first commit

This commit is contained in:
xxl 2025-01-23 10:20:33 +08:00
parent 0fa357e404
commit 3d8c4dfd31
16 changed files with 252791 additions and 1 deletions

10
1_Pooling/config.json Normal file
View File

@ -0,0 +1,10 @@
{
"word_embedding_dimension": 768,
"pooling_mode_cls_token": true,
"pooling_mode_mean_tokens": false,
"pooling_mode_max_tokens": false,
"pooling_mode_mean_sqrt_len_tokens": false,
"pooling_mode_weightedmean_tokens": false,
"pooling_mode_lasttoken": false,
"include_prompt": true
}

210
README.md
View File

@ -1,3 +1,211 @@
---
license: apache-2.0
language:
- en
base_model:
- answerdotai/ModernBERT-base
pipeline_tag: sentence-similarity
library_name: transformers
tags:
- sentence-transformers
- mteb
- embedding
- transformers.js
---
# gte-modernbert-base # gte-modernbert-base
gte-modernbert-base We are excited to introduce the `gte-modernbert` series of models, which are built upon the latest modernBERT pre-trained encoder-only foundation models. The `gte-modernbert` series models include both text embedding models and rerank models.
The `gte-modernbert` models demonstrates competitive performance in several text embedding and text retrieval evaluation tasks when compared to similar-scale models from the current open-source community. This includes assessments such as MTEB, LoCO, and COIR evaluation.
## Model Overview
- Developed by: Tongyi Lab, Alibaba Group
- Model Type: Text Embedding
- Primary Language: English
- Model Size: 149M
- Max Input Length: 8192 tokens
- Output Dimension: 768
### Model list
| Models | Language | Model Type | Model Size | Max Seq. Length | Dimension | MTEB-en | BEIR | LoCo | CoIR |
|:--------------------------------------------------------------------------------------:|:--------:|:----------------------:|:----------:|:---------------:|:---------:|:-------:|:----:|:----:|:----:|
| [`gte-modernbert-base`](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) | English | text embedding | 149M | 8192 | 768 | 64.38 | 55.33 | 87.57 | 79.31 |
| [`gte-reranker-modernbert-base`](https://huggingface.co/Alibaba-NLP/gte-reranker-modernbert-base) | English | text reranker | 149M | 8192 | - | - | 56.19 | 90.68 | 79.99 |
## Usage
> [!TIP]
> For `transformers` and `sentence-transformers`, if your GPU supports it, the efficient Flash Attention 2 will be used automatically if you have `flash_attn` installed. It is not mandatory.
>
> ```bash
> pip install flash_attn
> ```
Use with `transformers`
```python
# Requires transformers>=4.48.0
import torch.nn.functional as F
from transformers import AutoModel, AutoTokenizer
input_texts = [
"what is the capital of China?",
"how to implement quick sort in python?",
"Beijing",
"sorting algorithms"
]
model_path = "Alibaba-NLP/gte-modernbert-base"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModel.from_pretrained(model_path)
# Tokenize the input texts
batch_dict = tokenizer(input_texts, max_length=8192, padding=True, truncation=True, return_tensors='pt')
outputs = model(**batch_dict)
embeddings = outputs.last_hidden_state[:, 0]
# (Optionally) normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:1] @ embeddings[1:].T) * 100
print(scores.tolist())
# [[42.89073944091797, 71.30911254882812, 33.664554595947266]]
```
Use with `sentence-transformers`:
```python
# Requires transformers>=4.48.0
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
input_texts = [
"what is the capital of China?",
"how to implement quick sort in python?",
"Beijing",
"sorting algorithms"
]
model = SentenceTransformer("Alibaba-NLP/gte-modernbert-base")
embeddings = model.encode(input_texts)
print(embeddings.shape)
# (4, 768)
similarities = cos_sim(embeddings[0], embeddings[1:])
print(similarities)
# tensor([[0.4289, 0.7131, 0.3366]])
```
Use with `transformers.js`:
```js
// npm i @huggingface/transformers
import { pipeline, matmul } from "@huggingface/transformers";
// Create a feature extraction pipeline
