first commit

This commit is contained in:
xxl 2025-01-16 11:06:32 +08:00
parent f82cd428ff
commit 517a4cb8d9
12 changed files with 3337 additions and 8 deletions

201
LICENSE.txt Normal file
View File

@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright 2023-2024 Shanghai AI Laboratory
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

900
README.md
View File

@ -1,3 +1,899 @@
# internlm3-8b-instruct
---
license: apache-2.0
---
# InternLM
<div align="center">
<img src="https://github.com/InternLM/InternLM/assets/22529082/b9788105-8892-4398-8b47-b513a292378e" width="200"/>
<div>&nbsp;</div>
<div align="center">
<b><font size="5">InternLM</font></b>
<sup>
<a href="https://internlm.intern-ai.org.cn/">
<i><font size="4">HOT</font></i>
</a>
</sup>
<div>&nbsp;</div>
</div>
[![evaluation](https://github.com/InternLM/InternLM/assets/22529082/f80a2a58-5ddf-471a-8da4-32ab65c8fd3b)](https://github.com/internLM/OpenCompass/)
[💻Github Repo](https://github.com/InternLM/InternLM) • [🤔Reporting Issues](https://github.com/InternLM/InternLM/issues/new) • [📜Technical Report](https://arxiv.org/abs/2403.17297)
</div>
<p align="center">
👋 join us on <a href="https://discord.gg/xa29JuW87d" target="_blank">Discord</a> and <a href="https://github.com/InternLM/InternLM/assets/25839884/a6aad896-7232-4220-ac84-9e070c2633ce" target="_blank">WeChat</a>
</p>
## Introduction
InternLM3 has open-sourced an 8-billion parameter instruction model, InternLM3-8B-Instruct, designed for general-purpose usage and advanced reasoning. This model has the following characteristics:
- **Enhanced performance at reduced cost**:
State-of-the-art performance on reasoning and knowledge-intensive tasks surpass models like Llama3.1-8B and Qwen2.5-7B. Remarkably, InternLM3 is trained on only 4 trillion high-quality tokens, saving more than 75% of the training cost compared to other LLMs of similar scale.
- **Deep thinking capability**:
InternLM3 supports both the deep thinking mode for solving complicated reasoning tasks via the long chain-of-thought and the normal response mode for fluent user interactions.
## InternLM3-8B-Instruct
### Performance Evaluation
We conducted a comprehensive evaluation of InternLM using the open-source evaluation tool [OpenCompass](https://github.com/internLM/OpenCompass/). The evaluation covered five dimensions of capabilities: disciplinary competence, language competence, knowledge competence, inference competence, and comprehension competence. Here are some of the evaluation results, and you can visit the [OpenCompass leaderboard](https://rank.opencompass.org.cn) for more evaluation results.
| Benchmark | | InternLM3-8B-Instruct | Qwen2.5-7B-Instruct | Llama3.1-8B-Instruct | GPT-4o-mini(close source) |
| ------------ | ------------------------------- | --------------------- | ------------------- | -------------------- | ------------------------- |
| General | CMMLU(0-shot) | **83.1** | 75.8 | 53.9 | 66.0 |
| | MMLU(0-shot) | 76.6 | **76.8** | 71.8 | 82.7 |
| | MMLU-Pro(0-shot) | **57.6** | 56.2 | 48.1 | 64.1 |
| Reasoning | GPQA-Diamond(0-shot) | **37.4** | 33.3 | 24.2 | 42.9 |
| | DROP(0-shot) | **83.1** | 80.4 | 81.6 | 85.2 |
| | HellaSwag(10-shot) | **91.2** | 85.3 | 76.7 | 89.5 |
| | KOR-Bench(0-shot) | **56.4** | 44.6 | 47.7 | 58.2 |
| MATH | MATH-500(0-shot) | **83.0*** | 72.4 | 48.4 | 74.0 |
| | AIME2024(0-shot) | **20.0*** | 16.7 | 6.7 | 13.3 |
| Coding | LiveCodeBench(2407-2409 Pass@1) | **17.8** | 16.8 | 12.9 | 21.8 |
| | HumanEval(Pass@1) | 82.3 | **85.4** | 72.0 | 86.6 |
| Instrunction | IFEval(Prompt-Strict) | **79.3** | 71.7 | 75.2 | 79.7 |
| Long Context | RULER(4-128K Average) | 87.9 | 81.4 | **88.5** | 90.7 |
| Chat | AlpacaEval 2.0(LC WinRate) | **51.1** | 30.3 | 25.0 | 50.7 |
| | WildBench(Raw Score) | **33.1** | 23.3 | 1.5 | 40.3 |
| | MT-Bench-101(Score 1-10) | **8.59** | 8.49 | 8.37 | 8.87 |
- The evaluation results were obtained from [OpenCompass](https://github.com/internLM/OpenCompass/) (some data marked with *, which means evaluating with Thinking Mode), and evaluation configuration can be found in the configuration files provided by [OpenCompass](https://github.com/internLM/OpenCompass/).
- The evaluation data may have numerical differences due to the version iteration of [OpenCompass](https://github.com/internLM/OpenCompass/), so please refer to the latest evaluation results of [OpenCompass](https://github.com/internLM/OpenCompass/).
**Limitations:** Although we have made efforts to ensure the safety of the model during the training process and to encourage the model to generate text that complies with ethical and legal requirements, the model may still produce unexpected outputs due to its size and probabilistic generation paradigm. For example, the generated responses may contain biases, discrimination, or other harmful content. Please do not propagate such content. We are not responsible for any consequences resulting from the dissemination of harmful information.
### Requirements
```python
transformers >= 4.48
```
### Conversation Mode
#### Transformers inference
To load the InternLM3 8B Instruct model using Transformers, use the following code:
```python
import torch
from modelscope import snapshot_download, AutoTokenizer, AutoModelForCausalLM
