From 6b5c3722de89d435ab1d8e9fabfec7911202c2fd Mon Sep 17 00:00:00 2001
From: xxl <505279206@qq.com>
Date: Tue, 12 Nov 2024 13:55:16 +0800
Subject: [PATCH] first commit
---
README.md | 181 +++-
config.json | 32 +
configuration.json | 1 +
configuration_internlm2.py | 151 ++++
generation_config.json | 7 +
model-00001-of-00002.safetensors | 3 +
model-00002-of-00002.safetensors | 3 +
model.safetensors.index.json | 178 ++++
modeling_internlm2.py | 1391 ++++++++++++++++++++++++++++++
special_tokens_map.json | 38 +
tokenization_internlm2.py | 236 +++++
tokenization_internlm2_fast.py | 214 +++++
tokenizer.model | 3 +
tokenizer_config.json | 102 +++
14 files changed, 2538 insertions(+), 2 deletions(-)
create mode 100644 config.json
create mode 100644 configuration.json
create mode 100644 configuration_internlm2.py
create mode 100644 generation_config.json
create mode 100644 model-00001-of-00002.safetensors
create mode 100644 model-00002-of-00002.safetensors
create mode 100644 model.safetensors.index.json
create mode 100644 modeling_internlm2.py
create mode 100644 special_tokens_map.json
create mode 100644 tokenization_internlm2.py
create mode 100644 tokenization_internlm2_fast.py
create mode 100644 tokenizer.model
create mode 100644 tokenizer_config.json
diff --git a/README.md b/README.md
index c4c44a3..4a15fc9 100644
--- a/README.md
+++ b/README.md
@@ -1,3 +1,180 @@
-# internlm2-chat-1_8b_a13569596008165376146657
+---
+pipeline_tag: text-generation
+license: other
+---
+# InternLM
-internlm2-chat-1_8b
\ No newline at end of file
+
+
+

+
+
+
+[](https://github.com/internLM/OpenCompass/)
+
+[💻Github Repo](https://github.com/InternLM/InternLM) • [🤔Reporting Issues](https://github.com/InternLM/InternLM/issues/new)
+
+
+
+
+## Introduction
+InternLM2-1.8B is the 1.8 billion parameter version of the second generation InternLM series. In order to facilitate user use and research, InternLM2-1.8B has three versions of open-source models. They are:
+
+- InternLM2-1.8B: Foundation models with high quality and high adaptation flexibility, which serve as a good starting point for downstream deep adaptations.
+- InternLM2-Chat-1.8B-SFT: Chat model after supervised fine-tuning (SFT) on InternLM2-1.8B.
+- InternLM2-Chat-1.8B: Further aligned on top of InternLM2-Chat-1.8B-SFT through online RLHF. InternLM2-Chat-1.8B exhibits better instruction following, chat experience, and function calling, which is recommended for downstream applications.
+
+The InternLM2 has the following technical features:
+
+- Effective support for ultra-long contexts of up to 200,000 characters: The model nearly perfectly achieves "finding a needle in a haystack" in long inputs of 200,000 characters. It also leads among open-source models in performance on long-text tasks such as LongBench and L-Eval.
+- Comprehensive performance enhancement: Compared to the previous generation model, it shows significant improvements in various capabilities, including reasoning, mathematics, and coding.
+
+
+## InternLM2-1.8B
+
+### Performance Evaluation
+
+We have evaluated InternLM2 on several important benchmarks using the open-source evaluation tool [OpenCompass](https://github.com/open-compass/opencompass). Some of the evaluation results are shown in the table below. You are welcome to visit the [OpenCompass Leaderboard](https://opencompass.org.cn/rank) for more evaluation results.
+
+| Dataset\Models | InternLM2-1.8B | InternLM2-Chat-1.8B-SFT | InternLM2-7B | InternLM2-Chat-7B |
+| :---: | :---: | :---: | :---: | :---: |
+| MMLU | 46.9 | 47.1 | 65.8 | 63.7 |
+| AGIEval | 33.4 | 38.8 | 49.9 | 47.2 |
+| BBH | 37.5 | 35.2 | 65.0 | 61.2 |
+| GSM8K | 31.2 | 39.7 | 70.8 | 70.7 |
+| MATH | 5.6 | 11.8 | 20.2 | 23.0 |
+| HumanEval | 25.0 | 32.9 | 43.3 | 59.8 |
+| MBPP(Sanitized) | 22.2 | 23.2 | 51.8 | 51.4 |
+
+
+- The evaluation results were obtained from [OpenCompass](https://github.com/open-compass/opencompass) , and evaluation configuration can be found in the configuration files provided by [OpenCompass](https://github.com/open-compass/opencompass).
+- The evaluation data may have numerical differences due to the version iteration of [OpenCompass](https://github.com/open-compass/opencompass), so please refer to the latest evaluation results of [OpenCompass](https://github.com/open-compass/opencompass).
+
+
+
+**Limitations:** Although we have made efforts to ensure the safety of the model during the training process and to encourage the model to generate text that complies with ethical and legal requirements, the model may still produce unexpected outputs due to its size and probabilistic generation paradigm. For example, the generated responses may contain biases, discrimination, or other harmful content. Please do not propagate such content. We are not responsible for any consequences resulting from the dissemination of harmful information.
+
+### Import from ModelScope
+
+To load the InternLM2 1.8B Chat model using ModelScope, use the following code:
+
+```python
+from modelscope import snapshot_download, AutoTokenizer, AutoModelForCausalLM
+import torch
+
+model_dir = snapshot_download("Shanghai_AI_Laboratory/internlm2-chat-1_8b")
+tokenizer = AutoTokenizer.from_pretrained(model_dir, device_map="auto", trust_remote_code=True)
+# Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
+model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, torch_dtype=torch.float16)
+model = model.eval()
+response, history = model.chat(tokenizer, "hello", history=[])
+print(response)
+# Hello! How can I help you today?
+response, history = model.chat(tokenizer, "please provide three suggestions about time management", history=history)
+print(response)
+```
+
+The responses can be streamed using `stream_chat`:
+
+```python
+from modelscope import snapshot_download, AutoTokenizer, AutoModelForCausalLM
+import torch
+
+model_dir = snapshot_download("Shanghai_AI_Laboratory/internlm2-chat-1_8b")
+tokenizer = AutoTokenizer.from_pretrained(model_dir, device_map="auto", trust_remote_code=True)
+# Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
+model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, torch_dtype=torch.float16)
+model = model.eval()
+length = 0
+for response, history in model.stream_chat(tokenizer, "Hello", history=[]):
+ print(response[length:], flush=True, end="")
+ length = len(response)
+```
+
+## Open Source License
+
+The code is licensed under Apache-2.0, while model weights are fully open for academic research and also allow **free** commercial usage. To apply for a commercial license, please fill in the [application form (English)](https://wj.qq.com/s2/12727483/5dba/)/[申请表(中文)](https://wj.qq.com/s2/12725412/f7c1/). For other questions or collaborations, please contact .
+
+## 简介
+书生·浦语-1.8B (InternLM2-1.8B) 是第二代浦语模型系列的18亿参数版本。为了方便用户使用和研究,书生·浦语-1.8B (InternLM2-1.8B) 共有三个版本的开源模型,他们分别是:
+
+- InternLM2-1.8B: 具有高质量和高适应灵活性的基础模型,为下游深度适应提供了良好的起点。
+- InternLM2-Chat-1.8B-SFT:在 InternLM2-1.8B 上进行监督微调 (SFT) 后得到的对话模型。
+- InternLM2-Chat-1.8B:通过在线 RLHF 在 InternLM2-Chat-1.8B-SFT 之上进一步对齐。 InternLM2-Chat-1.8B 表现出更好的指令跟随、聊天体验和函数调用,推荐下游应用程序使用。
+
+InternLM2 模型具备以下的技术特点
+
+- 有效支持20万字超长上下文:模型在20万字长输入中几乎完美地实现长文“大海捞针”,而且在 LongBench 和 L-Eval 等长文任务中的表现也达到开源模型中的领先水平。
+- 综合性能全面提升:各能力维度相比上一代模型全面进步,在推理、数学、代码等方面的能力提升显著。
+
+## InternLM2-1.8B
+
+### 性能评测
+
+我们使用开源评测工具 [OpenCompass](https://github.com/internLM/OpenCompass/) 对 InternLM2 在几个重要的评测集进行了评测 ,部分评测结果如下表所示,欢迎访问[ OpenCompass 榜单 ](https://opencompass.org.cn/rank)获取更多的评测结果。
+
+| 评测集 | InternLM2-1.8B | InternLM2-Chat-1.8B-SFT | InternLM2-7B | InternLM2-Chat-7B |
+| :---: | :---: | :---: | :---: | :---: |
+| MMLU | 46.9 | 47.1 | 65.8 | 63.7 |
+| AGIEval | 33.4 | 38.8 | 49.9 | 47.2 |
+| BBH | 37.5 | 35.2 | 65.0 | 61.2 |
+| GSM8K | 31.2 | 39.7 | 70.8 | 70.7 |
+| MATH | 5.6 | 11.8 | 20.2 | 23.0 |
+| HumanEval | 25.0 | 32.9 | 43.3 | 59.8 |
+| MBPP(Sanitized) | 22.2 | 23.2 | 51.8 | 51.4 |
+
+- 以上评测结果基于 [OpenCompass](https://github.com/open-compass/opencompass) 获得(部分数据标注`*`代表数据来自原始论文),具体测试细节可参见 [OpenCompass](https://github.com/open-compass/opencompass) 中提供的配置文件。
+- 评测数据会因 [OpenCompass](https://github.com/open-compass/opencompass) 的版本迭代而存在数值差异,请以 [OpenCompass](https://github.com/open-compass/opencompass) 最新版的评测结果为主。
+
+
+**局限性:** 尽管在训练过程中我们非常注重模型的安全性,尽力促使模型输出符合伦理和法律要求的文本,但受限于模型大小以及概率生成范式,模型可能会产生各种不符合预期的输出,例如回复内容包含偏见、歧视等有害内容,请勿传播这些内容。由于传播不良信息导致的任何后果,本项目不承担责任。
+
+### 通过 ModelScope 加载
+
+通过以下的代码加载 InternLM2 1.8B Chat 模型
+
+```python
+from modelscope import snapshot_download, AutoTokenizer, AutoModelForCausalLM
+import torch
+
+model_dir = snapshot_download("Shanghai_AI_Laboratory/internlm2-chat-1_8b")
+tokenizer = AutoTokenizer.from_pretrained(model_dir, device_map="auto", trust_remote_code=True)
+# `torch_dtype=torch.float16` 可以令模型以 float16 精度加载,否则 modelscope 会将模型加载为 float32,导致显存不足
+model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, torch_dtype=torch.float16)
+model = model.eval()
+response, history = model.chat(tokenizer, "你好", history=[])
+print(response)
+# 你好!有什么我可以帮助你的吗?
