155 lines
6.2 KiB
Python
155 lines
6.2 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 The GTE Team Authors and Alibaba Group.
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
from collections import defaultdict
|
|
from typing import Dict, List, Tuple
|
|
|
|
import numpy as np
|
|
import torch
|
|
from transformers import AutoModelForTokenClassification, AutoTokenizer
|
|
from transformers.utils import is_torch_npu_available
|
|
|
|
|
|
class GTEEmbeddidng(torch.nn.Module):
|
|
def __init__(self,
|
|
model_name: str = None,
|
|
normalized: bool = True,
|
|
use_fp16: bool = True,
|
|
device: str = None
|
|
):
|
|
super().__init__()
|
|
self.normalized = normalized
|
|
if device:
|
|
self.device = torch.device(device)
|
|
else:
|
|
if torch.cuda.is_available():
|
|
self.device = torch.device("cuda")
|
|
elif torch.backends.mps.is_available():
|
|
self.device = torch.device("mps")
|
|
elif is_torch_npu_available():
|
|
self.device = torch.device("npu")
|
|
else:
|
|
self.device = torch.device("cpu")
|
|
use_fp16 = False
|
|
self.use_fp16 = use_fp16
|
|
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
self.model = AutoModelForTokenClassification.from_pretrained(
|
|
model_name, trust_remote_code=True, torch_dtype=torch.float16 if self.use_fp16 else None
|
|
)
|
|
self.vocab_size = self.model.config.vocab_size
|
|
self.model.to(self.device)
|
|
|
|
def _process_token_weights(self, token_weights: np.ndarray, input_ids: list):
|
|
# conver to dict
|
|
result = defaultdict(int)
|
|
unused_tokens = set([self.tokenizer.cls_token_id, self.tokenizer.eos_token_id, self.tokenizer.pad_token_id,
|
|
self.tokenizer.unk_token_id])
|
|
# token_weights = np.ceil(token_weights * 100)
|
|
for w, idx in zip(token_weights, input_ids):
|
|
if idx not in unused_tokens and w > 0:
|
|
token = self.tokenizer.decode([int(idx)])
|
|
if w > result[token]:
|
|
result[token] = w
|
|
return result
|
|
|
|
@torch.no_grad()
|
|
def encode(self,
|
|
texts: None,
|
|
dimension: int = None,
|
|
max_length: int = 8192,
|
|
batch_size: int = 16,
|
|
return_dense: bool = True,
|
|
return_sparse: bool = False):
|
|
if dimension is None:
|
|
dimension = self.model.config.hidden_size
|
|
if isinstance(texts, str):
|
|
texts = [texts]
|
|
num_texts = len(texts)
|
|
all_dense_vecs = []
|
|
all_token_weights = []
|
|
for n, i in enumerate(range(0, num_texts, batch_size)):
|
|
batch = texts[i: i + batch_size]
|
|
resulst = self._encode(batch, dimension, max_length, batch_size, return_dense, return_sparse)
|
|
if return_dense:
|
|
all_dense_vecs.append(resulst['dense_embeddings'])
|
|
if return_sparse:
|
|
all_token_weights.extend(resulst['token_weights'])
|
|
all_dense_vecs = torch.cat(all_dense_vecs, dim=0)
|
|
return {
|
|
"dense_embeddings": all_dense_vecs,
|
|
"token_weights": all_token_weights
|
|
}
|
|
|
|
@torch.no_grad()
|
|
def _encode(self,
|
|
texts: Dict[str, torch.Tensor] = None,
|
|
dimension: int = None,
|
|
max_length: int = 1024,
|
|
batch_size: int = 16,
|
|
return_dense: bool = True,
|
|
return_sparse: bool = False):
|
|
|
|
text_input = self.tokenizer(texts, padding=True, truncation=True, return_tensors='pt', max_length=max_length)
|
|
text_input = {k: v.to(self.model.device) for k,v in text_input.items()}
|
|
model_out = self.model(**text_input, return_dict=True)
|
|
|
|
output = {}
|
|
if return_dense:
|
|
dense_vecs = model_out.last_hidden_state[:, 0, :dimension]
|
|
if self.normalized:
|
|
dense_vecs = torch.nn.functional.normalize(dense_vecs, dim=-1)
|
|
output['dense_embeddings'] = dense_vecs
|
|
if return_sparse:
|
|
token_weights = torch.relu(model_out.logits).squeeze(-1)
|
|
token_weights = list(map(self._process_token_weights, token_weights.detach().cpu().numpy().tolist(),
|
|
text_input['input_ids'].cpu().numpy().tolist()))
|
|
output['token_weights'] = token_weights
|
|
|
|
return output
|
|
|
|
def _compute_sparse_scores(self, embs1, embs2):
|
|
scores = 0
|
|
for token, weight in embs1.items():
|
|
if token in embs2:
|
|
scores += weight * embs2[token]
|
|
return scores
|
|
|
|
def compute_sparse_scores(self, embs1, embs2):
|
|
scores = [self._compute_sparse_scores(emb1, emb2) for emb1, emb2 in zip(embs1, embs2)]
|
|
return np.array(scores)
|
|
|
|
def compute_dense_scores(self, embs1, embs2):
|
|
scores = torch.sum(embs1*embs2, dim=-1).cpu().detach().numpy()
|
|
return scores
|
|
|
|
@torch.no_grad()
|
|
def compute_scores(self,
|
|
text_pairs: List[Tuple[str, str]],
|
|
dimension: int = None,
|
|
max_length: int = 1024,
|
|
batch_size: int = 16,
|
|
dense_weight=1.0,
|
|
sparse_weight=0.1):
|
|
text1_list = [text_pair[0] for text_pair in text_pairs]
|
|
text2_list = [text_pair[1] for text_pair in text_pairs]
|
|
embs1 = self.encode(text1_list, dimension, max_length, batch_size, return_dense=True, return_sparse=True)
|
|
embs2 = self.encode(text2_list, dimension, max_length, batch_size, return_dense=True, return_sparse=True)
|
|
scores = self.compute_dense_scores(embs1['dense_embeddings'], embs2['dense_embeddings']) * dense_weight + \
|
|
self.compute_sparse_scores(embs1['token_weights'], embs2['token_weights']) * sparse_weight
|
|
scores = scores.tolist()
|
|
return scores
|
|
|
|
|
|
if __name__ == '__main__':
|
|
gte = GTEEmbeddidng('Alibaba-NLP/gte-multilingual-base')
|
|
docs = [
|
|
"黑龙江离俄罗斯很近",
|
|
"哈尔滨是中国黑龙江省的省会,位于中国东北",
|
|
"you are the hero"
|
|
]
|
|
print('docs', docs)
|
|
embs = gte.encode(docs, return_dense=True,return_sparse=True)
|
|
print('dense vecs', embs['dense_embeddings'])
|
|
print('sparse vecs', embs['token_weights'])
|