model_dir = snapshot_download('Shanghai_AI_Laboratory/internlm3-8b-instruct')
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
# Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
# (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
# InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
# pip install -U bitsandbytes
# 8-bit: model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, load_in_8bit=True)
# 4-bit: model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, load_in_4bit=True)
model = model.eval()
system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文."""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": "Please tell me five scenic spots in Shanghai"},
]
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
generated_ids = model.generate(tokenized_chat, max_new_tokens=1024, temperature=1, repetition_penalty=1.005, top_k=40, top_p=0.8)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(tokenized_chat, generated_ids)
]
prompt = tokenizer.batch_decode(tokenized_chat)[0]
print(prompt)
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```
#### LMDeploy inference
LMDeploy is a toolkit for compressing, deploying, and serving LLM, developed by the MMRazor and MMDeploy teams.
```bash
pip install lmdeploy
```
You can run batch inference locally with the following python code:
```python
import lmdeploy
model_dir = "internlm/internlm3-8b-instruct"
pipe = lmdeploy.pipeline(model_dir)
response = pipe("Please tell me five scenic spots in Shanghai")
print(response)
```
Or you can launch an OpenAI compatible server with the following command:
```bash
lmdeploy serve api_server internlm/internlm3-8b-instruct --model-name internlm3-8b-instruct --server-port 23333
```
Then you can send a chat request to the server:
```bash
curl http://localhost:23333/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "internlm3-8b-instruct",
"messages": [
{"role": "user", "content": "Please tell me five scenic spots in Shanghai"}
]
}'
```
Find more details in the [LMDeploy documentation](https://lmdeploy.readthedocs.io/en/latest/)
#### Ollama inference
First install ollama,
```python
# install ollama
curl -fsSL https://ollama.com/install.sh | sh
# fetch model
ollama pull internlm/internlm3-8b-instruct
# install
pip install ollama
```
inference code,
```python
import ollama
system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文."""
messages = [
{
"role": "system",
"content": system_prompt,
},
{
"role": "user",
"content": "Please tell me five scenic spots in Shanghai"
},
]
stream = ollama.chat(
model='internlm/internlm3-8b-instruct',
messages=messages,
stream=True,
)
for chunk in stream:
print(chunk['message']['content'], end='', flush=True)
```
#### vLLM inference
We are still working on merging the PR(https://github.com/vllm-project/vllm/pull/12037) into vLLM. In the meantime, please use the following PR link to install it manually.
```python
git clone -b support-internlm3 https://github.com/RunningLeon/vllm.git
# and then follow https://docs.vllm.ai/en/latest/getting_started/installation/gpu/index.html#build-wheel-from-source to install
cd vllm
python use_existing_torch.py
pip install -r requirements-build.txt
pip install -e . --no-build-isolatio
```
inference code:
```python
from vllm import LLM, SamplingParams
llm = LLM(model="internlm/internlm3-8b-instruct")
sampling_params = SamplingParams(temperature=1, repetition_penalty=1.005, top_k=40, top_p=0.8)
system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文."""
prompts = [
{
"role": "system",
"content": system_prompt,
},
{
"role": "user",
"content": "Please tell me five scenic spots in Shanghai"
},
]
outputs = llm.chat(prompts,
sampling_params=sampling_params,
use_tqdm=False)
print(outputs)
```
### Thinking Mode
#### Thinking Demo
<img src="https://github.com/InternLM/InternLM/blob/017ba7446d20ecc3b9ab8e7b66cc034500868ab4/assets/solve_puzzle.png?raw=true" width="400"/>
#### Thinking system prompt
```python
thinking_system_prompt = """You are an expert mathematician with extensive experience in mathematical competitions. You approach problems through systematic thinking and rigorous reasoning. When solving problems, follow these thought processes:
## Deep Understanding
Take time to fully comprehend the problem before attempting a solution. Consider:
- What is the real question being asked?
- What are the given conditions and what do they tell us?
- Are there any special restrictions or assumptions?
- Which information is crucial and which is supplementary?
## Multi-angle Analysis
Before solving, conduct thorough analysis:
- What mathematical concepts and properties are involved?
- Can you recall similar classic problems or solution methods?
- Would diagrams or tables help visualize the problem?
- Are there special cases that need separate consideration?
## Systematic Thinking
Plan your solution path:
- Propose multiple possible approaches
- Analyze the feasibility and merits of each method
- Choose the most appropriate method and explain why
- Break complex problems into smaller, manageable steps
## Rigorous Proof
During the solution process:
- Provide solid justification for each step
- Include detailed proofs for key conclusions
- Pay attention to logical connections
- Be vigilant about potential oversights