+response, history = model.chat(tokenizer, "请提供三个管理时间的建议。", history=history)
+print(response)
+```
+
+如果想进行流式生成,则可以使用 `stream_chat` 接口:
+
+```python
+from modelscope import snapshot_download, AutoTokenizer, AutoModelForCausalLM
+import torch
+
+model_dir = snapshot_download("Shanghai_AI_Laboratory/internlm2-chat-1_8b")
+tokenizer = AutoTokenizer.from_pretrained(model_dir, device_map="auto", trust_remote_code=True)
+# `torch_dtype=torch.float16` 可以令模型以 float16 精度加载,否则 modelscope 会将模型加载为 float32,导致显存不足
+model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, torch_dtype=torch.float16)
+model = model.eval()
+length = 0
+for response, history in model.stream_chat(tokenizer, "你好", history=[]):
+ print(response[length:], flush=True, end="")
+ length = len(response)
+```
+
+
+## 开源许可证
+
+本仓库的代码依照 Apache-2.0 协议开源。模型权重对学术研究完全开放,也可申请免费的商业使用授权([申请表](https://wj.qq.com/s2/12725412/f7c1/))。其他问题与合作请联系 。
diff --git a/config.json b/config.json
new file mode 100644
index 0000000..4b646ab
--- /dev/null
+++ b/config.json
@@ -0,0 +1,32 @@
+{
+ "architectures": [
+ "InternLM2ForCausalLM"
+ ],
+ "attn_implementation": "eager",
+ "auto_map": {
+ "AutoConfig": "configuration_internlm2.InternLM2Config",
+ "AutoModelForCausalLM": "modeling_internlm2.InternLM2ForCausalLM",
+ "AutoModel": "modeling_internlm2.InternLM2ForCausalLM"
+ },
+ "bias": false,
+ "bos_token_id": 1,
+ "eos_token_id": 2,
+ "hidden_act": "silu",
+ "hidden_size": 2048,
+ "initializer_range": 0.02,
+ "intermediate_size": 8192,
+ "max_position_embeddings": 32768,
+ "model_type": "internlm2",
+ "num_attention_heads": 16,
+ "num_hidden_layers": 24,
+ "num_key_value_heads": 8,
+ "pad_token_id": 2,
+ "rms_norm_eps": 1e-05,
+ "rope_scaling": null,
+ "rope_theta": 1000000,
+ "tie_word_embeddings": false,
+ "torch_dtype": "bfloat16",
+ "transformers_version": "4.37.1",
+ "use_cache": true,
+ "vocab_size": 92544
+}
\ No newline at end of file
diff --git a/configuration.json b/configuration.json
new file mode 100644
index 0000000..f9291c3
--- /dev/null
+++ b/configuration.json
@@ -0,0 +1 @@
+{"framework":"Pytorch","task":"text-generation"}
\ No newline at end of file
diff --git a/configuration_internlm2.py b/configuration_internlm2.py
new file mode 100644
index 0000000..b011dd3
--- /dev/null
+++ b/configuration_internlm2.py
@@ -0,0 +1,151 @@
+# coding=utf-8
+# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
+#
+# This code is based on transformers/src/transformers/models/llama/configuration_llama.py
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" InternLM2 model configuration"""
+
+from transformers.configuration_utils import PretrainedConfig
+from transformers.utils import logging
+
+logger = logging.get_logger(__name__)
+
+INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
+
+
+# Modified from transformers.model.llama.configuration_llama.LlamaConfig
+class InternLM2Config(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
+ an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
+ configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 32000):
+ Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
+ `inputs_ids` passed when calling [`InternLM2Model`]
+ hidden_size (`int`, *optional*, defaults to 4096):
+ Dimension of the hidden representations.
+ intermediate_size (`int`, *optional*, defaults to 11008):
+ Dimension of the MLP representations.
+ num_hidden_layers (`int`, *optional*, defaults to 32):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 32):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ num_key_value_heads (`int`, *optional*):
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
+ by meanpooling all the original heads within that group. For more details checkout [this
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
+ `num_attention_heads`.
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
+ The non-linear activation function (function or string) in the decoder.
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
+ just in case (e.g., 512 or 1024 or 2048).
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ rms_norm_eps (`float`, *optional*, defaults to 1e-12):
+ The epsilon used by the rms normalization layers.
+ use_cache (`bool`, *optional*, defaults to `True`):
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
+ relevant if `config.is_decoder=True`.
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
+ Whether to tie weight embeddings
+ Example:
+
+ """
+ model_type = "internlm2"
+ _auto_class = "AutoConfig"
+
+ def __init__( # pylint: disable=W0102
+ self,
+ vocab_size=103168,
+ hidden_size=4096,
+ intermediate_size=11008,
+ num_hidden_layers=32,
+ num_attention_heads=32,
+ num_key_value_heads=None,
+ hidden_act="silu",
+ max_position_embeddings=2048,
+ initializer_range=0.02,
+ rms_norm_eps=1e-6,
+ use_cache=True,
+ pad_token_id=0,
+ bos_token_id=1,
+ eos_token_id=2,
+ tie_word_embeddings=False,
+ bias=True,
+ rope_theta=10000,
+ rope_scaling=None,
+ attn_implementation="eager",
+ **kwargs,
+ ):
+ self.vocab_size = vocab_size
+ self.max_position_embeddings = max_position_embeddings
+ self.hidden_size = hidden_size
+ self.intermediate_size = intermediate_size
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.bias = bias
+
+ if num_key_value_heads is None:
+ num_key_value_heads = num_attention_heads
+ self.num_key_value_heads = num_key_value_heads
+
+ self.hidden_act = hidden_act
+ self.initializer_range = initializer_range
+ self.rms_norm_eps = rms_norm_eps
+ self.use_cache = use_cache
+ self.rope_theta = rope_theta
+ self.rope_scaling = rope_scaling
+ self._rope_scaling_validation()
+
+ self.attn_implementation = attn_implementation
+ if self.attn_implementation is None:
+ self.attn_implementation = "eager"
+ super().__init__(
+ pad_token_id=pad_token_id,
+ bos_token_id=bos_token_id,
+ eos_token_id=eos_token_id,
+ tie_word_embeddings=tie_word_embeddings,
+ **kwargs,
+ )
+
+ def _rope_scaling_validation(self):
+ """
+ Validate the `rope_scaling` configuration.