const extractor = await pipeline(
"feature-extraction",
"Alibaba-NLP/gte-modernbert-base",
{ dtype: "fp32" }, // Supported options: "fp32", "fp16", "q8", "q4", "q4f16"
);
// Embed queries and documents
const embeddings = await extractor(
[
"what is the capital of China?",
"how to implement quick sort in python?",
"Beijing",
"sorting algorithms",
],
{ pooling: "cls", normalize: true },
);
// Compute similarity scores
const similarities = (await matmul(embeddings.slice([0, 1]), embeddings.slice([1, null]).transpose(1, 0))).mul(100);
console.log(similarities.tolist()); // [[42.89077377319336, 71.30916595458984, 33.66455841064453]]
```
## Training Details
The `gte-modernbert` series of models follows the training scheme of the previous [GTE models](https://huggingface.co/collections/Alibaba-NLP/gte-models-6680f0b13f885cb431e6d469), with the only difference being that the pre-training language model base has been replaced from [GTE-MLM](https://huggingface.co/Alibaba-NLP/gte-en-mlm-base) to [ModernBert](https://huggingface.co/answerdotai/ModernBERT-base). For more training details, please refer to our paper: [mGTE: Generalized Long-Context Text Representation and Reranking Models for Multilingual Text Retrieval](https://aclanthology.org/2024.emnlp-industry.103/)
## Evaluation
### MTEB
The results of other models are retrieved from [MTEB leaderboard](https://huggingface.co/spaces/mteb/leaderboard). Given that all models in the `gte-modernbert` series have a size of less than 1B parameters, we focused exclusively on the results of models under 1B from the MTEB leaderboard.
| Model Name | Param Size (M) | Dimension | Sequence Length | Average (56) | Class. (12) | Clust. (11) | Pair Class. (3) | Reran. (4) | Retr. (15) | STS (10) | Summ. (1) |
|:------------------------------------------------------------------------------------------------:|:--------------:|:---------:|:---------------:|:------------:|:-----------:|:---:|:---:|:---:|:---:|:-----------:|:--------:|
| [mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) | 335 | 1024 | 512 | 64.68 | 75.64 | 46.71 | 87.2 | 60.11 | 54.39 | 85 | 32.71 |
| [multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) | 560 | 1024 | 514 | 64.41 | 77.56 | 47.1 | 86.19 | 58.58 | 52.47 | 84.78 | 30.39 |
| [bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 335 | 1024 | 512 | 64.23 | 75.97 | 46.08 | 87.12 | 60.03 | 54.29 | 83.11 | 31.61 |
| [gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5) | 137 | 768 | 8192 | 64.11 | 77.17 | 46.82 | 85.33 | 57.66 | 54.09 | 81.97 | 31.17 |
| [bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 109 | 768 | 512 | 63.55 | 75.53 | 45.77 | 86.55 | 58.86 | 53.25 | 82.4 | 31.07 |
| [gte-large-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) | 409 | 1024 | 8192 | 65.39 | 77.75 | 47.95 | 84.63 | 58.50 | 57.91 | 81.43 | 30.91 |
| [modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) | 149 | 768 | 8192 | 62.62 | 74.31 | 44.98 | 83.96 | 56.42 | 52.89 | 81.78 | 31.39 |
| [nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) | | 768 | 8192 | 62.28 | 73.55 | 43.93 | 84.61 | 55.78 | 53.01| 81.94 | 30.4 |
| [gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) | 305 | 768 | 8192 | 61.4 | 70.89 | 44.31 | 84.24 | 57.47 |51.08 | 82.11 | 30.58 |
| [jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3) | 572 | 1024 | 8192 | 65.51 | 82.58 |45.21 |84.01 |58.13 |53.88 | 85.81 | 29.71 |
| [**gte-modernbert-base**](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) | 149 | 768 | 8192 | **64.38** | **76.99** | **46.47** | **85.93** | **59.24** | **55.33** | **81.57** | **30.68** |
### LoCo (Long Document Retrieval)(NDCG@10)
| Model Name | Dimension | Sequence Length | Average (5) | QsmsumRetrieval | SummScreenRetrieval | QasperAbastractRetrieval | QasperTitleRetrieval | GovReportRetrieval |
|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