## Repeated Verification
After completing your solution:
- Verify your results satisfy all conditions
- Check for overlooked special cases
- Consider if the solution can be optimized or simplified
- Review your reasoning process
Remember:
1. Take time to think thoroughly rather than rushing to an answer
2. Rigorously prove each key conclusion
3. Keep an open mind and try different approaches
4. Summarize valuable problem-solving methods
5. Maintain healthy skepticism and verify multiple times
Your response should reflect deep mathematical understanding and precise logical thinking, making your solution path and reasoning clear to others.
When you're ready, present your complete solution with:
- Clear problem understanding
- Detailed solution process
- Key insights
- Thorough verification
Focus on clear, logical progression of ideas and thorough explanation of your mathematical reasoning. Provide answers in the same language as the user asking the question, repeat the final answer using a '\\boxed{}' without any units, you have [[8192]] tokens to complete the answer.
"""
```
#### Transformers inference
```python
import torch
from modelscope import snapshot_download, AutoTokenizer, AutoModelForCausalLM
model_dir = snapshot_download('Shanghai_AI_Laboratory/internlm3-8b-instruct')
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
# Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
# (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
# InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
# pip install -U bitsandbytes
# 8-bit: model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, load_in_8bit=True)
# 4-bit: model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, load_in_4bit=True)
model = model.eval()
messages = [
{"role": "system", "content": thinking_system_prompt},
{"role": "user", "content": "Given the function\(f(x)=\mathrm{e}^{x}-ax - a^{3}\),\n(1) When \(a = 1\), find the equation of the tangent line to the curve \(y = f(x)\) at the point \((1,f(1))\).\n(2) If \(f(x)\) has a local minimum and the minimum value is less than \(0\), determine the range of values for \(a\)."},
]
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
generated_ids = model.generate(tokenized_chat, max_new_tokens=8192)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(tokenized_chat, generated_ids)
]
prompt = tokenizer.batch_decode(tokenized_chat)[0]
print(prompt)
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```
#### LMDeploy inference
LMDeploy is a toolkit for compressing, deploying, and serving LLM.
```bash
pip install lmdeploy
```
You can run batch inference locally with the following python code:
```python
from lmdeploy import pipeline, GenerationConfig, ChatTemplateConfig
model_dir = "internlm/internlm3-8b-instruct"
chat_template_config = ChatTemplateConfig(model_name='internlm3')
pipe = pipeline(model_dir, chat_template_config=chat_template_config)
messages = [
{"role": "system", "content": thinking_system_prompt},
{"role": "user", "content": "Given the function\(f(x)=\mathrm{e}^{x}-ax - a^{3}\),\n(1) When \(a = 1\), find the equation of the tangent line to the curve \(y = f(x)\) at the point \((1,f(1))\).\n(2) If \(f(x)\) has a local minimum and the minimum value is less than \(0\), determine the range of values for \(a\)."},
]
response = pipe(messages, gen_config=GenerationConfig(max_new_tokens=2048))
print(response)
```
#### Ollama inference
First install ollama,
```python
# install ollama
curl -fsSL https://ollama.com/install.sh | sh
# fetch model
ollama pull internlm/internlm3-8b-instruct
# install
pip install ollama
```
inference code,
```python
import ollama
messages = [
{
"role": "system",
"content": thinking_system_prompt,
},
{
"role": "user",
"content": "Given the function\(f(x)=\mathrm{e}^{x}-ax - a^{3}\),\n(1) When \(a = 1\), find the equation of the tangent line to the curve \(y = f(x)\) at the point \((1,f(1))\).\n(2) If \(f(x)\) has a local minimum and the minimum value is less than \(0\), determine the range of values for \(a\)."
},
]
stream = ollama.chat(
model='internlm/internlm3-8b-instruct',
messages=messages,
stream=True,
)
for chunk in stream:
print(chunk['message']['content'], end='', flush=True)
```
####
#### vLLM inference
We are still working on merging the PR(https://github.com/vllm-project/vllm/pull/12037) into vLLM. In the meantime, please use the following PR link to install it manually.
```python
git clone https://github.com/RunningLeon/vllm.git
# and then follow https://docs.vllm.ai/en/latest/getting_started/installation/gpu/index.html#build-wheel-from-source to install
cd vllm
python use_existing_torch.py
pip install -r requirements-build.txt
pip install -e . --no-build-isolatio
```
inference code
```python
from vllm import LLM, SamplingParams
llm = LLM(model="internlm/internlm3-8b-instruct")
sampling_params = SamplingParams(temperature=1, repetition_penalty=1.005, top_k=40, top_p=0.8, max_tokens=8192)
prompts = [
{
"role": "system",
"content": thinking_system_prompt,
},
{
"role": "user",
"content": "Given the function\(f(x)=\mathrm{e}^{x}-ax - a^{3}\),\n(1) When \(a = 1\), find the equation of the tangent line to the curve \(y = f(x)\) at the point \((1,f(1))\).\n(2) If \(f(x)\) has a local minimum and the minimum value is less than \(0\), determine the range of values for \(a\)."
