|
key_layer_ = key_layer.reshape(batch_size, num_kv_heads, -1, self.head_dim)
|
||
|
value_layer_ = value_layer.reshape(batch_size, num_kv_heads, -1, self.head_dim)
|
||
|
|
||
|
if alibi is None:
|
||
|
if output_attentions:
|
||
|
# F.scaled_dot_product_attention doesn't return the attention weights, so we have
|
||
|
# to do it by hand if we want them
|
||
|
attention_scores = query_layer_ @ key_layer_.transpose(-1, -2)
|
||
|
attention_scores /= math.sqrt(self.head_dim)
|
||
|
|
||
|
attention_scores = F.softmax(
|
||
|
attention_scores + attention_mask_float, dim=-1, dtype=hidden_states.dtype
|
||
|
)
|
||
|
attn_output = attention_scores @ value_layer_
|
||
|
else:
|
||
|
attn_output = F.scaled_dot_product_attention(
|
||
|
query_layer_, key_layer_, value_layer_, attention_mask_float, 0.0, is_causal=False
|
||
|
)
|
||
|
attention_scores = None
|
||
|
|
||
|
attn_output = attn_output.view(batch_size, self.num_heads, query_length, self.head_dim)
|
||
|
attn_output = attn_output.permute(0, 2, 1, 3)
|
||
|
attn_output = attn_output.reshape(batch_size, query_length, self.num_heads * self.head_dim)
|
||
|
|
||
|
output_tensor = self.dense(attn_output)
|
||
|
|
||
|
if output_attentions:
|
||
|
return output_tensor, present, attention_scores
|
||
|
else:
|
||
|
return output_tensor, present
|
||
|
|
||
|
else:
|
||
|
matmul_result = query_layer_ @ key_layer_.transpose(-1, -2)
|
||
|
|
||
|
# change view to [batch_size, num_heads, q_length, kv_length]
|
||
|
attention_scores = matmul_result.view(batch_size, self.num_heads, query_length, kv_length)
|
||
|
|
||
|
# cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length]
|
||
|
input_dtype = attention_scores.dtype
|
||
|
# `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38`
|
||
|
if input_dtype == torch.float16 or input_dtype == torch.bfloat16:
|
||
|
attention_scores = attention_scores.to(torch.float32)
|
||
|
# Matt (HF) note: We could possibly use F.scaled_dot_product_attention here too, by
|
||
|
# adding (alibi * self.inv_norm_factor) to attention_mask_float. I think this would be mathematically
|
||
|
# equivalent and more performant, but there might be a numerical difference. If you're reading this
|
||
|
# and you'd like to experiment and maybe file a PR, feel free!
|
||
|
attention_logits = attention_scores + alibi.view(batch_size, self.num_heads, 1, -1)
|
||
|
attention_logits *= self.inv_norm_factor
|
||
|
attention_probs = F.softmax(attention_logits + attention_mask_float, dim=-1, dtype=hidden_states.dtype)
|
||
|
# [batch_size, num_heads, q_length, kv_length]
|
||
|
attention_probs = self.attention_dropout(attention_probs)
|
||
|
|
||
|
if head_mask is not None:
|
||
|
attention_probs = attention_probs * head_mask
|
||
|
|
||
|
# change view [batch_size, num_heads, q_length, kv_length]
|
||
|
attention_probs_reshaped = attention_probs.view(batch_size, self.num_heads, query_length, kv_length)
|
||
|
|
||
|
# matmul: [batch_size * num_heads, q_length, head_dim]
|
||
|
context_layer = (attention_probs_reshaped @ value_layer_).flatten(0, 1)
|
||
|
|
||
|
# change view [batch_size, num_heads, q_length, head_dim]
|
||
|
context_layer = self._merge_heads(context_layer)
|
||
|
|
||
|
output_tensor = self.dense(context_layer)
|
||
|
|
||
|
if output_attentions:
|
||
|
return output_tensor, present, attention_probs
|
||
|
else:
|
||
|
return output_tensor, present
|
||
|
|
||
|
|
||
|
class FalconMLP(nn.Module):
|
||
|
def __init__(self, config: FalconConfig):
|
||
|
super().__init__()
|
||
|