| [gte-qwen1.5-7b](https://huggingface.co/Alibaba-NLP/gte-qwen1.5-7b) | 4096 | 32768 | 87.57 | 49.37 | 93.10 | 99.67 | 97.54 | 98.21 |
| [gte-large-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-v1.5) |1024 | 8192 | 86.71 | 44.55 | 92.61 | 99.82 | 97.81 | 98.74 |
| [gte-base-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-v1.5) | 768 | 8192 | 87.44 | 49.91 | 91.78 | 99.82 | 97.13 | 98.58 |
| [gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) | 768 | 8192 | 88.88 | 54.45 | 93.00 | 99.82 | 98.03 | 98.70 |
| [gte-reranker-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-reranker-modernbert-base) | - | 8192 | 90.68 | 70.86 | 94.06 | 99.73 | 99.11 | 89.67 |
### COIR (Code Retrieval Task)(NDCG@10)
| Model Name | Dimension | Sequence Length | Average(20) | CodeSearchNet-ccr-go | CodeSearchNet-ccr-java | CodeSearchNet-ccr-javascript | CodeSearchNet-ccr-php | CodeSearchNet-ccr-python | CodeSearchNet-ccr-ruby | CodeSearchNet-go | CodeSearchNet-java | CodeSearchNet-javascript | CodeSearchNet-php | CodeSearchNet-python | CodeSearchNet-ruby | apps | codefeedback-mt | codefeedback-st | codetrans-contest | codetrans-dl | cosqa | stackoverflow-qa | synthetic-text2sql |
|:----:|:---:|:---:|:---:|:---:| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| [gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) | 768 | 8192 | 79.31 | 94.15 | 93.57 | 94.27 | 91.51 | 93.93 | 90.63 | 88.32 | 83.27 | 76.05 | 85.12 | 88.16 | 77.59 | 57.54 | 82.34 | 85.95 | 71.89 | 35.46 | 43.47 | 91.2 | 61.87 |
| [gte-reranker-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-reranker-modernbert-base) | - | 8192 | 79.99 | 96.43 | 96.88 | 98.32 | 91.81 | 97.7 | 91.96 | 88.81 | 79.71 | 76.27 | 89.39 | 98.37 | 84.11 | 47.57 | 83.37 | 88.91 | 49.66 | 36.36 | 44.37 | 89.58 | 64.21 |
### BEIR(NDCG@10)
| Model Name | Dimension | Sequence Length | Average(15) | ArguAna | ClimateFEVER | CQADupstackAndroidRetrieval | DBPedia | FEVER | FiQA2018 | HotpotQA | MSMARCO | NFCorpus | NQ | QuoraRetrieval | SCIDOCS | SciFact | Touche2020 | TRECCOVID |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| [gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) | 768 | 8192 | 55.33 | 72.68 | 37.74 | 42.63 | 41.79 | 91.03 | 48.81 | 69.47 | 40.9 | 36.44 | 57.62 | 88.55 | 21.29 | 77.4 | 21.68 | 81.95 |
| [gte-reranker-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-reranker-modernbert-base) | - | 8192 | 56.73 | 69.03 | 37.79 | 44.68 | 47.23 | 94.54 | 49.81 | 78.16 | 45.38 | 30.69 | 64.57 | 87.77 | 20.60 | 73.57 | 27.36 | 79.89 |
## Hiring
We have open positions for **Research Interns** and **Full-Time Researchers** to join our team at Tongyi Lab.
We are seeking passionate individuals with expertise in representation learning, LLM-driven information retrieval, Retrieval-Augmented Generation (RAG), and agent-based systems.
Our team is located in the vibrant cities of **Beijing** and **Hangzhou**.
If you are driven by curiosity and eager to make a meaningful impact through your work, we would love to hear from you. Please submit your resume along with a brief introduction to <a href="mailto:dingkun.ldk@alibaba-inc.com">dingkun.ldk@alibaba-inc.com</a>.
## Citation
If you find our paper or models helpful, feel free to give us a cite.
```
@inproceedings{zhang2024mgte,
title={mGTE: Generalized Long-Context Text Representation and Reranking Models for Multilingual Text Retrieval},
author={Zhang, Xin and Zhang, Yanzhao and Long, Dingkun and Xie, Wen and Dai, Ziqi and Tang, Jialong and Lin, Huan and Yang, Baosong and Xie, Pengjun and Huang, Fei and others},
booktitle={Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track},
pages={1393--1412},
year={2024}
}
@article{li2023towards,
title={Towards general text embeddings with multi-stage contrastive learning},
author={Li, Zehan and Zhang, Xin and Zhang, Yanzhao and Long, Dingkun and Xie, Pengjun and Zhang, Meishan},
journal={arXiv preprint arXiv:2308.03281},
year={2023}
}
```