},
]
outputs = llm.chat(prompts,
sampling_params=sampling_params,
use_tqdm=False)
print(outputs)
```
## Open Source License
Code and model weights are licensed under Apache-2.0.
## Citation
```
@misc{cai2024internlm2,
title={InternLM2 Technical Report},
author={Zheng Cai and Maosong Cao and Haojiong Chen and Kai Chen and Keyu Chen and Xin Chen and Xun Chen and Zehui Chen and Zhi Chen and Pei Chu and Xiaoyi Dong and Haodong Duan and Qi Fan and Zhaoye Fei and Yang Gao and Jiaye Ge and Chenya Gu and Yuzhe Gu and Tao Gui and Aijia Guo and Qipeng Guo and Conghui He and Yingfan Hu and Ting Huang and Tao Jiang and Penglong Jiao and Zhenjiang Jin and Zhikai Lei and Jiaxing Li and Jingwen Li and Linyang Li and Shuaibin Li and Wei Li and Yining Li and Hongwei Liu and Jiangning Liu and Jiawei Hong and Kaiwen Liu and Kuikun Liu and Xiaoran Liu and Chengqi Lv and Haijun Lv and Kai Lv and Li Ma and Runyuan Ma and Zerun Ma and Wenchang Ning and Linke Ouyang and Jiantao Qiu and Yuan Qu and Fukai Shang and Yunfan Shao and Demin Song and Zifan Song and Zhihao Sui and Peng Sun and Yu Sun and Huanze Tang and Bin Wang and Guoteng Wang and Jiaqi Wang and Jiayu Wang and Rui Wang and Yudong Wang and Ziyi Wang and Xingjian Wei and Qizhen Weng and Fan Wu and Yingtong Xiong and Chao Xu and Ruiliang Xu and Hang Yan and Yirong Yan and Xiaogui Yang and Haochen Ye and Huaiyuan Ying and Jia Yu and Jing Yu and Yuhang Zang and Chuyu Zhang and Li Zhang and Pan Zhang and Peng Zhang and Ruijie Zhang and Shuo Zhang and Songyang Zhang and Wenjian Zhang and Wenwei Zhang and Xingcheng Zhang and Xinyue Zhang and Hui Zhao and Qian Zhao and Xiaomeng Zhao and Fengzhe Zhou and Zaida Zhou and Jingming Zhuo and Yicheng Zou and Xipeng Qiu and Yu Qiao and Dahua Lin},
year={2024},
eprint={2403.17297},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
## 简介
### InternLM3-8B-Instruct
InternLM3即书生·浦语大模型第3代开源了80亿参数面向通用使用与高阶推理的指令模型InternLM3-8B-Instruct。模型具备以下特点
- **更低的代价取得更高的性能**:
在推理、知识类任务上取得同量级最优性能超过Llama3.1-8B和Qwen2.5-7B。值得关注的是InternLM3只用了4万亿词元进行训练对比同级别模型训练成本节省75%以上。
- **深度思考能力**:
InternLM3支持通过长思维链求解复杂推理任务的深度思考模式同时还兼顾了用户体验更流畅的通用回复模式。
#### 性能评测
我们使用开源评测工具 [OpenCompass](https://github.com/internLM/OpenCompass/) 从学科综合能力、语言能力、知识能力、推理能力、理解能力五大能力维度对InternLM开展全面评测部分评测结果如下表所示欢迎访问[ OpenCompass 榜单 ](https://rank.opencompass.org.cn)获取更多的评测结果。
| 评测集\模型 | | InternLM3-8B-Instruct | Qwen2.5-7B-Instruct | Llama3.1-8B-Instruct | GPT-4o-mini(close source) |
| ------------ | ------------------------------- | --------------------- | ------------------- | -------------------- | ------------------------- |
| General | CMMLU(0-shot) | **83.1** | 75.8 | 53.9 | 66.0 |
| | MMLU(0-shot) | 76.6 | **76.8** | 71.8 | 82.7 |
| | MMLU-Pro(0-shot) | **57.6** | 56.2 | 48.1 | 64.1 |
| Reasoning | GPQA-Diamond(0-shot) | **37.4** | 33.3 | 24.2 | 42.9 |
| | DROP(0-shot) | **83.1** | 80.4 | 81.6 | 85.2 |
| | HellaSwag(10-shot) | **91.2** | 85.3 | 76.7 | 89.5 |
| | KOR-Bench(0-shot) | **56.4** | 44.6 | 47.7 | 58.2 |
| MATH | MATH-500(0-shot) | **83.0*** | 72.4 | 48.4 | 74.0 |
| | AIME2024(0-shot) | **20.0*** | 16.7 | 6.7 | 13.3 |
| Coding | LiveCodeBench(2407-2409 Pass@1) | **17.8** | 16.8 | 12.9 | 21.8 |
| | HumanEval(Pass@1) | 82.3 | **85.4** | 72.0 | 86.6 |
| Instrunction | IFEval(Prompt-Strict) | **79.3** | 71.7 | 75.2 | 79.7 |
| LongContext | RULER(4-128K Average) | 87.9 | 81.4 | **88.5** | 90.7 |
| Chat | AlpacaEval 2.0(LC WinRate) | **51.1** | 30.3 | 25.0 | 50.7 |
| | WildBench(Raw Score) | **33.1** | 23.3 | 1.5 | 40.3 |
| | MT-Bench-101(Score 1-10) | **8.59** | 8.49 | 8.37 | 8.87 |
- 以上评测结果基于 [OpenCompass](https://github.com/internLM/OpenCompass/) 获得(部分数据标注`*`代表使用深度思考模式进行评测),具体测试细节可参见 [OpenCompass](https://github.com/internLM/OpenCompass/) 中提供的配置文件。
- 评测数据会因 [OpenCompass](https://github.com/internLM/OpenCompass/) 的版本迭代而存在数值差异,请以 [OpenCompass](https://github.com/internLM/OpenCompass/) 最新版的评测结果为主。
**局限性:** 尽管在训练过程中我们非常注重模型的安全性,尽力促使模型输出符合伦理和法律要求的文本,但受限于模型大小以及概率生成范式,模型可能会产生各种不符合预期的输出,例如回复内容包含偏见、歧视等有害内容,请勿传播这些内容。由于传播不良信息导致的任何后果,本项目不承担责任。
#### 依赖
```python
transformers >= 4.48
```
#### 常规对话模式
##### Transformers 推理
通过以下的代码加载 InternLM3 8B Instruct 模型
```python
import torch
from modelscope import snapshot_download, AutoTokenizer, AutoModelForCausalLM
model_dir = snapshot_download('Shanghai_AI_Laboratory/internlm3-8b-instruct')
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
# Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
# (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
# InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
# pip install -U bitsandbytes
# 8-bit: model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, load_in_8bit=True)
# 4-bit: model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, load_in_4bit=True)
model = model.eval()
system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文."""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": "Please tell me five scenic spots in Shanghai"},
]
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
generated_ids = model.generate(tokenized_chat, max_new_tokens=1024, temperature=1, repetition_penalty=1.005, top_k=40, top_p=0.8)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(tokenized_chat, generated_ids)