+ """
+ if self.rope_scaling is None:
+ return
+
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
+ raise ValueError(
+ "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
+ f"got {self.rope_scaling}"
+ )
+ rope_scaling_type = self.rope_scaling.get("type", None)
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
+ raise ValueError(
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
+ )
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
+ raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
diff --git a/generation_config.json b/generation_config.json
new file mode 100644
index 0000000..4b388c5
--- /dev/null
+++ b/generation_config.json
@@ -0,0 +1,7 @@
+{
+ "_from_model_config": true,
+ "bos_token_id": 1,
+ "eos_token_id": 2,
+ "pad_token_id": 2,
+ "transformers_version": "4.37.1"
+}
diff --git a/model-00001-of-00002.safetensors b/model-00001-of-00002.safetensors
new file mode 100644
index 0000000..d72f305
--- /dev/null
+++ b/model-00001-of-00002.safetensors
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c8617bf2394506ece1f8e02c2f054a503b67cf46d28d7e87dbdb437dc9bdc027
+size 1981392632
diff --git a/model-00002-of-00002.safetensors b/model-00002-of-00002.safetensors
new file mode 100644
index 0000000..43ea98e
--- /dev/null
+++ b/model-00002-of-00002.safetensors
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4cb5fa37ac3f0c46748a9a8029c589e3c7a0b0ba9c1fa6bd225bcbbea80e9d24
+size 1796846560
diff --git a/model.safetensors.index.json b/model.safetensors.index.json
new file mode 100644
index 0000000..e6c64e5
--- /dev/null
+++ b/model.safetensors.index.json
@@ -0,0 +1,178 @@
+{
+ "metadata": {
+ "total_size": 3778220032
+ },
+ "weight_map": {
+ "model.layers.0.attention.wo.weight": "model-00001-of-00002.safetensors",
+ "model.layers.0.attention.wqkv.weight": "model-00001-of-00002.safetensors",
+ "model.layers.0.attention_norm.weight": "model-00001-of-00002.safetensors",
+ "model.layers.0.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
+ "model.layers.0.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
+ "model.layers.0.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
+ "model.layers.0.ffn_norm.weight": "model-00001-of-00002.safetensors",
+ "model.layers.1.attention.wo.weight": "model-00001-of-00002.safetensors",
+ "model.layers.1.attention.wqkv.weight": "model-00001-of-00002.safetensors",
+ "model.layers.1.attention_norm.weight": "model-00001-of-00002.safetensors",
+ "model.layers.1.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
+ "model.layers.1.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
+ "model.layers.1.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
+ "model.layers.1.ffn_norm.weight": "model-00001-of-00002.safetensors",
+ "model.layers.10.attention.wo.weight": "model-00001-of-00002.safetensors",
+ "model.layers.10.attention.wqkv.weight": "model-00001-of-00002.safetensors",
+ "model.layers.10.attention_norm.weight": "model-00001-of-00002.safetensors",
+ "model.layers.10.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
+ "model.layers.10.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
+ "model.layers.10.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
+ "model.layers.10.ffn_norm.weight": "model-00001-of-00002.safetensors",
+ "model.layers.11.attention.wo.weight": "model-00001-of-00002.safetensors",
+ "model.layers.11.attention.wqkv.weight": "model-00001-of-00002.safetensors",
+ "model.layers.11.attention_norm.weight": "model-00001-of-00002.safetensors",
+ "model.layers.11.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
+ "model.layers.11.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
+ "model.layers.11.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
+ "model.layers.11.ffn_norm.weight": "model-00001-of-00002.safetensors",
+ "model.layers.12.attention.wo.weight": "model-00001-of-00002.safetensors",
+ "model.layers.12.attention.wqkv.weight": "model-00001-of-00002.safetensors",
+ "model.layers.12.attention_norm.weight": "model-00002-of-00002.safetensors",
+ "model.layers.12.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
+ "model.layers.12.feed_forward.w2.weight": "model-00002-of-00002.safetensors",
+ "model.layers.12.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
+ "model.layers.12.ffn_norm.weight": "model-00002-of-00002.safetensors",
+ "model.layers.13.attention.wo.weight": "model-00002-of-00002.safetensors",
+ "model.layers.13.attention.wqkv.weight": "model-00002-of-00002.safetensors",
+ "model.layers.13.attention_norm.weight": "model-00002-of-00002.safetensors",
+ "model.layers.13.feed_forward.w1.weight": "model-00002-of-00002.safetensors",
+ "model.layers.13.feed_forward.w2.weight": "model-00002-of-00002.safetensors",
+ "model.layers.13.feed_forward.w3.weight": "model-00002-of-00002.safetensors",
+ "model.layers.13.ffn_norm.weight": "model-00002-of-00002.safetensors",
+ "model.layers.14.attention.wo.weight": "model-00002-of-00002.safetensors",
+ "model.layers.14.attention.wqkv.weight": "model-00002-of-00002.safetensors",
+ "model.layers.14.attention_norm.weight": "model-00002-of-00002.safetensors",
+ "model.layers.14.feed_forward.w1.weight": "model-00002-of-00002.safetensors",
+ "model.layers.14.feed_forward.w2.weight": "model-00002-of-00002.safetensors",
+ "model.layers.14.feed_forward.w3.weight": "model-00002-of-00002.safetensors",
+ "model.layers.14.ffn_norm.weight": "model-00002-of-00002.safetensors",
+ "model.layers.15.attention.wo.weight": "model-00002-of-00002.safetensors",
+ "model.layers.15.attention.wqkv.weight": "model-00002-of-00002.safetensors",
+ "model.layers.15.attention_norm.weight": "model-00002-of-00002.safetensors",
+ "model.layers.15.feed_forward.w1.weight": "model-00002-of-00002.safetensors",
+ "model.layers.15.feed_forward.w2.weight": "model-00002-of-00002.safetensors",
+ "model.layers.15.feed_forward.w3.weight": "model-00002-of-00002.safetensors",
+ "model.layers.15.ffn_norm.weight": "model-00002-of-00002.safetensors",
+ "model.layers.16.attention.wo.weight": "model-00002-of-00002.safetensors",
+ "model.layers.16.attention.wqkv.weight": "model-00002-of-00002.safetensors",
+ "model.layers.16.attention_norm.weight": "model-00002-of-00002.safetensors",
+ "model.layers.16.feed_forward.w1.weight": "model-00002-of-00002.safetensors",
+ "model.layers.16.feed_forward.w2.weight": "model-00002-of-00002.safetensors",
+ "model.layers.16.feed_forward.w3.weight": "model-00002-of-00002.safetensors",
+ "model.layers.16.ffn_norm.weight": "model-00002-of-00002.safetensors",
+ "model.layers.17.attention.wo.weight": "model-00002-of-00002.safetensors",
+ "model.layers.17.attention.wqkv.weight": "model-00002-of-00002.safetensors",
+ "model.layers.17.attention_norm.weight": "model-00002-of-00002.safetensors",
+ "model.layers.17.feed_forward.w1.weight": "model-00002-of-00002.safetensors",
+ "model.layers.17.feed_forward.w2.weight": "model-00002-of-00002.safetensors",
+ "model.layers.17.feed_forward.w3.weight": "model-00002-of-00002.safetensors",
+ "model.layers.17.ffn_norm.weight": "model-00002-of-00002.safetensors",
+ "model.layers.18.attention.wo.weight": "model-00002-of-00002.safetensors",
+ "model.layers.18.attention.wqkv.weight": "model-00002-of-00002.safetensors",
+ "model.layers.18.attention_norm.weight": "model-00002-of-00002.safetensors",
+ "model.layers.18.feed_forward.w1.weight": "model-00002-of-00002.safetensors",
+ "model.layers.18.feed_forward.w2.weight": "model-00002-of-00002.safetensors",
+ "model.layers.18.feed_forward.w3.weight": "model-00002-of-00002.safetensors",
+ "model.layers.18.ffn_norm.weight": "model-00002-of-00002.safetensors",
+ "model.layers.19.attention.wo.weight": "model-00002-of-00002.safetensors",
+ "model.layers.19.attention.wqkv.weight": "model-00002-of-00002.safetensors",
+ "model.layers.19.attention_norm.weight": "model-00002-of-00002.safetensors",
+ "model.layers.19.feed_forward.w1.weight": "model-00002-of-00002.safetensors",
+ "model.layers.19.feed_forward.w2.weight": "model-00002-of-00002.safetensors",
+ "model.layers.19.feed_forward.w3.weight": "model-00002-of-00002.safetensors",
+ "model.layers.19.ffn_norm.weight": "model-00002-of-00002.safetensors",
+ "model.layers.2.attention.wo.weight": "model-00001-of-00002.safetensors",
+ "model.layers.2.attention.wqkv.weight": "model-00001-of-00002.safetensors",
+ "model.layers.2.attention_norm.weight": "model-00001-of-00002.safetensors",
+ "model.layers.2.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
+ "model.layers.2.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
+ "model.layers.2.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
+ "model.layers.2.ffn_norm.weight": "model-00001-of-00002.safetensors",
+ "model.layers.20.attention.wo.weight": "model-00002-of-00002.safetensors",
+ "model.layers.20.attention.wqkv.weight": "model-00002-of-00002.safetensors",
+ "model.layers.20.attention_norm.weight": "model-00002-of-00002.safetensors",
+ "model.layers.20.feed_forward.w1.weight": "model-00002-of-00002.safetensors",
+ "model.layers.20.feed_forward.w2.weight": "model-00002-of-00002.safetensors",
+ "model.layers.20.feed_forward.w3.weight": "model-00002-of-00002.safetensors",
+ "model.layers.20.ffn_norm.weight": "model-00002-of-00002.safetensors",
+ "model.layers.21.attention.wo.weight": "model-00002-of-00002.safetensors",
+ "model.layers.21.attention.wqkv.weight": "model-00002-of-00002.safetensors",
+ "model.layers.21.attention_norm.weight": "model-00002-of-00002.safetensors",
+ "model.layers.21.feed_forward.w1.weight": "model-00002-of-00002.safetensors",
+ "model.layers.21.feed_forward.w2.weight": "model-00002-of-00002.safetensors",
+ "model.layers.21.feed_forward.w3.weight": "model-00002-of-00002.safetensors",
+ "model.layers.21.ffn_norm.weight": "model-00002-of-00002.safetensors",
+ "model.layers.22.attention.wo.weight": "model-00002-of-00002.safetensors",
+ "model.layers.22.attention.wqkv.weight": "model-00002-of-00002.safetensors",
+ "model.layers.22.attention_norm.weight": "model-00002-of-00002.safetensors",
+ "model.layers.22.feed_forward.w1.weight": "model-00002-of-00002.safetensors",
+ "model.layers.22.feed_forward.w2.weight": "model-00002-of-00002.safetensors",
+ "model.layers.22.feed_forward.w3.weight": "model-00002-of-00002.safetensors",
+ "model.layers.22.ffn_norm.weight": "model-00002-of-00002.safetensors",
+ "model.layers.23.attention.wo.weight": "model-00002-of-00002.safetensors",
+ "model.layers.23.attention.wqkv.weight": "model-00002-of-00002.safetensors",
+ "model.layers.23.attention_norm.weight": "model-00002-of-00002.safetensors",
+ "model.layers.23.feed_forward.w1.weight": "model-00002-of-00002.safetensors",
+ "model.layers.23.feed_forward.w2.weight": "model-00002-of-00002.safetensors",
+ "model.layers.23.feed_forward.w3.weight": "model-00002-of-00002.safetensors",
+ "model.layers.23.ffn_norm.weight": "model-00002-of-00002.safetensors",
+ "model.layers.3.attention.wo.weight": "model-00001-of-00002.safetensors",
+ "model.layers.3.attention.wqkv.weight": "model-00001-of-00002.safetensors",
+ "model.layers.3.attention_norm.weight": "model-00001-of-00002.safetensors",
+ "model.layers.3.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
+ "model.layers.3.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
+ "model.layers.3.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
+ "model.layers.3.ffn_norm.weight": "model-00001-of-00002.safetensors",
+ "model.layers.4.attention.wo.weight": "model-00001-of-00002.safetensors",
+ "model.layers.4.attention.wqkv.weight": "model-00001-of-00002.safetensors",
+ "model.layers.4.attention_norm.weight": "model-00001-of-00002.safetensors",
+ "model.layers.4.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
+ "model.layers.4.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
+ "model.layers.4.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
+ "model.layers.4.ffn_norm.weight": "model-00001-of-00002.safetensors",
+ "model.layers.5.attention.wo.weight": "model-00001-of-00002.safetensors",
+ "model.layers.5.attention.wqkv.weight": "model-00001-of-00002.safetensors",
+ "model.layers.5.attention_norm.weight": "model-00001-of-00002.safetensors",
+ "model.layers.5.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
+ "model.layers.5.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
+ "model.layers.5.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
+ "model.layers.5.ffn_norm.weight": "model-00001-of-00002.safetensors",
+ "model.layers.6.attention.wo.weight": "model-00001-of-00002.safetensors",
+ "model.layers.6.attention.wqkv.weight": "model-00001-of-00002.safetensors",
+ "model.layers.6.attention_norm.weight": "model-00001-of-00002.safetensors",
+ "model.layers.6.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
+ "model.layers.6.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
+ "model.layers.6.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
+ "model.layers.6.ffn_norm.weight": "model-00001-of-00002.safetensors",
+ "model.layers.7.attention.wo.weight": "model-00001-of-00002.safetensors",
+ "model.layers.7.attention.wqkv.weight": "model-00001-of-00002.safetensors",
+ "model.layers.7.attention_norm.weight": "model-00001-of-00002.safetensors",
+ "model.layers.7.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
+ "model.layers.7.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
+ "model.layers.7.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
+ "model.layers.7.ffn_norm.weight": "model-00001-of-00002.safetensors",
+ "model.layers.8.attention.wo.weight": "model-00001-of-00002.safetensors",
+ "model.layers.8.attention.wqkv.weight": "model-00001-of-00002.safetensors",
+ "model.layers.8.attention_norm.weight": "model-00001-of-00002.safetensors",
+ "model.layers.8.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
+ "model.layers.8.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
+ "model.layers.8.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
+ "model.layers.8.ffn_norm.weight": "model-00001-of-00002.safetensors",
+ "model.layers.9.attention.wo.weight": "model-00001-of-00002.safetensors",
+ "model.layers.9.attention.wqkv.weight": "model-00001-of-00002.safetensors",
+ "model.layers.9.attention_norm.weight": "model-00001-of-00002.safetensors",
+ "model.layers.9.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
+ "model.layers.9.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
+ "model.layers.9.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
+ "model.layers.9.ffn_norm.weight": "model-00001-of-00002.safetensors",
+ "model.norm.weight": "model-00002-of-00002.safetensors",
+ "model.tok_embeddings.weight": "model-00001-of-00002.safetensors",
+ "output.weight": "model-00002-of-00002.safetensors"
+ }
+}
diff --git a/modeling_internlm2.py b/modeling_internlm2.py
new file mode 100644
index 0000000..e0fbc30
--- /dev/null
+++ b/modeling_internlm2.py
@@ -0,0 +1,1391 @@
+# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
+#
+# This code is based on transformers/src/transformers/models/llama/modeling_llama.py
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch InternLM2 model."""
