225 lines
8.8 KiB
Python
225 lines
8.8 KiB
Python
import regex as re
|
|
import base64
|
|
import os
|
|
import tiktoken
|
|
from typing import List, Optional, Union, Dict
|
|
from transformers import PreTrainedTokenizer
|
|
from transformers.utils import PaddingStrategy
|
|
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
|
|
|
|
|
|
class ChatGLM4Tokenizer(PreTrainedTokenizer):
|
|
vocab_files_names = {"vocab_file": "tokenizer.model"}
|
|
model_input_names = ["input_ids", "attention_mask", "position_ids"]
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_file,
|
|
clean_up_tokenization_spaces=False,
|
|
**kwargs
|
|
):
|
|
self.name = "GLM4Tokenizer"
|
|
self.vocab_file = vocab_file
|
|
pat_str = "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
|
|
self.pat_str = re.compile(pat_str)
|
|
|
|
mergeable_ranks = {}
|
|
with open(vocab_file) as f:
|
|
for line in f:
|
|
token, rank = line.strip().split()
|
|
rank = int(rank)
|
|
token = base64.b64decode(token)
|
|
mergeable_ranks[token] = rank
|
|
|
|
self.mergeable_ranks = mergeable_ranks
|
|
|
|
self.tokenizer = tiktoken.Encoding(
|
|
name="my_tokenizer",
|
|
pat_str=pat_str,
|
|
mergeable_ranks=mergeable_ranks,
|
|
special_tokens={}
|
|
)
|
|
self.decoder = {rank: token for token, rank in mergeable_ranks.items()}
|
|
self.n_words = len(self.decoder)
|
|
|
|
super().__init__(
|
|
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
|
**kwargs
|
|
)
|
|
|
|
@property
|
|
def vocab_size(self):
|
|
return self.n_words
|
|
|
|
def get_vocab(self):
|
|
""" Returns vocab as a dict """
|
|
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
|
|
vocab.update(self.added_tokens_encoder)
|
|
return vocab
|
|
|
|
def convert_tokens_to_string(self, tokens: List[Union[bytes, str, int]]) -> str:
|
|
"""
|
|
Converts a sequence of tokens in a single string.
|
|
"""
|
|
text = ""
|
|
temp = b""
|
|
for t in tokens:
|
|
if isinstance(t, int):
|
|
t = chr(t)
|
|
if isinstance(t, str):
|
|
if temp:
|
|
text += temp.decode("utf-8", errors="replace")
|
|
elif isinstance(t, bytes):
|
|
temp += t
|
|
else:
|
|
raise TypeError("token should only be of type int, bytes or str")
|
|
if temp:
|
|
text += temp.decode("utf-8", errors="replace")
|
|
return text
|
|
|
|
def _tokenize(self, text, **kwargs):
|
|
tokens = []
|
|
ids = self.tokenizer.encode(text)
|
|
for t in ids:
|
|
tokens.append(self.decoder[t])
|
|
return tokens
|
|
|
|
def _convert_token_to_id(self, token):
|
|
""" Converts a token (str) in an id using the vocab. """
|
|
return self.mergeable_ranks[token]
|
|
|
|
def _convert_id_to_token(self, index):
|
|
"""Converts an index (integer) in a token (str) using the vocab."""
|
|
return self.decoder.get(index, "")
|
|
|
|
def save_vocabulary(self, save_directory, filename_prefix=None):
|
|
"""
|
|
Save the vocabulary and special tokens file to a directory.
|
|
|
|
Args:
|
|
save_directory (`str`):
|
|
The directory in which to save the vocabulary.
|
|
filename_prefix (`str`, *optional*):
|
|
An optional prefix to add to the named of the saved files.
|
|
|
|
Returns:
|
|
`Tuple(str)`: Paths to the files saved.