]
prompt = tokenizer.batch_decode(tokenized_chat)[0]
print(prompt)
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```
##### LMDeploy 推理
LMDeploy 是涵盖了 LLM 任务的全套轻量化、部署和服务解决方案。
```bash
pip install lmdeploy
```
你可以使用以下 python 代码进行本地批量推理:
```python
import lmdeploy
model_dir = "internlm/internlm3-8b-instruct"
pipe = lmdeploy.pipeline(model_dir)
response = pipe(["Please tell me five scenic spots in Shanghai"])
print(response)
```
或者你可以使用以下命令启动兼容 OpenAI API 的服务:
```bash
lmdeploy serve api_server internlm/internlm3-8b-instruct --model-name internlm3-8b-instruct --server-port 23333
```
然后你可以向服务端发起一个聊天请求:
```bash
curl http://localhost:23333/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "internlm3-8b-instruct",
"messages": [
{"role": "user", "content": "介绍一下深度学习。"}
]
}'
```
更多信息请查看 [LMDeploy 文档](https://lmdeploy.readthedocs.io/en/latest/)
##### Ollama 推理
准备工作
```python
# install ollama
curl -fsSL https://ollama.com/install.sh | sh
# fetch 模型
ollama pull internlm/internlm3-8b-instruct
# install python库
pip install ollama
```
推理代码
```python
import ollama
system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文."""
messages = [
{
"role": "system",
"content": system_prompt,
},
{
"role": "user",
"content": "Please tell me five scenic spots in Shanghai"
},
]
stream = ollama.chat(
model='internlm/internlm3-8b-instruct',
messages=messages,
stream=True,
)
for chunk in stream:
print(chunk['message']['content'], end='', flush=True)
```
####
##### vLLM 推理
我们还在推动PR(https://github.com/vllm-project/vllm/pull/12037) 合入vllm现在请使用以下PR链接手动安装
```python
git clone https://github.com/RunningLeon/vllm.git
# and then follow https://docs.vllm.ai/en/latest/getting_started/installation/gpu/index.html#build-wheel-from-source to install
cd vllm
python use_existing_torch.py
pip install -r requirements-build.txt
pip install -e . --no-build-isolatio
```
推理代码
```python
from vllm import LLM, SamplingParams
llm = LLM(model="internlm/internlm3-8b-instruct")
sampling_params = SamplingParams(temperature=1, repetition_penalty=1.005, top_k=40, top_p=0.8)
system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文."""
prompts = [
{
"role": "system",
"content": system_prompt,
},
{
"role": "user",
"content": "Please tell me five scenic spots in Shanghai"
},
]
outputs = llm.chat(prompts,
sampling_params=sampling_params,
use_tqdm=False)
print(outputs)
```
#### 深度思考模式
##### 深度思考 Demo
<img src="https://github.com/InternLM/InternLM/blob/017ba7446d20ecc3b9ab8e7b66cc034500868ab4/assets/solve_puzzle.png?raw=true" width="400"/>
##### 深度思考 system prompt
```python
thinking_system_prompt = """You are an expert mathematician with extensive experience in mathematical competitions. You approach problems through systematic thinking and rigorous reasoning. When solving problems, follow these thought processes:
## Deep Understanding
Take time to fully comprehend the problem before attempting a solution. Consider:
- What is the real question being asked?
- What are the given conditions and what do they tell us?
- Are there any special restrictions or assumptions?
- Which information is crucial and which is supplementary?
## Multi-angle Analysis
Before solving, conduct thorough analysis:
- What mathematical concepts and properties are involved?
- Can you recall similar classic problems or solution methods?
- Would diagrams or tables help visualize the problem?
- Are there special cases that need separate consideration?
## Systematic Thinking
Plan your solution path:
- Propose multiple possible approaches
- Analyze the feasibility and merits of each method
- Choose the most appropriate method and explain why
- Break complex problems into smaller, manageable steps
## Rigorous Proof
During the solution process:
- Provide solid justification for each step
- Include detailed proofs for key conclusions
- Pay attention to logical connections
- Be vigilant about potential oversights
## Repeated Verification
After completing your solution:
- Verify your results satisfy all conditions
- Check for overlooked special cases
- Consider if the solution can be optimized or simplified
- Review your reasoning process
Remember:
1. Take time to think thoroughly rather than rushing to an answer
2. Rigorously prove each key conclusion
3. Keep an open mind and try different approaches
4. Summarize valuable problem-solving methods
5. Maintain healthy skepticism and verify multiple times
Your response should reflect deep mathematical understanding and precise logical thinking, making your solution path and reasoning clear to others.
When you're ready, present your complete solution with:
- Clear problem understanding
- Detailed solution process
- Key insights
- Thorough verification
Focus on clear, logical progression of ideas and thorough explanation of your mathematical reasoning. Provide answers in the same language as the user asking the question, repeat the final answer using a '\\boxed{}' without any units, you have [[8192]] tokens to complete the answer.
"""
```
##### Transformers 推理
```python
import torch
from modelscope import snapshot_download, AutoTokenizer, AutoModelForCausalLM
model_dir = snapshot_download('Shanghai_AI_Laboratory/internlm3-8b-instruct')
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
# Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.float16).cuda()
# (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
# InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
# pip install -U bitsandbytes
# 8-bit: model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, load_in_8bit=True)
# 4-bit: model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, load_in_4bit=True)
model = model.eval()
messages = [
{"role": "system", "content": thinking_system_prompt},
{"role": "user", "content": "已知函数\(f(x)=\mathrm{e}^{x}-ax - a^{3}\)。\n1当\(a = 1\)时,求曲线\(y = f(x)\)在点\((1,f(1))\)处的切线方程;\n2若\(f(x)\)有极小值,且极小值小于\(0\),求\(a\)的取值范围。"},
]
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
generated_ids = model.generate(tokenized_chat, max_new_tokens=8192)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(tokenized_chat, generated_ids)
]
prompt = tokenizer.batch_decode(tokenized_chat)[0]
print(prompt)
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```
##### LMDeploy 推理
LMDeploy is a toolkit for compressing, deploying, and serving LLM, developed by the MMRazor and MMDeploy teams.
```bash
pip install lmdeploy
```
You can run batch inference locally with the following python code:
```python
from lmdeploy import pipeline, GenerationConfig, ChatTemplateConfig
model_dir = "internlm/internlm3-8b-instruct"
chat_template_config = ChatTemplateConfig(model_name='internlm3')
pipe = pipeline(model_dir, chat_template_config=chat_template_config)
messages = [
{"role": "system", "content": thinking_system_prompt},
{"role": "user", "content": "已知函数\(f(x)=\mathrm{e}^{x}-ax - a^{3}\)。\n1当\(a = 1\)时,求曲线\(y = f(x)\)在点\((1,f(1))\)处的切线方程;\n2若\(f(x)\)有极小值,且极小值小于\(0\),求\(a\)的取值范围。"},
]
response = pipe(messages, gen_config=GenerationConfig(max_new_tokens=2048))
print(response)
```
##### Ollama 推理
准备工作
```python
# install ollama
curl -fsSL https://ollama.com/install.sh | sh
# fetch 模型
ollama pull internlm/internlm3-8b-instruct
# install python库
pip install ollama
```
inference code,
```python
import ollama
messages = [
{
"role": "system",
"content": thinking_system_prompt,
},
{
"role": "user",
"content": "Given the function\(f(x)=\mathrm{e}^{x}-ax - a^{3}\),\n(1) When \(a = 1\), find the equation of the tangent line to the curve \(y = f(x)\) at the point \((1,f(1))\).\n(2) If \(f(x)\) has a local minimum and the minimum value is less than \(0\), determine the range of values for \(a\)."
},
]
stream = ollama.chat(
model='internlm/internlm3-8b-instruct',
messages=messages,
stream=True,
)
for chunk in stream:
print(chunk['message']['content'], end='', flush=True)
```
####
##### vLLM 推理
我们还在推动PR(https://github.com/vllm-project/vllm/pull/12037) 合入vllm现在请使用以下PR链接手动安装
```python
git clone https://github.com/RunningLeon/vllm.git
# and then follow https://docs.vllm.ai/en/latest/getting_started/installation/gpu/index.html#build-wheel-from-source to install
cd vllm
python use_existing_torch.py
pip install -r requirements-build.txt
pip install -e . --no-build-isolatio
```
推理代码
```python
from vllm import LLM, SamplingParams
llm = LLM(model="internlm/internlm3-8b-instruct")
sampling_params = SamplingParams(temperature=1, repetition_penalty=1.005, top_k=40, top_p=0.8, max_tokens=8192)
prompts = [
{
"role": "system",
"content": thinking_system_prompt,
},
{
"role": "user",
"content": "已知函数\(f(x)=\mathrm{e}^{x}-ax - a^{3}\)。\n1当\(a = 1\)时,求曲线\(y = f(x)\)在点\((1,f(1))\)处的切线方程;\n2若\(f(x)\)有极小值,且极小值小于\(0\),求\(a\)的取值范围。"
},
]
outputs = llm.chat(prompts,
sampling_params=sampling_params,
use_tqdm=False)
print(outputs)
```
## 开源许可证
本仓库的代码和权重依照 Apache-2.0 协议开源。
## 引用
```
@misc{cai2024internlm2,
title={InternLM2 Technical Report},
author={Zheng Cai and Maosong Cao and Haojiong Chen and Kai Chen and Keyu Chen and Xin Chen and Xun Chen and Zehui Chen and Zhi Chen and Pei Chu and Xiaoyi Dong and Haodong Duan and Qi Fan and Zhaoye Fei and Yang Gao and Jiaye Ge and Chenya Gu and Yuzhe Gu and Tao Gui and Aijia Guo and Qipeng Guo and Conghui He and Yingfan Hu and Ting Huang and Tao Jiang and Penglong Jiao and Zhenjiang Jin and Zhikai Lei and Jiaxing Li and Jingwen Li and Linyang Li and Shuaibin Li and Wei Li and Yining Li and Hongwei Liu and Jiangning Liu and Jiawei Hong and Kaiwen Liu and Kuikun Liu and Xiaoran Liu and Chengqi Lv and Haijun Lv and Kai Lv and Li Ma and Runyuan Ma and Zerun Ma and Wenchang Ning and Linke Ouyang and Jiantao Qiu and Yuan Qu and Fukai Shang and Yunfan Shao and Demin Song and Zifan Song and Zhihao Sui and Peng Sun and Yu Sun and Huanze Tang and Bin Wang and Guoteng Wang and Jiaqi Wang and Jiayu Wang and Rui Wang and Yudong Wang and Ziyi Wang and Xingjian Wei and Qizhen Weng and Fan Wu and Yingtong Xiong and Chao Xu and Ruiliang Xu and Hang Yan and Yirong Yan and Xiaogui Yang and Haochen Ye and Huaiyuan Ying and Jia Yu and Jing Yu and Yuhang Zang and Chuyu Zhang and Li Zhang and Pan Zhang and Peng Zhang and Ruijie Zhang and Shuo Zhang and Songyang Zhang and Wenjian Zhang and Wenwei Zhang and Xingcheng Zhang and Xinyue Zhang and Hui Zhao and Qian Zhao and Xiaomeng Zhao and Fengzhe Zhou and Zaida Zhou and Jingming Zhuo and Yicheng Zou and Xipeng Qiu and Yu Qiao and Dahua Lin},
year={2024},
eprint={2403.17297},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
internlm3-8b-instruct