+import math
+import queue
+import threading
+import warnings
+from typing import List, Optional, Tuple, Union
+
+import torch
+import torch.nn.functional as F
+import torch.utils.checkpoint
+from einops import rearrange
+from torch import nn
+from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
+from transformers.activations import ACT2FN
+from transformers.modeling_outputs import (
+ BaseModelOutputWithPast,
+ CausalLMOutputWithPast,
+ SequenceClassifierOutputWithPast,
+)
+from transformers.modeling_utils import PreTrainedModel
+from transformers.utils import (
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+
+try:
+ from transformers.generation.streamers import BaseStreamer
+except: # noqa # pylint: disable=bare-except
+ BaseStreamer = None
+
+from .configuration_internlm2 import InternLM2Config
+
+logger = logging.get_logger(__name__)
+
+_CONFIG_FOR_DOC = "InternLM2Config"
+
+flash_attn_func, flash_attn_varlen_func = None, None
+pad_input, index_first_axis, unpad_input = None, None, None
+def _import_flash_attn():
+ global flash_attn_func, flash_attn_varlen_func
+ global pad_input, index_first_axis, unpad_input
+ try:
+ from flash_attn import flash_attn_func as _flash_attn_func, flash_attn_varlen_func as _flash_attn_varlen_func
+ from flash_attn.bert_padding import pad_input as _pad_input, index_first_axis as _index_first_axis, unpad_input as _unpad_input
+ flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
+ pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
+ except ImportError:
+ raise ImportError("flash_attn is not installed.")
+
+# Copied from transformers.models.llama.modeling_llama._get_unpad_data
+def _get_unpad_data(attention_mask):
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
+ return (
+ indices,
+ cu_seqlens,
+ max_seqlen_in_batch,
+ )
+
+
+# Copied from transformers.models.bart.modeling_bart._make_causal_mask
+def _make_causal_mask(
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
+):
+ """
+ Make causal mask used for bi-directional self-attention.
+ """
+ bsz, tgt_len = input_ids_shape
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
+ mask_cond = torch.arange(mask.size(-1), device=device)
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
+ mask = mask.to(dtype)
+
+ if past_key_values_length > 0:
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
+
+
+# Copied from transformers.models.bart.modeling_bart._expand_mask
+def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
+ """
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
+ """
+ bsz, src_len = mask.size()
+ tgt_len = tgt_len if tgt_len is not None else src_len
+
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
+
+ inverted_mask = 1.0 - expanded_mask
+
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
+
+
+# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->InternLM2
+class InternLM2RMSNorm(nn.Module):
+ def __init__(self, hidden_size, eps=1e-6):
+ """
+ InternLM2RMSNorm is equivalent to T5LayerNorm
+ """
+ super().__init__()
+ self.weight = nn.Parameter(torch.ones(hidden_size))
+ self.variance_epsilon = eps
+
+ def forward(self, hidden_states):
+ input_dtype = hidden_states.dtype
+ hidden_states = hidden_states.to(torch.float32)
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
+ return self.weight * hidden_states.to(input_dtype)
+
+
+# Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->InternLM2
+class InternLM2RotaryEmbedding(nn.Module):
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
+ super().__init__()
+
+ self.dim = dim
+ self.max_position_embeddings = max_position_embeddings
+ self.base = base
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
+
+ # Build here to make `torch.jit.trace` work.
+ self._set_cos_sin_cache(
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
+ )
+
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
+ self.max_seq_len_cached = seq_len
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
+
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
+ emb = torch.cat((freqs, freqs), dim=-1)
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
+
+ def forward(self, x, seq_len=None):
+ # x: [bs, num_attention_heads, seq_len, head_size]
+ if seq_len > self.max_seq_len_cached:
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32)
+
+ return (
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
+ )
+
+
+# Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->InternLM2
+class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
+ """InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
+
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
+ self.scaling_factor = scaling_factor
+ super().__init__(dim, max_position_embeddings, base, device)
+
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
+ self.max_seq_len_cached = seq_len
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
+ t = t / self.scaling_factor
+
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
+ emb = torch.cat((freqs, freqs), dim=-1)
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
+
+
+# Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->InternLM2
+class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
+ """InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
+ Credits to the Reddit users /u/bloc97 and /u/emozilla.
+ """
+
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
+ self.scaling_factor = scaling_factor
+ super().__init__(dim, max_position_embeddings, base, device)
+
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
+ self.max_seq_len_cached = seq_len
+
+ if seq_len > self.max_position_embeddings:
+ base = self.base * (
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
+ ) ** (self.dim / (self.dim - 2))
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
+
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
+
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
+ emb = torch.cat((freqs, freqs), dim=-1)
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
+
+
+# Copied from transformers.model.llama.modeling_llama.rotate_half
+def rotate_half(x):
+ """Rotates half the hidden dims of the input."""
+ x1 = x[..., : x.shape[-1] // 2]
+ x2 = x[..., x.shape[-1] // 2 :]
+ return torch.cat((-x2, x1), dim=-1)
+
+
+# Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb
+def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
+ """Applies Rotary Position Embedding to the query and key tensors."""
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
+ q_embed = (q * cos) + (rotate_half(q) * sin)
+ k_embed = (k * cos) + (rotate_half(k) * sin)
+ return q_embed, k_embed
+
+
+class InternLM2MLP(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.hidden_size = config.hidden_size
+ self.intermediate_size = config.intermediate_size
+ self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
+ self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
+ self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
+ self.act_fn = ACT2FN[config.hidden_act]
+
+ def forward(self, x):
+ down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x))
+
+ return down_proj
+
+
+# Copied from transformers.model.llama.modeling_llama.repeat_kv
+def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
+ """
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
+ """
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
+ if n_rep == 1:
+ return hidden_states
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
+
+
+# Modified from transformers.model.llama.modeling_llama.LlamaAttention
+class InternLM2Attention(nn.Module):
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
+
+ def __init__(self, config: InternLM2Config):
+ super().__init__()
+ self.config = config
+ self.hidden_size = config.hidden_size
+ self.num_heads = config.num_attention_heads
+ self.head_dim = self.hidden_size // self.num_heads
+ self.num_key_value_heads = config.num_key_value_heads
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
+ self.max_position_embeddings = config.max_position_embeddings
+ self.is_causal = True
+
+ if (self.head_dim * self.num_heads) != self.hidden_size:
+ raise ValueError(
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
+ f" and `num_heads`: {self.num_heads})."
+ )
+
+ self.wqkv = nn.Linear(
+ self.hidden_size,
+ (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
+ bias=config.bias,
+ )
+
+ self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
+ self._init_rope()
+
+ def _init_rope(self):
+ if self.config.rope_scaling is None:
+ self.rotary_emb = InternLM2RotaryEmbedding(
+ self.head_dim,
+ max_position_embeddings=self.max_position_embeddings,
+ base=self.config.rope_theta,
+ )
+ else:
+ scaling_type = self.config.rope_scaling["type"]
+ scaling_factor = self.config.rope_scaling["factor"]
+ if scaling_type == "dynamic":
+ self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
+ self.head_dim,
+ max_position_embeddings=self.max_position_embeddings,
+ base=self.config.rope_theta,
+ scaling_factor=scaling_factor,
+ )
+ elif scaling_type == "linear":
+ self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
+ self.head_dim,
+ max_position_embeddings=self.max_position_embeddings,
+ base=self.config.rope_theta,
+ scaling_factor=scaling_factor,
+ )
+ else:
+ raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.")