hidden_size = config.hidden_size
|
||
|
|
||
|
self.dense_h_to_4h = FalconLinear(hidden_size, 4 * hidden_size, bias=config.bias)
|
||
|
self.act = nn.GELU()
|
||
|
self.dense_4h_to_h = FalconLinear(4 * hidden_size, hidden_size, bias=config.bias)
|
||
|
self.hidden_dropout = config.hidden_dropout
|
||
|
|
||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||
|
x = self.act(self.dense_h_to_4h(x))
|
||
|
x = self.dense_4h_to_h(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
class FalconDecoderLayer(nn.Module):
|
||
|
def __init__(self, config: FalconConfig):
|
||
|
super().__init__()
|
||
|
hidden_size = config.hidden_size
|
||
|
self.num_heads = config.num_attention_heads
|
||
|
self.self_attention = FalconAttention(config)
|
||
|
self.mlp = FalconMLP(config)
|
||
|
self.hidden_dropout = config.hidden_dropout
|
||
|
self.config = config
|
||
|
|
||
|
if config.new_decoder_architecture:
|
||
|
# The layer norm before self-attention
|
||
|
self.ln_attn = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
||
|
# The layer norm before the MLP
|
||
|
self.ln_mlp = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
||
|
else:
|
||
|
self.input_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
||
|
if not config.parallel_attn:
|
||
|
self.post_attention_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
alibi: Optional[torch.Tensor],
|
||
|
attention_mask: torch.Tensor,
|
||
|
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
use_cache: bool = False,
|
||
|
output_attentions: bool = False,
|
||
|
):
|
||
|
residual = hidden_states
|
||
|
|
||
|
if self.config.new_decoder_architecture:
|
||
|
attention_layernorm_out = self.ln_attn(hidden_states)
|
||
|
mlp_layernorm_out = self.ln_mlp(hidden_states)
|
||
|
else:
|
||
|
attention_layernorm_out = self.input_layernorm(hidden_states)
|
||
|
|
||
|
# Self attention.
|
||
|
attn_outputs = self.self_attention(
|
||
|
attention_layernorm_out,
|
||
|
layer_past=layer_past,
|
||
|
attention_mask=attention_mask,
|
||
|
alibi=alibi,
|
||
|
head_mask=head_mask,
|
||
|
use_cache=use_cache,
|
||
|
output_attentions=output_attentions,
|
||
|
)
|
||
|
|
||
|
attention_output = attn_outputs[0]
|
||
|
|
||
|
if not self.config.new_decoder_architecture:
|
||
|
if self.config.parallel_attn:
|
||
|
mlp_layernorm_out = attention_layernorm_out
|
||
|
else:
|
||
|
residual = dropout_add(
|
||
|
attention_output, residual, self.config.attention_dropout, training=self.training
|
||
|
)
|
||
|
mlp_layernorm_out = self.post_attention_layernorm(residual)
|
||
|
|
||
|
outputs = attn_outputs[1:]
|
||
|
|
||
|
# MLP.
|
||
|
mlp_output = self.mlp(mlp_layernorm_out)
|
||
|
|
||
|
if self.config.new_decoder_architecture or self.config.parallel_attn:
|
||
|
mlp_output += attention_output
|
||
|
|
||
|
output = dropout_add(mlp_output, residual, self.config.hidden_dropout, training=self.training)
|
||
|
|
||
|
if use_cache:
|
||
|
outputs = (output,) + outputs
|
||
|
else:
|
||
|
outputs = (output,) + outputs[1:]
|
||
|
|
||
|
return outputs # hidden_states, present, attentions
|
||
|
|
||
|
|
||
|
FALCON_START_DOCSTRING = r"""
|
||
|
|
||
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||
|
library implements for all its model (such as downloading or saving, resizing the input embeddings etc.)
|
||
|
|
||
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
||
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
||
|
and behavior.
|
||
|
|
||
|
Parameters:
|
||
|
config ([`FalconConfig`]): Model configuration class with all the parameters of the model.
