180 lines
8.6 KiB
Python
180 lines
8.6 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
||
|
#
|
||
|
# This code is based on transformers/src/transformers/models/llama/configuration_llama.py
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" InternLM2 model configuration"""
|
||
|
|
||
|
from transformers.configuration_utils import PretrainedConfig
|
||
|
from transformers.utils import logging
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
||
|
|
||
|
|
||
|
# Modified from transformers.model.llama.configuration_llama.LlamaConfig
|
||
|
class InternLM2Config(PretrainedConfig):
|
||
|
r"""
|
||
|
This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
|
||
|
an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
|
||
|
configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
|
||
|
|
||
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||
|
documentation from [`PretrainedConfig`] for more information.
|
||
|
|
||
|
|
||
|
Args:
|
||
|
vocab_size (`int`, *optional*, defaults to 32000):
|
||
|
Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
|
||
|
`inputs_ids` passed when calling [`InternLM2Model`]
|
||
|
hidden_size (`int`, *optional*, defaults to 4096):
|
||
|
Dimension of the hidden representations.
|
||
|
intermediate_size (`int`, *optional*, defaults to 11008):
|
||
|
Dimension of the MLP representations.
|
||
|
num_hidden_layers (`int`, *optional*, defaults to 32):
|
||
|
Number of hidden layers in the Transformer decoder.
|
||
|
num_attention_heads (`int`, *optional*, defaults to 32):
|
||
|
Number of attention heads for each attention layer in the Transformer decoder.
|
||
|
num_key_value_heads (`int`, *optional*):
|
||
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
||
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
||
|
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
||
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
||
|
by meanpooling all the original heads within that group. For more details checkout [this
|
||
|
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
||
|
`num_attention_heads`.
|
||
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
||
|
The non-linear activation function (function or string) in the decoder.
|
||
|
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
||
|
The maximum sequence length that this model might ever be used with. InternLM2 supports up to 32768 tokens.
|
||
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
||
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||
|
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
||
|
The epsilon used by the rms normalization layers.
|
||
|
use_cache (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
||
|
relevant if `config.is_decoder=True`.
|
||
|
pad_token_id (`int`, *optional*):
|
||
|
Padding token id.
|
||
|
bos_token_id (`int`, *optional*, defaults to 1):
|
||
|
Beginning of stream token id.
|
||
|
eos_token_id (`int`, *optional*, defaults to 2):
|
||
|
End of stream token id.
|
||
|
pretraining_tp (`int`, *optional*, defaults to 1):
|
||
|
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
||
|
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism)
|
||
|
to understand more about it. This value is necessary to ensure exact reproducibility
|
||
|
of the pretraining results. Please refer to [this
|
||
|
issue](https://github.com/pytorch/pytorch/issues/76232).
|
||
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
||
|
Whether to tie weight embeddings
|
||
|
rope_theta (`float`, *optional*, defaults to 10000.0):
|
||
|
The base period of the RoPE embeddings.
|
||
|
rope_scaling (`Dict`, *optional*):
|
||
|
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
||
|
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
||
|
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
||
|
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
||
|
these scaling strategies behave:
|
||
|
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
||
|
experimental feature, subject to breaking API changes in future versions.
|
||
|
"""
|
||
|
_auto_class = "AutoConfig"
|
||
|
model_type = "internlm2"
|
||
|
keys_to_ignore_at_inference = ["past_key_values"]
|
||
|
|
||
|
def __init__( # pylint: disable=W0102
|
||
|
self,
|
||
|
vocab_size=103168,
|
||
|
hidden_size=4096,
|
||
|
intermediate_size=11008,
|
||
|
num_hidden_layers=32,
|
||
|
num_attention_heads=32,
|
||
|
num_key_value_heads=None,
|
||
|
hidden_act="silu",
|
||
|
max_position_embeddings=2048,
|
||
|
initializer_range=0.02,
|
||
|
rms_norm_eps=1e-6,
|
||
|
use_cache=True,
|
||
|
pad_token_id=0,
|
||
|
bos_token_id=1,
|
||
|
eos_token_id=2,
|
||
|
pretraining_tp=1,
|
||
|
tie_word_embeddings=False,
|
||
|
bias=True,
|
||
|
rope_theta=10000,
|
||
|
rope_scaling=None,
|
||
|
attn_implementation=None,
|
||
|
**kwargs,
|
||
|
):
|
||
|
self.vocab_size = vocab_size
|
||
|
self.max_position_embeddings = max_position_embeddings
|
||
|
self.hidden_size = hidden_size
|
||
|
self.intermediate_size = intermediate_size
|
||
|
self.num_hidden_layers = num_hidden_layers
|
||
|
self.num_attention_heads = num_attention_heads
|
||
|
self.bias = bias
|
||
|
|
||
|
if num_key_value_heads is None:
|
||
|
num_key_value_heads = num_attention_heads
|
||
|
self.num_key_value_heads = num_key_value_heads
|
||
|
|
||
|
self.hidden_act = hidden_act
|
||
|
self.initializer_range = initializer_range
|
||
|
self.rms_norm_eps = rms_norm_eps
|
||
|
self.pretraining_tp = pretraining_tp
|
||
|
self.use_cache = use_cache
|
||
|
self.rope_theta = rope_theta
|
||
|
self.rope_scaling = rope_scaling
|
||
|
self._rope_scaling_validation()
|
||
|
self.attn_implementation = attn_implementation
|
||
|
if self.attn_implementation is None:
|
||
|
self.attn_implementation = "eager"
|
||
|
|
||
|
super().__init__(
|
||
|
pad_token_id=pad_token_id,
|
||
|
bos_token_id=bos_token_id,
|
||
|
eos_token_id=eos_token_id,
|
||
|
tie_word_embeddings=tie_word_embeddings,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
def _rope_scaling_validation(self):
|
||
|
"""
|
||
|
Validate the `rope_scaling` configuration.
|
||
|
"""
|
||
|
if self.rope_scaling is None:
|
||
|
return
|
||
|
|
||
|
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
||
|
raise ValueError(
|
||
|
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
||
|
f"got {self.rope_scaling}"
|
||
|
)
|
||
|
rope_scaling_type = self.rope_scaling.get("type", None)
|
||
|
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
||
|
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
||
|
raise ValueError(
|
||
|
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
||
|
)
|
||
|
if (
|
||
|
rope_scaling_factor is None
|
||
|
or not isinstance(rope_scaling_factor, (float, int))
|
||
|
or rope_scaling_factor < 1.0
|
||
|
):
|
||
|
raise ValueError(
|
||
|
f"`rope_scaling`'s factor field must be a number >= 1, got {rope_scaling_factor} "
|
||
|
f"of type {type(rope_scaling_factor)}"
|
||
|
)
|