+ return self.rotary_emb
+
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
+ output_attentions: bool = False,
+ use_cache: bool = False,
+ **kwargs,
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
+ if "padding_mask" in kwargs:
+ warnings.warn(
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. "
+ "Please make sure use `attention_mask` instead.`"
+ )
+
+ bsz, q_len, _ = hidden_states.size()
+
+ qkv_states = self.wqkv(hidden_states)
+
+ qkv_states = rearrange(
+ qkv_states,
+ "b q (h gs d) -> b q h gs d",
+ gs=2 + self.num_key_value_groups,
+ d=self.head_dim,
+ )
+
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
+ query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d")
+ key_states = qkv_states[..., -2, :]
+ value_states = qkv_states[..., -1, :]
+
+ query_states = query_states.transpose(1, 2)
+ key_states = key_states.transpose(1, 2)
+ value_states = value_states.transpose(1, 2)
+
+ kv_seq_len = key_states.shape[-2]
+ if past_key_value is not None:
+ kv_seq_len += past_key_value[0].shape[-2]
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
+
+ if past_key_value is not None:
+ # reuse k, v, self_attention
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
+
+ past_key_value = (key_states, value_states) if use_cache else None
+
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
+
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
+
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
+ raise ValueError(
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
+ f" {attn_weights.size()}"
+ )
+
+ if attention_mask is not None:
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
+ raise ValueError(
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
+ )
+ attn_weights = attn_weights + attention_mask
+
+ # upcast attention to fp32
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
+ attn_output = torch.matmul(attn_weights, value_states)
+
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
+ raise ValueError(
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
+ f" {attn_output.size()}"
+ )
+
+ attn_output = attn_output.transpose(1, 2).contiguous()
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
+
+ attn_output = self.wo(attn_output)
+
+ if not output_attentions:
+ attn_weights = None
+
+ return attn_output, attn_weights, past_key_value
+
+
+# Modified from transformers.model.llama.modeling_llama.InternLM2FlashAttention2
+class InternLM2FlashAttention2(InternLM2Attention):
+ """
+ InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
+ flash attention and deal with padding tokens in case the input contains any of them.
+ """
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
+ output_attentions: bool = False,
+ use_cache: bool = False,
+ **kwargs,
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
+ # InternLM2FlashAttention2 attention does not support output_attentions
+ if "padding_mask" in kwargs:
+ warnings.warn(
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. "
+ "Please make sure use `attention_mask` instead.`"
+ )
+
+ # overwrite attention_mask with padding_mask
+ attention_mask = kwargs.pop("padding_mask")
+
+ output_attentions = False
+
+ bsz, q_len, _ = hidden_states.size()
+
+ qkv_states = self.wqkv(hidden_states)
+
+ qkv_states = rearrange(
+ qkv_states,
+ "b q (h gs d) -> b q h gs d",
+ gs=2 + self.num_key_value_groups,
+ d=self.head_dim,
+ )
+
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
+ query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d")
+ key_states = qkv_states[..., -2, :]
+ value_states = qkv_states[..., -1, :]
+
+ query_states = query_states.transpose(1, 2)
+ key_states = key_states.transpose(1, 2)
+ value_states = value_states.transpose(1, 2)
+
+ kv_seq_len = key_states.shape[-2]
+ if past_key_value is not None:
+ kv_seq_len += past_key_value[0].shape[-2]
+
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
+
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
+
+ if past_key_value is not None:
+ # reuse k, v, self_attention
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
+
+ past_key_value = (key_states, value_states) if use_cache else None
+
+ query_states = query_states.transpose(1, 2)
+ key_states = key_states.transpose(1, 2)
+ value_states = value_states.transpose(1, 2)
+
+ attn_output = self._flash_attention_forward(
+ query_states, key_states, value_states, attention_mask, q_len
+ )
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
+ attn_output = self.wo(attn_output)
+
+ if not output_attentions:
+ attn_weights = None
+
+ return attn_output, attn_weights, past_key_value
+
+ def _flash_attention_forward(
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
+ ):
+ """
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
+ first unpad the input, then computes the attention scores and pad the final attention scores.
+
+ Args:
+ query_states (`torch.Tensor`):
+ Input query states to be passed to Flash Attention API
+ key_states (`torch.Tensor`):
+ Input key states to be passed to Flash Attention API
+ value_states (`torch.Tensor`):
+ Input value states to be passed to Flash Attention API
+ attention_mask (`torch.Tensor`):
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
+ position of padding tokens and 1 for the position of non-padding tokens.
+ dropout (`int`, *optional*):
+ Attention dropout
+ softmax_scale (`float`, *optional*):
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
+ """
+ # Contains at least one padding token in the sequence
+ causal = self.is_causal and query_length != 1
+ if attention_mask is not None:
+ batch_size = query_states.shape[0]
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
+ query_states, key_states, value_states, attention_mask, query_length
+ )
+
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
+
+ attn_output_unpad = flash_attn_varlen_func(
+ query_states,
+ key_states,
+ value_states,
+ cu_seqlens_q=cu_seqlens_q,
+ cu_seqlens_k=cu_seqlens_k,
+ max_seqlen_q=max_seqlen_in_batch_q,
+ max_seqlen_k=max_seqlen_in_batch_k,
+ dropout_p=dropout,
+ softmax_scale=softmax_scale,
+ causal=causal,
+ )
+
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
+ else:
+ attn_output = flash_attn_func(
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
+ )
+
+ return attn_output
+
+ def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
+
+ key_layer = index_first_axis(
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
+ )
+ value_layer = index_first_axis(
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
+ )
+
+ if query_length == kv_seq_len:
+ query_layer = index_first_axis(
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
+ )
+ cu_seqlens_q = cu_seqlens_k
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
+ indices_q = indices_k
+ elif query_length == 1:
+ max_seqlen_in_batch_q = 1
+ cu_seqlens_q = torch.arange(
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
+ ) # There is a memcpy here, that is very bad.
+ indices_q = cu_seqlens_q[:-1]
+ query_layer = query_layer.squeeze(1)
+ else:
+ # The -q_len: slice assumes left padding.
+ attention_mask = attention_mask[:, -query_length:]
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
+
+ return (
+ query_layer,
+ key_layer,
+ value_layer,
+ indices_q.to(torch.int64),
+ (cu_seqlens_q, cu_seqlens_k),
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
+ )
+
+INTERNLM2_ATTENTION_CLASSES = {
+ "eager": InternLM2Attention,
+ "flash_attention_2": InternLM2FlashAttention2,
+}
+
+# Modified from transformers.model.llama.modeling_llama.LlamaDecoderLayer
+class InternLM2DecoderLayer(nn.Module):
+ def __init__(self, config: InternLM2Config):
+ super().__init__()
+ self.hidden_size = config.hidden_size
+
+ self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config)
+
+ self.feed_forward = InternLM2MLP(config)
+ self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
+ self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
+ output_attentions: Optional[bool] = False,
+ use_cache: Optional[bool] = False,
+ **kwargs,
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
+ """
+ Args:
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
+ attention_mask (`torch.FloatTensor`, *optional*):
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
+ query_sequence_length, key_sequence_length)` if default attention is used.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
+ (see `past_key_values`).
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
+ """
+ if "padding_mask" in kwargs:
+ warnings.warn(
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. "
+ "Please make sure use `attention_mask` instead.`"
+ )
+
+ residual = hidden_states
+
+ hidden_states = self.attention_norm(hidden_states)
+
+ # Self Attention
+ hidden_states, self_attn_weights, present_key_value = self.attention(
+ hidden_states=hidden_states,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_value=past_key_value,
+ output_attentions=output_attentions,
+ use_cache=use_cache,
+ **kwargs,
+ )
+ hidden_states = residual + hidden_states
+
+ # Fully Connected
+ residual = hidden_states
+ hidden_states = self.ffn_norm(hidden_states)
+ hidden_states = self.feed_forward(hidden_states)
+ hidden_states = residual + hidden_states
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (self_attn_weights,)
+
+ if use_cache:
+ outputs += (present_key_value,)
+
+ return outputs
+
+
+InternLM2_START_DOCSTRING = r"""
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`InternLM2Config`]):
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
+ load the weights associated with the model, only the configuration. Check out the
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+
+# Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2
+@add_start_docstrings(
+ "The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
+ InternLM2_START_DOCSTRING,
+)
+class InternLM2PreTrainedModel(PreTrainedModel):
+ config_class = InternLM2Config
+ base_model_prefix = "model"
+ supports_gradient_checkpointing = True
+ _no_split_modules = ["InternLM2DecoderLayer"]
+ _skip_keys_device_placement = "past_key_values"
+
+ def _init_weights(self, module):
+ std = self.config.initializer_range
+ if isinstance(module, nn.Linear):
+ module.weight.data.normal_(mean=0.0, std=std)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=std)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+
+
+InternLM2_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
+ it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
+ `past_key_values`).
+
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
+ information on the default strategy.
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.n_positions - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
+ when `config.use_cache=True`):
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
+ `(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
+
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
+
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
+ of shape `(batch_size, sequence_length)`.