|
||
|
Initializing with a config file does not load the weights associated with the model, only the
|
||
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||
|
"""
|
||
|
|
||
|
FALCON_INPUTS_DOCSTRING = r"""
|
||
|
Args:
|
||
|
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
||
|
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0][0].shape[2]`
|
||
|
(`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary.
|
||
|
|
||
|
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
|
||
|
`input_ids`.
|
||
|
|
||
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||
|
[`PreTrainedTokenizer.__call__`] for details.
|
||
|
|
||
|
[What are input IDs?](../glossary#input-ids)
|
||
|
past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.num_hidden_layers`):
|
||
|
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
|
||
|
`past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
|
||
|
their past given to this model should not be passed as `input_ids` as they have already been computed.
|
||
|
|
||
|
Each element of `past_key_values` is a tuple (past_key, past_value):
|
||
|
- past_key: [batch_size * num_heads, head_dim, kv_length]
|
||
|
- past_value: [batch_size * num_heads, kv_length, head_dim]
|
||
|
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 for tokens that are **not masked**,
|
||
|
- 0 for tokens that are **masked**.
|
||
|
|
||
|
[What are attention masks?](../glossary#attention-mask)
|
||
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
||
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 indicates the head is **not masked**,
|
||
|
- 0 indicates the head is **masked**.
|
||
|
|
||
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
||
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
||
|
model's internal embedding lookup matrix.
|
||
|
|
||
|
If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
|
||
|
`past_key_values`).
|
||
|
use_cache (`bool`, *optional*):
|
||
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
||
|
`past_key_values`).
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||
|
tensors for more detail.
|
||
|
output_hidden_states (`bool`, *optional*):
|
||
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||
|
more detail.
|
||
|
return_dict (`bool`, *optional*):
|
||
|
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
|
||
|
"""
|
||
|
|
||
|
|
||
|
class FalconPreTrainedModel(PreTrainedModel):
|
||
|
"""
|
||
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||
|
models.
|
||
|
"""
|
||
|
|
||
|
config_class = FalconConfig
|
||
|
base_model_prefix = "transformer"
|
||
|
supports_gradient_checkpointing = True
|
||
|
_no_split_modules = ["FalconDecoderLayer"]
|
||
|
|
||
|
def __init__(self, *inputs, **kwargs):
|
||
|
super().__init__(*inputs, **kwargs)
|
||
|
|
||
|
def _init_weights(self, module: nn.Module):
|
||
|
"""Initialize the weights."""
|
||
|
if isinstance(module, nn.Linear) or isinstance(module, FalconLinear):
|
||
|
# Slightly different from the TF version which uses truncated_normal for initialization
|
||
|
# cf https://github.com/pytorch/pytorch/pull/5617
|
||
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||
|
if module.bias is not None:
|
||
|
module.bias.data.zero_()
|
||
|
elif isinstance(module, nn.Embedding):
|
||
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||
|
if module.padding_idx is not None:
|
||
|
module.weight.data[module.padding_idx].zero_()
|
||
|
elif isinstance(module, LayerNorm):
|
||
|
module.bias.data.zero_()
|
||
|
module.weight.data.fill_(1.0)
|
||
|
|
||
|
# Copied from transformers.models.bloom.modeling_bloom.BloomPreTrainedModel._set_gradient_checkpointing with BloomModel->FalconModel
|
||
|
def _set_gradient_checkpointing(self, module: nn.Module, value: bool = False):
|
||
|
if isinstance(module, FalconModel):
|
||
|
module.gradient_checkpointing = value
|
||
|
|
||
|
@staticmethod
|
||
|
def _convert_cache_to_standard_format(
|
||
|
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], batch_size: int
|
||
|
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
|
||
|
"""
|
||
|
Standardizes the format of the cache so as to match most implementations, i.e. to tuple(tuple([batch_size,
|
||
|
num_heads, ...]))