BIN
model-00001-of-00002.safetensors (Stored with Git LFS) Normal file

Binary file not shown.

BIN
model-00001-of-00004.safetensors (Stored with Git LFS)

Binary file not shown.

BIN
model-00002-of-00002.safetensors (Stored with Git LFS) Normal file

Binary file not shown.

BIN
model-00002-of-00004.safetensors (Stored with Git LFS)

Binary file not shown.

View File

@ -0,0 +1,442 @@
{
"metadata": {
"total_size": 17608482816
},
"weight_map": {
"lm_head.weight": "model-00002-of-00002.safetensors",
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.36.input_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.36.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.36.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.36.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.36.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.36.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.36.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.36.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.36.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.37.input_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.37.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.37.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.37.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.37.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.37.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.37.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.37.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.37.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.38.input_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.38.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.38.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.38.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.38.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.38.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.38.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.38.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.38.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.39.input_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.39.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.39.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.39.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.39.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.39.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.39.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.39.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.39.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.40.input_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.40.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.40.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.40.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.40.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.40.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.40.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.40.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.40.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.41.input_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.41.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.41.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.41.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.41.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.41.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.41.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.41.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.41.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.42.input_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.42.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.42.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.42.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.42.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.42.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.42.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.42.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.42.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.43.input_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.43.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.43.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.43.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.43.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.43.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.43.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.43.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.43.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.44.input_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.44.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.44.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.44.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.44.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.44.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.44.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.44.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.44.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.45.input_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.45.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.45.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.45.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.45.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.45.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.45.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.45.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.45.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.46.input_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.46.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.46.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.46.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.46.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.46.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.46.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.46.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.46.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.47.input_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.47.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.47.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.47.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.47.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
"model.layers.47.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.47.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.47.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.47.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
"model.norm.weight": "model-00002-of-00002.safetensors"
}
}

1190
modeling_internlm3.py Normal file

File diff suppressed because it is too large Load Diff

54
special_tokens_map.json Normal file
View File

@ -0,0 +1,54 @@
{
"additional_special_tokens": [
"<|im_start|>",
"<|im_end|>",
"<|action_start|>",
"<|action_end|>",
"<|interpreter|>",
"<|plugin|>",
"<restate>",
"</restate>",
"<planning>",
"</planning>",
"<recollect>",
"</recollect>",
"<execution>",
"</execution>",
"<review>",
"</review>",
"<summarize>",
"</summarize>",
"<retry>",
"</retry>",
"<conclude>",
"</conclude>"
],
"bos_token": {
"content": "<s>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
"eos_token": {
"content": "</s>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
"pad_token": {
"content": "</s>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
"unk_token": {
"content": "<unk>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
}
}