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+# Modified from transformers.model.llama.modeling_llama.LlamaModel
+@add_start_docstrings(
+ "The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
+ InternLM2_START_DOCSTRING,
+)
+class InternLM2Model(InternLM2PreTrainedModel):
+ """
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`]
+
+ Args:
+ config: InternLM2Config
+ """
+
+ _auto_class = "AutoModel"
+
+ def __init__(self, config: InternLM2Config):
+ super().__init__(config)
+ self.padding_idx = config.pad_token_id
+ self.vocab_size = config.vocab_size
+ self.config = config
+
+ self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
+
+ self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)])
+ self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
+
+ self.gradient_checkpointing = False
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.tok_embeddings
+
+ def set_input_embeddings(self, value):
+ self.tok_embeddings = value
+
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
+ # create causal mask
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
+ combined_attention_mask = None
+ if input_shape[-1] > 1:
+ combined_attention_mask = _make_causal_mask(
+ input_shape,
+ inputs_embeds.dtype,
+ device=inputs_embeds.device,
+ past_key_values_length=past_key_values_length,
+ )
+
+ if attention_mask is not None:
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
+ inputs_embeds.device
+ )
+ combined_attention_mask = (
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
+ )
+
+ return combined_attention_mask
+
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if self.config.attn_implementation == "flash_attention_2":
+ _import_flash_attn()
+
+ # retrieve input_ids and inputs_embeds
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ batch_size, seq_length = input_ids.shape[:2]
+ elif inputs_embeds is not None:
+ batch_size, seq_length = inputs_embeds.shape[:2]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ seq_length_with_past = seq_length
+ past_key_values_length = 0
+ if past_key_values is not None:
+ past_key_values_length = past_key_values[0][0].shape[2]
+ seq_length_with_past = seq_length_with_past + past_key_values_length
+
+ if position_ids is None:
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
+ position_ids = torch.arange(
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
+ )
+ position_ids = position_ids.unsqueeze(0)
+
+ if inputs_embeds is None:
+ inputs_embeds = self.tok_embeddings(input_ids)
+
+ if self.config.attn_implementation == "flash_attention_2":
+ # 2d mask is passed through the layers
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
+ else:
+ if attention_mask is None:
+ attention_mask = torch.ones(
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
+ )
+ attention_mask = self._prepare_decoder_attention_mask(
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
+ )
+
+ # embed positions
+ hidden_states = inputs_embeds
+
+ if self.gradient_checkpointing and self.training:
+ if use_cache:
+ logger.warning_once(
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
+ )
+ use_cache = False
+
+ # decoder layers
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attns = () if output_attentions else None
+ next_decoder_cache = () if use_cache else None
+
+ for idx, decoder_layer in enumerate(self.layers):
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
+
+ if self.gradient_checkpointing and self.training:
+
+ def create_custom_forward(module):
+ def custom_forward(*inputs):
+ # None for past_key_value
+ return module(*inputs, output_attentions, None)
+
+ return custom_forward
+
+ layer_outputs = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(decoder_layer),
+ hidden_states,
+ attention_mask,
+ position_ids,
+ None,
+ )
+ else:
+ layer_outputs = decoder_layer(
+ hidden_states,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_value=past_key_value,
+ output_attentions=output_attentions,
+ use_cache=use_cache,
+ )
+
+ hidden_states = layer_outputs[0]
+
+ if use_cache:
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
+
+ if output_attentions:
+ all_self_attns += (layer_outputs[1],)
+
+ hidden_states = self.norm(hidden_states)
+
+ # add hidden states from the last decoder layer
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ next_cache = next_decoder_cache if use_cache else None
+ if not return_dict:
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
+ return BaseModelOutputWithPast(
+ last_hidden_state=hidden_states,
+ past_key_values=next_cache,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attns,
+ )
+
+
+# Modified from transformers.model.llama.modeling_llama.LlamaForCausalLM
+class InternLM2ForCausalLM(InternLM2PreTrainedModel):
+ _auto_class = "AutoModelForCausalLM"
+
+ _tied_weights_keys = ["output.weight"]
+
+ def __init__(self, config):
+ super().__init__(config)
+ self.model = InternLM2Model(config)
+ self.vocab_size = config.vocab_size
+ self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.model.tok_embeddings
+
+ def set_input_embeddings(self, value):
+ self.model.tok_embeddings = value
+
+ def get_output_embeddings(self):
+ return self.output
+
+ def set_output_embeddings(self, new_embeddings):
+ self.output = new_embeddings
+
+ def set_decoder(self, decoder):
+ self.model = decoder
+
+ def get_decoder(self):
+ return self.model
+
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
+ r"""
+ Args:
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, InternLM2ForCausalLM
+
+ >>> model = InternLM2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
+
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
+
+ >>> # Generate
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
+ ```"""
+
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
+ outputs = self.model(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ hidden_states = outputs[0]
+ logits = self.output(hidden_states)
+ logits = logits.float()
+
+ loss = None
+ if labels is not None:
+ # Shift so that tokens < n predict n
+ shift_logits = logits[..., :-1, :].contiguous()
+ shift_labels = labels[..., 1:].contiguous()
+ # Flatten the tokens
+ loss_fct = CrossEntropyLoss()
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
+ shift_labels = shift_labels.view(-1)
+ # Enable model parallelism
+ shift_labels = shift_labels.to(shift_logits.device)
+ loss = loss_fct(shift_logits, shift_labels)
+
+ if not return_dict:
+ output = (logits,) + outputs[1:]
+ return (loss,) + output if loss is not None else output
+
+ return CausalLMOutputWithPast(
+ loss=loss,
+ logits=logits,
+ past_key_values=outputs.past_key_values,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def prepare_inputs_for_generation(
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
+ ):
+ if past_key_values is not None:
+ past_length = past_key_values[0][0].shape[2]
+
+ # Some generation methods already pass only the last input ID
+ if input_ids.shape[1] > past_length:
+ remove_prefix_length = past_length
+ else:
+ # Default to old behavior: keep only final ID
+ remove_prefix_length = input_ids.shape[1] - 1
+
+ input_ids = input_ids[:, remove_prefix_length:]
+
+ position_ids = kwargs.get("position_ids", None)
+ if attention_mask is not None and position_ids is None:
+ # create position_ids on the fly for batch generation
+ position_ids = attention_mask.long().cumsum(-1) - 1
+ position_ids.masked_fill_(attention_mask == 0, 1)
+ if past_key_values:
+ position_ids = position_ids[:, -input_ids.shape[1] :]
+
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
+ if inputs_embeds is not None and past_key_values is None:
+ model_inputs = {"inputs_embeds": inputs_embeds}
+ else:
+ model_inputs = {"input_ids": input_ids}
+
+ model_inputs.update(
+ {
+ "position_ids": position_ids,
+ "past_key_values": past_key_values,
+ "use_cache": kwargs.get("use_cache"),
+ "attention_mask": attention_mask,
+ }
+ )
+ return model_inputs
+
+ @staticmethod
+ def _reorder_cache(past_key_values, beam_idx):
+ reordered_past = ()
+ for layer_past in past_key_values:
+ reordered_past += (
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
+ )
+ return reordered_past
+
+ def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = [], meta_instruction=""):
+ if tokenizer.add_bos_token:
+ prompt = ""
+ else:
+ prompt = tokenizer.bos_token
+ if meta_instruction:
+ prompt += f"""<|im_start|>system\n{meta_instruction}<|im_end|>\n"""
+ for record in history:
+ prompt += f"""<|im_start|>user\n{record[0]}<|im_end|>\n<|im_start|>assistant\n{record[1]}<|im_end|>\n"""
+ prompt += f"""<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n"""
+ return tokenizer([prompt], return_tensors="pt")
+
+ @torch.no_grad()
+ def chat(
+ self,
+ tokenizer,
+ query: str,
+ history: List[Tuple[str, str]] = [],
+ streamer: Optional[BaseStreamer] = None,
+ max_new_tokens: int = 1024,
+ do_sample: bool = True,
+ temperature: float = 0.8,
+ top_p: float = 0.8,
+ meta_instruction: str = "You are an AI assistant whose name is InternLM (书生·浦语).\n"
+ "- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n"
+ "- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.",
+ **kwargs,
+ ):
+ inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
+ inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
+ # also add end-of-assistant token in eos token id to avoid unnecessary generation
+ eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(["<|im_end|>"])[0]]
+ outputs = self.generate(
+ **inputs,
+ streamer=streamer,
+ max_new_tokens=max_new_tokens,
+ do_sample=do_sample,
+ temperature=temperature,
+ top_p=top_p,
+ eos_token_id=eos_token_id,
+ **kwargs,
+ )
+ outputs = outputs[0].cpu().tolist()[len(inputs["input_ids"][0]) :]
+ response = tokenizer.decode(outputs, skip_special_tokens=True)
+ response = response.split("<|im_end|>")[0]
+ history = history + [(query, response)]
+ return response, history
+
+ @torch.no_grad()
+ def stream_chat(
+ self,
+ tokenizer,
+ query: str,
+ history: List[Tuple[str, str]] = [],
+ max_new_tokens: int = 1024,
+ do_sample: bool = True,
+ temperature: float = 0.8,
+ top_p: float = 0.8,
+ **kwargs,
+ ):
+ """
+ Return a generator in format: (response, history)
+ Eg.
+ ('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
+ ('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
+ """
+ if BaseStreamer is None:
+ raise ModuleNotFoundError(
+ "The version of `transformers` is too low. Please make sure "
+ "that you have installed `transformers>=4.28.0`."