|
||
|
"""
|
||
|
batch_size_times_num_heads, kv_length, head_dim = past_key_value[0][0].shape
|
||
|
# [batch_size * self.num_heads, kv_length, head_dim] -> [batch_size, num_heads, kv_length, head_dim]
|
||
|
# Note that don't want to use self.num_attention_heads because the number of heads may vary depending
|
||
|
# on whether we use multi_query attention.
|
||
|
num_heads = batch_size_times_num_heads // batch_size
|
||
|
return tuple(
|
||
|
(
|
||
|
layer_past[0].view(batch_size, num_heads, kv_length, head_dim),
|
||
|
layer_past[1].view(batch_size, num_heads, kv_length, head_dim),
|
||
|
)
|
||
|
for layer_past in past_key_value
|
||
|
)
|
||
|
|
||
|
@staticmethod
|
||
|
def _convert_to_rw_cache(
|
||
|
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]]
|
||
|
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
|
||
|
batch_size, num_heads, kv_length, head_dim = past_key_value[0][0].shape
|
||
|
batch_size_times_num_heads = batch_size * num_heads
|
||
|
# [batch_size, num_heads, kv_length, head_dim] -> [batch_size * num_heads, kv_length, head_dim]
|
||
|
return tuple(
|
||
|
(
|
||
|
layer_past[0].view(batch_size_times_num_heads, kv_length, head_dim),
|
||
|
layer_past[1].view(batch_size_times_num_heads, kv_length, head_dim),
|
||
|
)
|
||
|
for layer_past in past_key_value
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"The bare Falcon Model transformer outputting raw hidden-states without any specific head on top.",
|
||
|
FALCON_START_DOCSTRING,
|
||
|
)
|
||
|
class FalconModel(FalconPreTrainedModel):
|
||
|
def __init__(self, config: FalconConfig):
|
||
|
super().__init__(config)
|
||
|
|
||
|
self.embed_dim = config.hidden_size
|
||
|
self.num_heads = config.num_attention_heads
|
||
|
self.use_alibi = config.alibi
|
||
|
|
||
|
# Embedding + LN Embedding
|
||
|
self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim)
|
||
|
|
||
|
# Transformer blocks
|
||
|
self.h = nn.ModuleList([FalconDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
||
|
|
||
|
# Final Layer Norm
|
||
|
self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
||
|
|
||
|
self.gradient_checkpointing = False
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_input_embeddings(self):
|
||
|
return self.word_embeddings
|
||
|
|
||
|
@staticmethod
|
||
|
def _prepare_attn_mask(
|
||
|
attention_mask: torch.Tensor, input_shape: Tuple[int, int], past_key_values_length: int
|
||
|
) -> torch.BoolTensor:
|
||
|
# Create a causal mask
|
||
|
# The attention mask we receive as input should cover the whole extended sequence, including any past
|
||
|
# cache, so its shape should be [batch_size, seq_length + past_key_values_length]
|
||
|
# The output shape will be [batch_size, 1, seq_length, seq_length + past_key_values_length]
|
||
|
if input_shape[1] + past_key_values_length != attention_mask.shape[1]:
|
||
|
raise ValueError(
|
||
|
"Attention mask shape should be (batch_size, seq_length + past_key_values_length)"
|
||
|
f" but is {attention_mask.shape} with input_ids shape {input_shape} and past length"
|
||
|
f" {past_key_values_length}."