|
|
"""
|
|
if os.path.isdir(save_directory):
|
|
vocab_file = os.path.join(
|
|
save_directory, self.vocab_files_names["vocab_file"]
|
|
)
|
|
else:
|
|
vocab_file = save_directory
|
|
|
|
with open(self.vocab_file, 'rb') as fin:
|
|
proto_str = fin.read()
|
|
|
|
with open(vocab_file, "wb") as writer:
|
|
writer.write(proto_str)
|
|
|
|
return (vocab_file,)
|
|
|
|
def get_prefix_tokens(self):
|
|
prefix_tokens = [self.convert_tokens_to_ids("[gMASK]"), self.convert_tokens_to_ids("<sop>")]
|
|
return prefix_tokens
|
|
|
|
def build_single_message(self, role, metadata, message, tokenize=True):
|
|
assert role in ["system", "user", "assistant", "observation"], role
|
|
if tokenize:
|
|
role_tokens = [self.convert_tokens_to_ids(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n",
|
|
disallowed_special=())
|
|
message_tokens = self.tokenizer.encode(message, disallowed_special=())
|
|
tokens = role_tokens + message_tokens
|
|
return tokens
|
|
else:
|
|
return str(f"<|{role}|>{metadata}\n{message}")
|
|
|
|
def build_inputs_with_special_tokens(
|
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
|
) -> List[int]:
|
|
"""
|
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
|
adding special tokens. A BERT sequence has the following format:
|
|
|
|
- single sequence: `[CLS] X [SEP]`
|
|
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
|
|
|
Args:
|
|
token_ids_0 (`List[int]`):
|
|
List of IDs to which the special tokens will be added.
|
|
token_ids_1 (`List[int]`, *optional*):
|
|
Optional second list of IDs for sequence pairs.
|
|
|
|
Returns:
|
|
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
|
"""
|
|
prefix_tokens = self.get_prefix_tokens()
|
|
token_ids_0 = prefix_tokens + token_ids_0
|
|
if token_ids_1 is not None:
|
|
token_ids_0 = token_ids_0 + token_ids_1 + [self.convert_tokens_to_ids("<eos>")]
|
|
return token_ids_0
|
|
|
|
def _pad(
|
|
self,
|
|
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
|
max_length: Optional[int] = None,
|
|
padding_side: str = "left",
|
|
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
|
pad_to_multiple_of: Optional[int] = None,
|
|
return_attention_mask: Optional[bool] = None,
|
|
) -> dict:
|
|
"""
|
|
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
|
|
|
Args:
|
|
encoded_inputs:
|
|
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
|
max_length: maximum length of the returned list and optionally padding length (see below).
|
|
Will truncate by taking into account the special tokens.
|
|
padding_strategy: PaddingStrategy to use for padding.
|
|
|
|
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
|
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
|
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
|
The tokenizer padding sides are defined in self.padding_side:
|
|
|
|
- 'left': pads on the left of the sequences
|
|
- 'right': pads on the right of the sequences
|
|
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
|
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
|
`>= 7.5` (Volta).
|
|
return_attention_mask:
|
|
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
|
"""
|
|
# Load from model defaults
|
|
|
|
required_input = encoded_inputs[self.model_input_names[0]]
|
|
seq_length = len(required_input)
|
|
|
|
if padding_strategy == PaddingStrategy.LONGEST:
|
|
max_length = len(required_input)
|
|
|
|
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
|
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
|
|
|
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
|
|
|
|
# Initialize attention mask if not present.
|
|
if "attention_mask" not in encoded_inputs:
|
|
encoded_inputs["attention_mask"] = [1] * seq_length
|
|
|
|
if "position_ids" not in encoded_inputs:
|
|
encoded_inputs["position_ids"] = list(range(seq_length))
|
|
|
|
if needs_to_be_padded:
|
|
difference = max_length - len(required_input)
|
|
|
|
if "attention_mask" in encoded_inputs:
|
|
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
|
|
if "position_ids" in encoded_inputs:
|
|
encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]
|
|
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
|
|
|
return encoded_inputs
|