294
tokenization_internlm3.py Normal file
View File

@ -0,0 +1,294 @@
import os
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
from transformers.utils import logging
if TYPE_CHECKING:
from transformers.tokenization_utils_base import TextInput
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
SPIECE_UNDERLINE = ""
class InternLM3Tokenizer(PreTrainedTokenizer):
"""
Construct a InternLM3 tokenizer. Based on byte-level Byte-Pair-Encoding. The default padding token is unset as there is
no padding token in the original model.
Args:
vocab_file (`str`):
Path to the vocabulary file.
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"</s>"`):
The end of sequence token.
pad_token (`str` or `tokenizers.AddedToken`, *optional*):
A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by
attention mechanisms or loss computation.
sp_model_kwargs (`Dict[str, Any]`, `Optional`, *optional*):
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
to set:
- `enable_sampling`: Enable subword regularization.
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- `nbest_size = {0,1}`: No sampling is performed.
- `nbest_size > 1`: samples from the nbest_size results.
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
add_bos_token (`bool`, *optional*, defaults to `True`):
Whether or not to add an `bos_token` at the start of sequences.
add_eos_token (`bool`, *optional*, defaults to `False`):
Whether or not to add an `eos_token` at the end of sequences.
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
extra spaces.
use_default_system_prompt (`bool`, *optional*, defaults to `False`):
Whether or not the default system prompt for InternLM3 should be used.
spaces_between_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not to add spaces between special tokens.
spaces_for_interleaved_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not to add spaces between special tokens that are interleaved with normal tokens.
add_prefix_space (`bool`, *optional*, defaults to `True`):
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
other word. Again, this should be set with `from_slow=True` to make sure it's taken into account.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
unk_token="<unk>",
bos_token="<s>",
eos_token="</s>",
pad_token=None,
sp_model_kwargs: Optional[Dict[str, Any]] = None,
add_bos_token=True,
add_eos_token=False,
clean_up_tokenization_spaces=False,
use_default_system_prompt=False,
spaces_between_special_tokens=False,
spaces_for_interleaved_special_tokens=False,
add_prefix_space=True,
**kwargs,
):
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
bos_token = AddedToken(bos_token, normalized=False, special=True) if isinstance(bos_token, str) else bos_token
eos_token = AddedToken(eos_token, normalized=False, special=True) if isinstance(eos_token, str) else eos_token
unk_token = AddedToken(unk_token, normalized=False, special=True) if isinstance(unk_token, str) else unk_token
pad_token = AddedToken(pad_token, normalized=False, special=True) if isinstance(pad_token, str) else pad_token
self.vocab_file = vocab_file
self.add_bos_token = add_bos_token
self.add_eos_token = add_eos_token
self.use_default_system_prompt = use_default_system_prompt
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(vocab_file)
self.add_prefix_space = add_prefix_space
self.spaces_for_interleaved_special_tokens = spaces_for_interleaved_special_tokens
vocab_size = self.sp_model.get_piece_size()
self.decoder = {i: self.sp_model.id_to_piece(i) for i in range(vocab_size)}
super().__init__(
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
pad_token=pad_token,
add_bos_token=add_bos_token,
add_eos_token=add_eos_token,
sp_model_kwargs=sp_model_kwargs,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
use_default_system_prompt=use_default_system_prompt,
spaces_between_special_tokens=spaces_between_special_tokens,
add_prefix_space=add_prefix_space,
**kwargs,
)
def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
state["sp_model_proto"] = self.sp_model.serialized_model_proto()
return state
def __setstate__(self, d):
self.__dict__.update(d)
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
@property
def vocab_size(self):
"""Returns vocab size"""
return self.sp_model.get_piece_size()
def get_vocab(self):
"""Returns vocab as a dict"""
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def tokenize(self, text: "TextInput", **kwargs) -> List[str]:
"""
Args:
text: TextInput
Simply calls PreTrainedTokenizer's method
"""
return super().tokenize(text, **kwargs)
def _tokenize(self, text, **kwargs):
"""
Args:
text: TextInput
Returns a tokenized string. The Gemma tokenizer never adds a prefix space.
"""
return self.sp_model.encode(text, out_type=str)
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.sp_model.piece_to_id(token)
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.decoder.get(index, "")
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
# since we manually add the prefix space, we have to remove it when decoding
if tokens[0].startswith(SPIECE_UNDERLINE) and self.add_prefix_space:
tokens[0] = tokens[0][1:]
current_sub_tokens = []
out_string = ""
prev_is_special = False
for i, token in enumerate(tokens):
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special and i != 0 and self.spaces_for_interleaved_special_tokens:
out_string += " "
out_string += self.sp_model.decode(current_sub_tokens) + token
prev_is_special = True
current_sub_tokens = []
else:
if (
prev_is_special
and i == 1
and self.add_prefix_space
and not token.startswith(SPIECE_UNDERLINE)
and self.spaces_for_interleaved_special_tokens
):
out_string += " "
current_sub_tokens.append(token)
prev_is_special = False
out_string += self.sp_model.decode(current_sub_tokens)
return out_string
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
"""
Save the vocabulary and special tokens file to a directory.
Args:
save_directory (`str`):
The directory in which to save the vocabulary.
Returns:
`Tuple(str)`: Paths to the files saved.
"""
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"])
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
elif not os.path.isfile(self.vocab_file):
with open(out_vocab_file, "wb") as fi:
content_spiece_model = self.sp_model.serialized_model_proto()
fi.write(content_spiece_model)
return (out_vocab_file,)
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
output = bos_token_id + token_ids_0 + eos_token_id
if token_ids_1 is not None:
output = output + bos_token_id + token_ids_1 + eos_token_id
return output
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True)
bos_token_id = [1] if self.add_bos_token else []
eos_token_id = [1] if self.add_eos_token else []
if token_ids_1 is None:
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id + bos_token_id + ([0] * len(token_ids_1)) + eos_token_id
def create_token_type_ids_from_sequences(self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None) -> List[int]:
"""
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
if token_ids_1 is None, only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of ids.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
if token_ids_1 is not None:
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
return output

BIN
tokenizer.model (Stored with Git LFS) Normal file

Binary file not shown.

249
tokenizer_config.json Normal file
View File

@ -0,0 +1,249 @@
{
"add_bos_token": true,
"add_eos_token": false,
"add_prefix_space": true,
"added_tokens_decoder": {
"0": {
"content": "<unk>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"1": {
"content": "<s>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"2": {
"content": "</s>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"128111": {
"content": "<restate>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"128112": {
"content": "</restate>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"128113": {
"content": "<planning>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"128114": {
"content": "</planning>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"128115": {
"content": "<recollect>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"128116": {
"content": "</recollect>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"128117": {
"content": "<execution>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"128118": {
"content": "</execution>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"128119": {
"content": "<review>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"128120": {
"content": "</review>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"128121": {
"content": "<summarize>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"128122": {
"content": "</summarize>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"128123": {
"content": "<retry>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"128124": {
"content": "</retry>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"128125": {
"content": "<conclude>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"128126": {
"content": "</conclude>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"128127": {
"content": "<|plugin|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"128128": {
"content": "<|interpreter|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"128129": {
"content": "<|action_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"128130": {
"content": "<|action_start|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"128131": {
"content": "<|im_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"128132": {
"content": "<|im_start|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
}
},
"additional_special_tokens": [
"<|im_start|>",
"<|im_end|>",
"<|action_start|>",
"<|action_end|>",
"<|interpreter|>",
"<|plugin|>",
"<restate>",
"</restate>",
"<planning>",
"</planning>",
"<recollect>",
"</recollect>",
"<execution>",
"</execution>",
"<review>",
"</review>",
"<summarize>",
"</summarize>",
"<retry>",
"</retry>",
"<conclude>",
"</conclude>"
],
"auto_map": {
"AutoTokenizer": [
"tokenization_internlm3.InternLM3Tokenizer",
null
]
},
"bos_token": "<s>",
"chat_template": "{{ bos_token }}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
"clean_up_tokenization_spaces": false,
"eos_token": "</s>",
"extra_special_tokens": {},
"model_max_length": 1000000000000000019884624838656,
"pad_token": "</s>",
"sp_model_kwargs": {},
"spaces_between_special_tokens": false,
"tokenizer_class": "InternLM3Tokenizer",
"unk_token": "<unk>",
"use_default_system_prompt": false
}