|
||
|
)
|
||
|
combined_attention_mask = None
|
||
|
device = attention_mask.device
|
||
|
_, seq_length = input_shape
|
||
|
|
||
|
if seq_length > 1:
|
||
|
combined_attention_mask = _make_causal_mask(
|
||
|
input_shape, device=device, past_key_values_length=past_key_values_length
|
||
|
)
|
||
|
|
||
|
# [batch_size, seq_length + past_key_values_length] -> [batch_size, 1, seq_length, seq_length + past_key_values_length]
|
||
|
expanded_attn_mask = _expand_mask(attention_mask, past_key_values_length=past_key_values_length)
|
||
|
combined_attention_mask = (
|
||
|
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask
|
||
|
)
|
||
|
|
||
|
return combined_attention_mask
|
||
|
|
||
|
def set_input_embeddings(self, new_embeddings: torch.Tensor):
|
||
|
self.word_embeddings = new_embeddings
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
||
|
output_type=BaseModelOutputWithPastAndCrossAttentions,
|
||
|
config_class=_CONFIG_FOR_DOC,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
head_mask: Optional[torch.LongTensor] = None,
|
||
|
inputs_embeds: Optional[torch.LongTensor] = None,
|
||
|
use_cache: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
if input_ids is not None and inputs_embeds is not None:
|
||
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
||
|
elif input_ids is not None:
|
||
|
batch_size, seq_length = input_ids.shape
|
||
|
elif inputs_embeds is not None:
|
||
|
batch_size, seq_length, _ = inputs_embeds.shape
|
||
|
else:
|
||
|
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
||
|
|
||
|
if past_key_values is None:
|
||
|
past_key_values = tuple([None] * len(self.h))
|
||
|
else:
|
||
|
past_key_values = self._convert_to_rw_cache(past_key_values)
|
||
|
|
||
|
# Prepare head mask if needed
|
||
|
# 1.0 in head_mask indicate we keep the head
|
||
|
# attention_probs has shape batch_size x num_heads x N x N
|
||
|
# head_mask has shape n_layer x batch x num_heads x N x N
|
||
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
||
|
|
||
|
if inputs_embeds is None:
|
||
|
inputs_embeds = self.word_embeddings(input_ids)
|
||
|
|
||
|
hidden_states = inputs_embeds
|
||
|
|
||
|
presents = () if use_cache else None
|
||
|
all_self_attentions = () if output_attentions else None
|
||
|
all_hidden_states = () if output_hidden_states else None
|
||
|
|
||
|
# Compute alibi tensor: check build_alibi_tensor documentation
|
||
|
past_key_values_length = 0
|
||
|
if past_key_values[0] is not None:
|
||
|
past_key_values_length = past_key_values[0][0].shape[1] # 1 because RW-cache, not standard format
|
||
|
if attention_mask is None:
|
||
|
attention_mask = torch.ones((batch_size, seq_length + past_key_values_length), device=hidden_states.device)
|
||
|
else:
|
||
|
attention_mask = attention_mask.to(hidden_states.device)
|
||
|
|
||
|
if self.use_alibi:
|
||
|
alibi = build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype)
|
||
|
else:
|
||
|
alibi = None
|
||
|
|
||
|
causal_mask = self._prepare_attn_mask(
|
||
|
attention_mask,
|
||
|
input_shape=(batch_size, seq_length),
|
||
|
past_key_values_length=past_key_values_length,
|
||
|
)
|
||
|
|
||
|
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
|
||
|
if self.gradient_checkpointing and self.training:
|
||
|
if use_cache:
|
||
|
logger.warning(
|
||
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
||
|
)
|
||
|
use_cache = False
|
||
|
|
||
|
def create_custom_forward(module):
|
||
|
def custom_forward(*inputs):
|
||
|
# None for past_key_value
|
||
|
return module(*inputs, use_cache=use_cache, output_attentions=output_attentions)
|
||
|
|
||
|
return custom_forward
|
||
|
|
||
|
outputs = torch.utils.checkpoint.checkpoint(
|
||
|
create_custom_forward(block),
|
||
|
hidden_states,
|
||
|
alibi,
|
||
|
causal_mask,
|
||
|
head_mask[i],
|
||
|
)
|
||
|
else:
|
||
|
outputs = block(
|
||
|
hidden_states,
|
||
|
layer_past=layer_past,
|
||
|
attention_mask=causal_mask,
|
||
|
head_mask=head_mask[i],
|
||
|
use_cache=use_cache,
|
||
|
output_attentions=output_attentions,
|
||
|
alibi=alibi,
|
||
|
)
|
||
|
|
||
|
hidden_states = outputs[0]
|
||
|
if use_cache is True:
|
||
|
presents = presents + (outputs[1],)
|
||
|
|
||
|
if output_attentions:
|
||
|
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
||
|
|
||
|
# Add last hidden state
|
||
|
hidden_states = self.ln_f(hidden_states)
|
||
|
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
|
||