+ )
+
+ response_queue = queue.Queue(maxsize=20)
+
+ class ChatStreamer(BaseStreamer):
+ def __init__(self, tokenizer) -> None:
+ super().__init__()
+ self.tokenizer = tokenizer
+ self.queue = response_queue
+ self.query = query
+ self.history = history
+ self.response = ""
+ self.cache = []
+ self.received_inputs = False
+ self.queue.put((self.response, history + [(self.query, self.response)]))
+
+ def put(self, value):
+ if len(value.shape) > 1 and value.shape[0] > 1:
+ raise ValueError("ChatStreamer only supports batch size 1")
+ elif len(value.shape) > 1:
+ value = value[0]
+
+ if not self.received_inputs:
+ # The first received value is input_ids, ignore here
+ self.received_inputs = True
+ return
+
+ self.cache.extend(value.tolist())
+ token = self.tokenizer.decode(self.cache, skip_special_tokens=True)
+ if token.strip() != "<|im_end|>":
+ self.response = self.response + token
+ history = self.history + [(self.query, self.response)]
+ self.queue.put((self.response, history))
+ self.cache = []
+ else:
+ self.end()
+
+ def end(self):
+ self.queue.put(None)
+
+ def stream_producer():
+ return self.chat(
+ tokenizer=tokenizer,
+ query=query,
+ streamer=ChatStreamer(tokenizer=tokenizer),
+ history=history,
+ max_new_tokens=max_new_tokens,
+ do_sample=do_sample,
+ temperature=temperature,
+ top_p=top_p,
+ **kwargs,
+ )
+
+ def consumer():
+ producer = threading.Thread(target=stream_producer)
+ producer.start()
+ while True:
+ res = response_queue.get()
+ if res is None:
+ return
+ yield res
+
+ return consumer()
+
+
+# Copied from transformers.model.llama.modeling_llama.LlamaForSequenceClassification with Llama->InternLM2
+@add_start_docstrings(
+ """
+ The InternLM2 Model transformer with a sequence classification head on top (linear layer).
+
+ [`InternLM2ForSequenceClassification`] uses the last token in order to do the classification,
+ as other causal models (e.g. GPT-2) do.
+
+ Since it does classification on the last token, it requires to know the position of the last token. If a
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
+ each row of the batch).
+ """,
+ InternLM2_START_DOCSTRING,
+)
+class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+ self.model = InternLM2Model(config)
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.model.tok_embeddings
+
+ def set_input_embeddings(self, value):
+ self.model.tok_embeddings = value
+
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ transformer_outputs = self.model(
+ input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ hidden_states = transformer_outputs[0]
+ logits = self.score(hidden_states)
+
+ if input_ids is not None:
+ batch_size = input_ids.shape[0]
+ else:
+ batch_size = inputs_embeds.shape[0]
+
+ if self.config.pad_token_id is None and batch_size != 1:
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
+ if self.config.pad_token_id is None:
+ sequence_lengths = -1
+ else:
+ if input_ids is not None:
+ sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
+ logits.device
+ )
+ else:
+ sequence_lengths = -1
+
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
+
+ loss = None
+ if labels is not None:
+ labels = labels.to(logits.device)
+ if self.config.problem_type is None:
+ if self.num_labels == 1:
+ self.config.problem_type = "regression"
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
+ self.config.problem_type = "single_label_classification"
+ else:
+ self.config.problem_type = "multi_label_classification"
+
+ if self.config.problem_type == "regression":
+ loss_fct = MSELoss()
+ if self.num_labels == 1:
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
+ else:
+ loss = loss_fct(pooled_logits, labels)
+ elif self.config.problem_type == "single_label_classification":
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
+ elif self.config.problem_type == "multi_label_classification":
+ loss_fct = BCEWithLogitsLoss()
+ loss = loss_fct(pooled_logits, labels)
+ if not return_dict:
+ output = (pooled_logits,) + transformer_outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return SequenceClassifierOutputWithPast(
+ loss=loss,
+ logits=pooled_logits,
+ past_key_values=transformer_outputs.past_key_values,
+ hidden_states=transformer_outputs.hidden_states,
+ attentions=transformer_outputs.attentions,
+ )
diff --git a/special_tokens_map.json b/special_tokens_map.json
new file mode 100644
index 0000000..1023d35
--- /dev/null
+++ b/special_tokens_map.json
@@ -0,0 +1,38 @@
+{
+ "additional_special_tokens": [
+ "<|im_start|>",
+ "<|im_end|>",
+ "<|action_start|>",
+ "<|action_end|>",
+ "<|interpreter|>",
+ "<|plugin|>"
+ ],
+ "bos_token": {
+ "content": "",
+ "lstrip": false,
+ "normalized": false,
+ "rstrip": false,
+ "single_word": false
+ },
+ "eos_token": {
+ "content": "",
+ "lstrip": false,
+ "normalized": false,
+ "rstrip": false,
+ "single_word": false
+ },
+ "pad_token": {
+ "content": "",
+ "lstrip": false,
+ "normalized": false,
+ "rstrip": false,
+ "single_word": false
+ },
+ "unk_token": {
+ "content": "",
+ "lstrip": false,
+ "normalized": false,
+ "rstrip": false,
+ "single_word": false
+ }
+}
diff --git a/tokenization_internlm2.py b/tokenization_internlm2.py
new file mode 100644
index 0000000..ff53eba
--- /dev/null
+++ b/tokenization_internlm2.py
@@ -0,0 +1,236 @@
+# coding=utf-8
+# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
+#
+# This code is based on transformers/src/transformers/models/llama/tokenization_llama.py
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""Tokenization classes for InternLM."""
+import os
+from shutil import copyfile
+from typing import Any, Dict, List, Optional, Tuple
+
+import sentencepiece as spm
+from transformers.tokenization_utils import PreTrainedTokenizer
+from transformers.utils import logging
+
+logger = logging.get_logger(__name__)
+
+VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
+
+PRETRAINED_VOCAB_FILES_MAP = {}
+
+
+# Modified from transformers.model.llama.tokenization_llama.LlamaTokenizer
+class InternLM2Tokenizer(PreTrainedTokenizer):
+ """
+ Construct a InternLM2 tokenizer. Based on byte-level Byte-Pair-Encoding.
+
+ Args:
+ vocab_file (`str`):
+ Path to the vocabulary file.
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
+ model_input_names = ["input_ids", "attention_mask"]
+ _auto_class = "AutoTokenizer"
+
+ def __init__(
+ self,
+ vocab_file,
+ unk_token="",
+ bos_token="",
+ eos_token="",
+ pad_token="",
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
+ add_bos_token=True,
+ add_eos_token=False,
+ decode_with_prefix_space=False,
+ clean_up_tokenization_spaces=False,
+ **kwargs,
+ ):
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
+ self.vocab_file = vocab_file
+ self.add_bos_token = add_bos_token
+ self.add_eos_token = add_eos_token
+ self.decode_with_prefix_space = decode_with_prefix_space
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
+ self.sp_model.Load(vocab_file)
+ self._no_prefix_space_tokens = None
+ super().__init__(
+ bos_token=bos_token,
+ eos_token=eos_token,
+ unk_token=unk_token,
+ pad_token=pad_token,
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
+ **kwargs,
+ )
+
+ @property
+ def no_prefix_space_tokens(self):
+ if self._no_prefix_space_tokens is None:
+ vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
+ self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith("▁")}
+ return self._no_prefix_space_tokens
+
+ @property
+ def vocab_size(self):
+ """Returns vocab size"""
+ return self.sp_model.get_piece_size()
+
+ @property
+ def bos_token_id(self) -> Optional[int]:
+ return self.sp_model.bos_id()
+
+ @property
+ def eos_token_id(self) -> Optional[int]:
+ return self.sp_model.eos_id()
+
+ def get_vocab(self):
+ """Returns vocab as a dict"""
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
+ vocab.update(self.added_tokens_encoder)
+ return vocab
+
+ def _tokenize(self, text):
+ """Returns a tokenized string."""
+ return self.sp_model.encode(text, out_type=str)
+
+ def _convert_token_to_id(self, token):
+ """Converts a token (str) in an id using the vocab."""
+ return self.sp_model.piece_to_id(token)
+
+ def _convert_id_to_token(self, index):
+ """Converts an index (integer) in a token (str) using the vocab."""
+ token = self.sp_model.IdToPiece(index)
+ return token
+
+ def _maybe_add_prefix_space(self, tokens, decoded):
+ if tokens and tokens[0] not in self.no_prefix_space_tokens:
+ return " " + decoded
+ else:
+ return decoded
+
+ def convert_tokens_to_string(self, tokens):
+ """Converts a sequence of tokens (string) in a single string."""
+ current_sub_tokens = []
+ out_string = ""
+ prev_is_special = False
+ for token in tokens:
+ # make sure that special tokens are not decoded using sentencepiece model
+ if token in self.all_special_tokens:
+ if not prev_is_special:
+ out_string += " "
+ out_string += self.sp_model.decode(current_sub_tokens) + token
+ prev_is_special = True
+ current_sub_tokens = []
+ else:
+ current_sub_tokens.append(token)
+ prev_is_special = False
+ out_string += self.sp_model.decode(current_sub_tokens)
+ out_string = self.clean_up_tokenization(out_string)
+ out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
+ return out_string[1:]
+
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ """
+ Save the vocabulary and special tokens file to a directory.
+
+ Args:
+ save_directory (`str`):
+ The directory in which to save the vocabulary.
+
+ Returns:
+ `Tuple(str)`: Paths to the files saved.
+ """
+ if not os.path.isdir(save_directory):
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
+ return
+ out_vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
+ copyfile(self.vocab_file, out_vocab_file)
+ elif not os.path.isfile(self.vocab_file):
+ with open(out_vocab_file, "wb") as fi:
+ content_spiece_model = self.sp_model.serialized_model_proto()
+ fi.write(content_spiece_model)
+
+ return (out_vocab_file,)
+
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
+ if self.add_bos_token:
+ bos_token_ids = [self.bos_token_id]
+ else:
+ bos_token_ids = []
+
+ output = bos_token_ids + token_ids_0
+
+ if token_ids_1 is not None:
+ output = output + token_ids_1
+
+ if self.add_eos_token:
+ output = output + [self.eos_token_id]
+
+ return output
+
+ def get_special_tokens_mask(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
+ ) -> List[int]:
+ """
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
+ special tokens using the tokenizer `prepare_for_model` method.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
+ Whether or not the token list is already formatted with special tokens for the model.