44
config.json Normal file
View File

@ -0,0 +1,44 @@
{
"architectures": [
"ModernBertModel"
],
"attention_bias": false,
"attention_dropout": 0.0,
"bos_token_id": 50281,
"classifier_activation": "gelu",
"classifier_bias": false,
"classifier_dropout": 0.0,
"classifier_pooling": "mean",
"cls_token_id": 50281,
"decoder_bias": true,
"deterministic_flash_attn": false,
"embedding_dropout": 0.0,
"eos_token_id": 50282,
"global_attn_every_n_layers": 3,
"global_rope_theta": 160000.0,
"gradient_checkpointing": false,
"hidden_activation": "gelu",
"hidden_size": 768,
"initializer_cutoff_factor": 2.0,
"initializer_range": 0.02,
"intermediate_size": 1152,
"layer_norm_eps": 1e-05,
"local_attention": 128,
"local_rope_theta": 10000.0,
"max_position_embeddings": 8192,
"mlp_bias": false,
"mlp_dropout": 0.0,
"model_type": "modernbert",
"norm_bias": false,
"norm_eps": 1e-05,
"num_attention_heads": 12,
"num_hidden_layers": 22,
"pad_token_id": 50283,
"position_embedding_type": "absolute",
"sep_token_id": 50282,
"sparse_pred_ignore_index": -100,
"sparse_prediction": false,
"torch_dtype": "float16",
"transformers_version": "4.48.0.dev0",
"vocab_size": 50368
}

View File

@ -0,0 +1,10 @@
{
"__version__": {
"sentence_transformers": "2.7.0",
"transformers": "4.48.0",
"pytorch": "2.5.0+cu121"
},
"prompts": {},
"default_prompt_name": null,
"similarity_fn_name": "cosine"
}

14
modules.json Normal file
View File

@ -0,0 +1,14 @@
[
{
"idx": 0,
"name": "0",
"path": "",
"type": "sentence_transformers.models.Transformer"
},
{
"idx": 1,
"name": "1",
"path": "1_Pooling",
"type": "sentence_transformers.models.Pooling"
}
]

BIN
onnx/model.onnx (Stored with Git LFS) Normal file

Binary file not shown.

BIN
onnx/model_bnb4.onnx (Stored with Git LFS) Normal file

Binary file not shown.

BIN
onnx/model_fp16.onnx (Stored with Git LFS) Normal file

Binary file not shown.

BIN
onnx/model_int8.onnx (Stored with Git LFS) Normal file

Binary file not shown.

BIN
onnx/model_q4.onnx (Stored with Git LFS) Normal file

Binary file not shown.

BIN
onnx/model_quantized.onnx (Stored with Git LFS) Normal file

Binary file not shown.

BIN
onnx/model_uint8.onnx (Stored with Git LFS) Normal file

Binary file not shown.

BIN
pytorch_model.bin (Stored with Git LFS) Normal file

Binary file not shown.

37
special_tokens_map.json Normal file
View File

@ -0,0 +1,37 @@
{
"cls_token": {
"content": "[CLS]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
"mask_token": {
"content": "[MASK]",
"lstrip": true,
"normalized": false,
"rstrip": false,
"single_word": false
},
"pad_token": {
"content": "[PAD]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
"sep_token": {
"content": "[SEP]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
"unk_token": {
"content": "[UNK]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
}
}