|
if presents is not None:
|
||
|
presents = self._convert_cache_to_standard_format(presents, batch_size)
|
||
|
|
||
|
if not return_dict:
|
||
|
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
||
|
|
||
|
return BaseModelOutputWithPastAndCrossAttentions(
|
||
|
last_hidden_state=hidden_states,
|
||
|
past_key_values=presents,
|
||
|
hidden_states=all_hidden_states,
|
||
|
attentions=all_self_attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"The Falcon Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings).",
|
||
|
FALCON_START_DOCSTRING,
|
||
|
)
|
||
|
class FalconForCausalLM(FalconPreTrainedModel):
|
||
|
_tied_weights_keys = ["lm_head.weight"]
|
||
|
|
||
|
def __init__(self, config: FalconConfig):
|
||
|
super().__init__(config)
|
||
|
self.transformer = FalconModel(config)
|
||
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_output_embeddings(self):
|
||
|
return self.lm_head
|
||
|
|
||
|
def set_output_embeddings(self, new_embeddings: torch.Tensor):
|
||
|
self.lm_head = new_embeddings
|
||
|
|
||
|
def prepare_inputs_for_generation(
|
||
|
self,
|
||
|
input_ids: torch.LongTensor,
|
||
|
past_key_values: Optional[torch.Tensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
**kwargs,
|
||
|
) -> dict:
|
||
|
if past_key_values is not None:
|
||
|
input_ids = input_ids[:, -1:]
|
||
|
|
||
|
return {
|
||
|
"input_ids": input_ids,
|
||
|
"past_key_values": past_key_values,
|
||
|
"use_cache": kwargs.get("use_cache"),
|
||
|
"attention_mask": attention_mask,
|
||
|
}
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
||
|
output_type=CausalLMOutputWithCrossAttentions,
|
||
|
config_class=_CONFIG_FOR_DOC,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
inputs_embeds: Optional[torch.Tensor] = None,
|
||
|
labels: Optional[torch.Tensor] = None,
|
||
|
use_cache: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
|
||
|
r"""
|
||
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
||
|
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
||
|
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
||
|
"""
|
||
|
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
transformer_outputs = self.transformer(
|
||
|
input_ids,
|
||
|
past_key_values=past_key_values,
|
||
|
attention_mask=attention_mask,
|
||
|
head_mask=head_mask,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
use_cache=use_cache,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
hidden_states = transformer_outputs[0]
|
||
|
|
||
|
lm_logits = self.lm_head(hidden_states)
|
||
|
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
# Shift so that tokens < n predict n
|
||
|
shift_logits = lm_logits[..., :-1, :].contiguous()
|
||
|
shift_labels = labels[..., 1:].contiguous()
|
||
|
batch_size, seq_length, vocab_size = shift_logits.shape
|
||
|
# Flatten the tokens
|
||
|
loss_fct = CrossEntropyLoss()
|
||
|
loss = loss_fct(
|
||
|
shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length)
|
||
|
)
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (lm_logits,) + transformer_outputs[1:]
|
||
|
return ((loss,) + output) if loss is not None else output
|
||
|
|
||
|
return CausalLMOutputWithCrossAttentions(
|
||
|
loss=loss,
|
||
|
logits=lm_logits,
|
||
|
past_key_values=transformer_outputs.past_key_values,
|
||
|
hidden_states=transformer_outputs.hidden_states,
|
||
|
attentions=transformer_outputs.attentions,
|
||
|
)
|
||
|
|
||
|
def _reorder_cache(
|
||
|
self, past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
|
||
|
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
|
||
|
"""
|
||
|
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
||
|
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
||
|
beam_idx at every generation step.
|
||
|
|
||
|
Output shares the same memory storage as `past`.
|
||
|
"""
|
||
|
|
||
|
# Get a copy of `beam_idx` on all the devices where we need those indices.
|
||
|
device_to_beam_idx = {
|
||
|
past_state.device: beam_idx.to(past_state.device) for layer_past in past for past_state in layer_past
|
||
|
}
|
||
|
reordered_past = tuple(
|
||
|
(
|
||
|
layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]),
|
||
|
layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]),
|
||
|
)
|
||
|
for layer_past in past
|
||
|
)
|
||
|
return reordered_past
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
The Falcon Model transformer with a sequence classification head on top (linear layer).