+
+ Returns:
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
+ """
+ if already_has_special_tokens:
+ return super().get_special_tokens_mask(
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
+ )
+
+ if token_ids_1 is None:
+ return [1] + ([0] * len(token_ids_0)) + [1]
+ return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
+
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
+ use of token type ids, therefore a list of zeros is returned.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of zeros.
+ """
+ eos = [self.eos_token_id]
+
+ if token_ids_1 is None:
+ return len(token_ids_0 + eos) * [0]
+ return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
diff --git a/tokenization_internlm2_fast.py b/tokenization_internlm2_fast.py
new file mode 100644
index 0000000..4d9d5f1
--- /dev/null
+++ b/tokenization_internlm2_fast.py
@@ -0,0 +1,214 @@
+# coding=utf-8
+# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
+#
+# This code is based on transformers/src/transformers/models/llama/tokenization_llama_fast.py
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""Tokenization Fast class for InternLM."""
+import os
+from shutil import copyfile
+from typing import Any, Dict, Optional, Tuple
+
+from tokenizers import processors, decoders, Tokenizer, normalizers
+from tokenizers.models import BPE
+
+from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
+from transformers.utils import logging
+
+from transformers.convert_slow_tokenizer import (
+ SLOW_TO_FAST_CONVERTERS,
+ SpmConverter,
+ SentencePieceExtractor,
+)
+
+from .tokenization_internlm2 import InternLM2Tokenizer
+
+logger = logging.get_logger(__name__)
+
+VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
+
+# Modified from transformers.convert_slow_tokenizer.LlamaConverter
+class InternLM2Converter(SpmConverter):
+ handle_byte_fallback = True
+
+ def vocab(self, proto):
+ vocab = [
+ ("", 0.0),
+ ("", 0.0),
+ ("", 0.0),
+ ]
+ vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
+ return vocab
+
+ def unk_id(self, proto):
+ unk_id = 0
+ return unk_id
+
+ def decoder(self, replacement, add_prefix_space):
+ decoders_sequence = [
+ decoders.Replace("▁", " "),
+ decoders.ByteFallback(),
+ decoders.Fuse(),
+ ]
+ if self.proto.normalizer_spec.add_dummy_prefix:
+ decoders_sequence.append(decoders.Strip(content=" ", left=1))
+ return decoders.Sequence(decoders_sequence)
+
+ def tokenizer(self, proto):
+ model_type = proto.trainer_spec.model_type
+ vocab_scores = self.vocab(proto)
+ # special tokens
+ added_tokens = self.original_tokenizer.added_tokens_decoder
+ for i in range(len(vocab_scores)):
+ piece, score = vocab_scores[i]
+ if i in added_tokens:
+ vocab_scores[i] = (added_tokens[i].content, score)
+ if model_type == 1:
+ raise RuntimeError("InternLM2 is supposed to be a BPE model!")
+
+ elif model_type == 2:
+ _, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract(vocab_scores)
+ bpe_vocab = {word: i for i, (word, _score) in enumerate(vocab_scores)}
+ tokenizer = Tokenizer(
+ BPE(bpe_vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True, byte_fallback=True)
+ )
+ tokenizer.add_special_tokens(
+ [ added_token for index, added_token in added_tokens.items()]
+ )
+ else:
+ raise Exception(
+ "You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
+ )
+
+ return tokenizer
+
+ def normalizer(self, proto):
+ normalizers_list = []
+ if proto.normalizer_spec.add_dummy_prefix:
+ normalizers_list.append(normalizers.Prepend(prepend="▁"))
+ normalizers_list.append(normalizers.Replace(pattern=" ", content="▁"))
+ return normalizers.Sequence(normalizers_list)
+
+ def pre_tokenizer(self, replacement, add_prefix_space):
+ return None
+
+SLOW_TO_FAST_CONVERTERS["InternLM2Tokenizer"] = InternLM2Converter
+
+
+# Modified from transformers.model.llama.tokenization_llama_fast.LlamaTokenizerFast -> InternLM2TokenizerFast
+class InternLM2TokenizerFast(PreTrainedTokenizerFast):
+ vocab_files_names = VOCAB_FILES_NAMES
+ slow_tokenizer_class = InternLM2Tokenizer
+ padding_side = "left"
+ model_input_names = ["input_ids", "attention_mask"]
+ _auto_class = "AutoTokenizer"
+
+ def __init__(
+ self,
+ vocab_file,
+ unk_token="",
+ bos_token="",
+ eos_token="",
+ pad_token="",
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
+ add_bos_token=True,
+ add_eos_token=False,
+ decode_with_prefix_space=False,
+ clean_up_tokenization_spaces=False,
+ **kwargs,
+ ):
+ super().__init__(
+ vocab_file=vocab_file,
+ unk_token=unk_token,
+ bos_token=bos_token,
+ eos_token=eos_token,
+ pad_token=pad_token,
+ sp_model_kwargs=sp_model_kwargs,
+ add_bos_token=add_bos_token,
+ add_eos_token=add_eos_token,
+ decode_with_prefix_space=decode_with_prefix_space,
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
+ **kwargs,
+ )
+ self._add_bos_token = add_bos_token
+ self._add_eos_token = add_eos_token
+ self.update_post_processor()
+ self.vocab_file = vocab_file
+
+ @property
+ def can_save_slow_tokenizer(self) -> bool:
+ return os.path.isfile(self.vocab_file) if self.vocab_file else False
+
+ def update_post_processor(self):
+ """
+ Updates the underlying post processor with the current `bos_token` and `eos_token`.
+ """
+ bos = self.bos_token
+ bos_token_id = self.bos_token_id
+ if bos is None and self.add_bos_token:
+ raise ValueError("add_bos_token = True but bos_token = None")
+
+ eos = self.eos_token
+ eos_token_id = self.eos_token_id
+ if eos is None and self.add_eos_token:
+ raise ValueError("add_eos_token = True but eos_token = None")
+
+ single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
+ pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
+
+ special_tokens = []
+ if self.add_bos_token:
+ special_tokens.append((bos, bos_token_id))
+ if self.add_eos_token:
+ special_tokens.append((eos, eos_token_id))
+ self._tokenizer.post_processor = processors.TemplateProcessing(
+ single=single, pair=pair, special_tokens=special_tokens
+ )
+
+ @property
+ def add_eos_token(self):
+ return self._add_eos_token
+
+ @property
+ def add_bos_token(self):
+ return self._add_bos_token
+
+ @add_eos_token.setter
+ def add_eos_token(self, value):
+ self._add_eos_token = value
+ self.update_post_processor()
+
+ @add_bos_token.setter
+ def add_bos_token(self, value):
+ self._add_bos_token = value
+ self.update_post_processor()
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ if not self.can_save_slow_tokenizer:
+ raise ValueError(
+ "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
+ "tokenizer."
+ )
+
+ if not os.path.isdir(save_directory):
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
+ return
+ out_vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
+ copyfile(self.vocab_file, out_vocab_file)
+
+ return (out_vocab_file,)
diff --git a/tokenizer.model b/tokenizer.model
new file mode 100644
index 0000000..6600712
--- /dev/null
+++ b/tokenizer.model
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f868398fc4e05ee1e8aeba95ddf18ddcc45b8bce55d5093bead5bbf80429b48b
+size 1477754
diff --git a/tokenizer_config.json b/tokenizer_config.json
new file mode 100644
index 0000000..78f553c
--- /dev/null
+++ b/tokenizer_config.json
@@ -0,0 +1,102 @@
+{
+ "add_bos_token": true,
+ "add_eos_token": false,
+ "added_tokens_decoder": {
+ "0": {
+ "content": "",
+ "lstrip": false,
+ "normalized": false,
+ "rstrip": false,
+ "single_word": false,
+ "special": true
+ },
+ "1": {
+ "content": "",
+ "lstrip": false,
+ "normalized": false,
+ "rstrip": false,
+ "single_word": false,
+ "special": true
+ },
+ "2": {
+ "content": "",
+ "lstrip": false,
+ "normalized": false,
+ "rstrip": false,
+ "single_word": false,
+ "special": true
+ },
+ "92538": {
+ "content": "<|plugin|>",
+ "lstrip": false,
+ "normalized": false,
+ "rstrip": false,
+ "single_word": false,
+ "special": true
+ },
+ "92539": {
+ "content": "<|interpreter|>",
+ "lstrip": false,
+ "normalized": false,
+ "rstrip": false,
+ "single_word": false,
+ "special": true
+ },
+ "92540": {
+ "content": "<|action_end|>",
+ "lstrip": false,
+ "normalized": false,
+ "rstrip": false,
+ "single_word": false,
+ "special": true
+ },
+ "92541": {
+ "content": "<|action_start|>",
+ "lstrip": false,
+ "normalized": false,
+ "rstrip": false,
+ "single_word": false,
+ "special": true
+ },
+ "92542": {
+ "content": "<|im_end|>",
+ "lstrip": false,
+ "normalized": false,
+ "rstrip": false,
+ "single_word": false,
+ "special": true
+ },
+ "92543": {
+ "content": "<|im_start|>",
+ "lstrip": false,
+ "normalized": false,
+ "rstrip": false,
+ "single_word": false,
+ "special": true
+ }
+ },
+ "additional_special_tokens": [
+ "<|im_start|>",
+ "<|im_end|>",
+ "<|action_start|>",
+ "<|action_end|>",
+ "<|interpreter|>",
+ "<|plugin|>"
+ ],
+ "auto_map": {
+ "AutoTokenizer": [
+ "tokenization_internlm2.InternLM2Tokenizer",
+ "tokenization_internlm2_fast.InternLM2TokenizerFast"
+ ]
+ },
+ "bos_token": "",
+ "chat_template": "{{ bos_token }}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
+ "clean_up_tokenization_spaces": false,
+ "decode_with_prefix_space": false,
+ "eos_token": "",
+ "model_max_length": 1000000000000000019884624838656,
+ "pad_token": "",
+ "sp_model_kwargs": null,
+ "tokenizer_class": "InternLM2Tokenizer",
+ "unk_token": ""
+}