251498
tokenizer.json Normal file

File diff suppressed because it is too large Load Diff

945
tokenizer_config.json Normal file
View File

@ -0,0 +1,945 @@
{
"added_tokens_decoder": {
"0": {
"content": "|||IP_ADDRESS|||",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"1": {
"content": "<|padding|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"50254": {
"content": " ",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50255": {
"content": " ",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50256": {
"content": " ",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50257": {
"content": " ",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50258": {
"content": " ",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50259": {
"content": " ",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50260": {
"content": " ",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50261": {
"content": " ",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50262": {
"content": " ",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50263": {
"content": " ",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50264": {
"content": " ",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50265": {
"content": " ",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50266": {
"content": " ",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50267": {
"content": " ",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50268": {
"content": " ",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50269": {
"content": " ",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50270": {
"content": " ",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50271": {
"content": " ",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50272": {
"content": " ",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50273": {
"content": " ",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50274": {
"content": " ",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50275": {
"content": " ",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50276": {
"content": " ",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50277": {
"content": "|||EMAIL_ADDRESS|||",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50278": {
"content": "|||PHONE_NUMBER|||",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50279": {
"content": "<|endoftext|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"50280": {
"content": "[UNK]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"50281": {
"content": "[CLS]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"50282": {
"content": "[SEP]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"50283": {
"content": "[PAD]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"50284": {
"content": "[MASK]",
"lstrip": true,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"50285": {
"content": "[unused0]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50286": {
"content": "[unused1]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50287": {
"content": "[unused2]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50288": {
"content": "[unused3]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50289": {
"content": "[unused4]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50290": {
"content": "[unused5]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50291": {
"content": "[unused6]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50292": {
"content": "[unused7]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50293": {
"content": "[unused8]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50294": {
"content": "[unused9]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50295": {
"content": "[unused10]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50296": {
"content": "[unused11]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50297": {
"content": "[unused12]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50298": {
"content": "[unused13]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50299": {
"content": "[unused14]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50300": {
"content": "[unused15]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50301": {
"content": "[unused16]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50302": {
"content": "[unused17]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50303": {
"content": "[unused18]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50304": {
"content": "[unused19]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50305": {
"content": "[unused20]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50306": {
"content": "[unused21]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50307": {
"content": "[unused22]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50308": {
"content": "[unused23]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50309": {
"content": "[unused24]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50310": {
"content": "[unused25]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50311": {
"content": "[unused26]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50312": {
"content": "[unused27]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50313": {
"content": "[unused28]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50314": {
"content": "[unused29]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50315": {
"content": "[unused30]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50316": {
"content": "[unused31]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50317": {
"content": "[unused32]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50318": {
"content": "[unused33]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50319": {
"content": "[unused34]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50320": {
"content": "[unused35]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50321": {
"content": "[unused36]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50322": {
"content": "[unused37]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50323": {
"content": "[unused38]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50324": {
"content": "[unused39]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50325": {
"content": "[unused40]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50326": {
"content": "[unused41]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50327": {
"content": "[unused42]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50328": {
"content": "[unused43]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50329": {
"content": "[unused44]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50330": {
"content": "[unused45]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50331": {
"content": "[unused46]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50332": {
"content": "[unused47]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50333": {
"content": "[unused48]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50334": {
"content": "[unused49]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50335": {
"content": "[unused50]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50336": {
"content": "[unused51]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50337": {
"content": "[unused52]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50338": {
"content": "[unused53]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50339": {
"content": "[unused54]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50340": {
"content": "[unused55]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50341": {
"content": "[unused56]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50342": {
"content": "[unused57]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50343": {
"content": "[unused58]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50344": {
"content": "[unused59]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50345": {
"content": "[unused60]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50346": {
"content": "[unused61]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50347": {
"content": "[unused62]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50348": {
"content": "[unused63]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50349": {
"content": "[unused64]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50350": {
"content": "[unused65]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50351": {
"content": "[unused66]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50352": {
"content": "[unused67]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50353": {
"content": "[unused68]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50354": {
"content": "[unused69]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50355": {
"content": "[unused70]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50356": {
"content": "[unused71]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50357": {
"content": "[unused72]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50358": {
"content": "[unused73]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50359": {
"content": "[unused74]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50360": {
"content": "[unused75]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50361": {
"content": "[unused76]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50362": {
"content": "[unused77]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50363": {
"content": "[unused78]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50364": {
"content": "[unused79]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50365": {
"content": "[unused80]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50366": {
"content": "[unused81]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
},
"50367": {
"content": "[unused82]",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false,
"special": false
}
},
"clean_up_tokenization_spaces": true,
"cls_token": "[CLS]",
"extra_special_tokens": {},
"mask_token": "[MASK]",
"model_input_names": [
"input_ids",
"attention_mask"
],
"model_max_length": 1000000000000000019884624838656,
"pad_token": "[PAD]",
"sep_token": "[SEP]",
"tokenizer_class": "PreTrainedTokenizerFast",
"unk_token": "[UNK]"
}