|
||
|
|
||
|
[`FalconForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
||
|
(e.g. GPT-1) do.
|
||
|
|
||
|
Since it does classification on the last token, it requires to know the position of the last token. If a
|
||
|
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
||
|
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
||
|
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
||
|
each row of the batch).
|
||
|
""",
|
||
|
FALCON_START_DOCSTRING,
|
||
|
)
|
||
|
class FalconForSequenceClassification(FalconPreTrainedModel):
|
||
|
def __init__(self, config: FalconConfig):
|
||
|
super().__init__(config)
|
||
|
self.num_labels = config.num_labels
|
||
|
self.transformer = FalconModel(config)
|
||
|
self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
||
|
output_type=SequenceClassifierOutputWithPast,
|
||
|
config_class=_CONFIG_FOR_DOC,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
inputs_embeds: Optional[torch.Tensor] = None,
|
||
|
labels: Optional[torch.Tensor] = None,
|
||
|
use_cache: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
|
||
|
r"""
|
||
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
||
|
"""
|
||
|
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
transformer_outputs = self.transformer(
|
||
|
input_ids,
|
||
|
past_key_values=past_key_values,
|
||
|
attention_mask=attention_mask,
|
||
|
head_mask=head_mask,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
use_cache=use_cache,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
hidden_states = transformer_outputs[0]
|
||
|
logits = self.score(hidden_states)
|
||
|
|
||
|
if input_ids is not None:
|
||
|
batch_size = input_ids.shape[0]
|
||
|
else:
|
||
|
batch_size = inputs_embeds.shape[0]
|
||
|
|
||
|
if self.config.pad_token_id is None and batch_size != 1:
|
||
|
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
||
|
if self.config.pad_token_id is None:
|
||
|
sequence_lengths = -1
|
||
|
else:
|
||
|
if input_ids is not None:
|
||
|
sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(dim=-1) - 1
|
||
|
else:
|
||
|
sequence_lengths = -1
|
||
|
logger.warning(
|
||
|
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
||
|
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
||
|
)
|
||
|
|
||
|
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
||
|
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
if self.config.problem_type is None:
|
||
|
if self.num_labels == 1:
|
||
|
self.config.problem_type = "regression"
|
||
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
||
|
self.config.problem_type = "single_label_classification"
|
||
|
else:
|
||
|
self.config.problem_type = "multi_label_classification"
|
||
|
|
||
|
if self.config.problem_type == "regression":
|
||
|
loss_fct = MSELoss()
|
||
|
if self.num_labels == 1:
|
||
|
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
||
|
else:
|
||
|
loss = loss_fct(pooled_logits, labels)
|
||
|
elif self.config.problem_type == "single_label_classification":
|
||
|
loss_fct = CrossEntropyLoss()
|
||
|
loss = loss_fct(pooled_logits, labels)
|
||
|
elif self.config.problem_type == "multi_label_classification":
|
||
|
loss_fct = BCEWithLogitsLoss()
|
||
|
loss = loss_fct(pooled_logits, labels)
|
||
|
if not return_dict:
|
||
|
output = (pooled_logits,) + transformer_outputs[1:]
|
||
|
return ((loss,) + output) if loss is not None else output
|
||
|
|
||
|
return SequenceClassifierOutputWithPast(
|
||
|
loss=loss,
|
||
|
logits=pooled_logits,
|
||
|
past_key_values=transformer_outputs.past_key_values,
|
||
|
hidden_states=transformer_outputs.hidden_states,
|
||
|
attentions=transformer_outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
Falcon Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
||
|
Named-Entity-Recognition (NER) tasks.
|
||
|
""",
|
||
|
FALCON_START_DOCSTRING,
|
||
|
)
|
||
|
class FalconForTokenClassification(FalconPreTrainedModel):
|
||
|
def __init__(self, config: FalconConfig):
|
||
|
super().__init__(config)
|
||
|
self.num_labels = config.num_labels
|
||
|
|
||
|
self.transformer = FalconModel(config)
|
||
|
if getattr(config, "classifier_dropout", None) is not None:
|
||
|
classifier_dropout = config.classifier_dropout
|
||
|
elif getattr(config, "hidden_dropout", None) is not None:
|
||
|
classifier_dropout = config.hidden_dropout
|
||
|
else:
|
||
|
classifier_dropout = 0.1
|
||
|
self.dropout = nn.Dropout(classifier_dropout)
|
||
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
||
|
output_type=TokenClassifierOutput,
|
||
|
config_class=_CONFIG_FOR_DOC,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
inputs_embeds: Optional[torch.Tensor] = None,
|
||
|
labels: Optional[torch.Tensor] = None,
|
||
|
use_cache: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
||
|
r"""
|
||
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
||
|
"""
|
||
|
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
transformer_outputs = self.transformer(
|
||
|
input_ids,
|
||
|
past_key_values=past_key_values,
|
||
|
attention_mask=attention_mask,
|
||
|
head_mask=head_mask,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
use_cache=use_cache,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
hidden_states = transformer_outputs[0]
|
||
|
hidden_states = self.dropout(hidden_states)
|
||
|
logits = self.classifier(hidden_states)
|
||
|
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
batch_size, seq_length = labels.shape
|
||
|
loss_fct = CrossEntropyLoss()
|
||
|
loss = loss_fct(
|
||
|
logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)
|
||
|
)
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (logits,) + transformer_outputs[2:]
|
||
|
return ((loss,) + output) if loss is not None else output
|
||
|
|
||
|
return TokenClassifierOutput(
|
||
|
loss=loss,
|
||
|
logits=logits,
|
||
|
hidden_states=transformer_outputs.hidden_states,
|
||
|
attentions=transformer_outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
The Falcon Model transformer with a span classification head on top for extractive question-answering tasks like
|
||
|
SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
||
|
""",
|
||
|
FALCON_START_DOCSTRING,
|
||
|
)
|
||
|
class FalconForQuestionAnswering(FalconPreTrainedModel):
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
self.transformer = FalconModel(config)
|
||
|
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
start_positions: Optional[torch.LongTensor] = None,
|
||
|
end_positions: Optional[torch.LongTensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
||
|
r"""
|
||
|
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
||
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
||
|
are not taken into account for computing the loss.
|
||
|
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
||
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
||
|
are not taken into account for computing the loss.
|
||
|
"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
outputs = self.transformer(
|
||
|
input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
head_mask=head_mask,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
sequence_output = outputs[0]
|
||
|
|
||
|
logits = self.qa_outputs(sequence_output)
|
||
|
start_logits, end_logits = logits.split(1, dim=-1)
|
||
|
start_logits = start_logits.squeeze(-1).contiguous()
|
||
|
end_logits = end_logits.squeeze(-1).contiguous()
|
||
|
|
||
|
total_loss = None
|
||
|
if start_positions is not None and end_positions is not None:
|
||
|
# If we are on multi-GPU, split add a dimension
|
||
|
if len(start_positions.size()) > 1:
|
||
|
start_positions = start_positions.squeeze(-1)
|
||
|
if len(end_positions.size()) > 1:
|
||
|
end_positions = end_positions.squeeze(-1)
|
||
|
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
||
|
ignored_index = start_logits.size(1)
|
||
|
start_positions = start_positions.clamp(0, ignored_index)
|
||
|
end_positions = end_positions.clamp(0, ignored_index)
|
||
|
|
||
|
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
||
|
start_loss = loss_fct(start_logits, start_positions)
|
||
|
end_loss = loss_fct(end_logits, end_positions)
|
||
|
total_loss = (start_loss + end_loss) / 2
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (start_logits, end_logits) + outputs[2:]
|
||
|
return ((total_loss,) + output) if total_loss is not None else output
|
||
|
|
||
|
return QuestionAnsweringModelOutput(
|
||
|
loss=total_loss,
|
||
|
start_logits=start_logits,
|
||
|
end_logits=end_logits,
|
||
|
hidden_states=outputs.hidden_states,
|
||
|
attentions=outputs.attentions,
|
||
|
)
|