first commit
This commit is contained in:
parent
995adb091d
commit
f82cd428ff
|
@ -0,0 +1,37 @@
|
|||
{
|
||||
"architectures": [
|
||||
"InternLM3ForCausalLM"
|
||||
],
|
||||
"attention_dropout": 0.0,
|
||||
"auto_map": {
|
||||
"AutoConfig": "configuration_internlm3.InternLM3Config",
|
||||
"AutoModel": "modeling_internlm3.InternLM3Model",
|
||||
"AutoModelForCausalLM": "modeling_internlm3.InternLM3ForCausalLM"
|
||||
},
|
||||
"bias": false,
|
||||
"bos_token_id": 1,
|
||||
"eos_token_id": 2,
|
||||
"head_dim": 128,
|
||||
"hidden_act": "silu",
|
||||
"hidden_size": 4096,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 10240,
|
||||
"max_position_embeddings": 32768,
|
||||
"model_type": "internlm3",
|
||||
"num_attention_heads": 32,
|
||||
"num_hidden_layers": 48,
|
||||
"num_key_value_heads": 2,
|
||||
"pad_token_id": 2,
|
||||
"qkv_bias": false,
|
||||
"rms_norm_eps": 1e-05,
|
||||
"rope_scaling": {
|
||||
"factor": 6.0,
|
||||
"rope_type": "dynamic"
|
||||
},
|
||||
"rope_theta": 50000000,
|
||||
"tie_word_embeddings": false,
|
||||
"torch_dtype": "bfloat16",
|
||||
"transformers_version": "4.47.1",
|
||||
"use_cache": true,
|
||||
"vocab_size": 128512
|
||||
}
|
|
@ -0,0 +1 @@
|
|||
{"framework":"Pytorch","task":"text-generation"}
|
|
@ -0,0 +1,197 @@
|
|||
# coding=utf-8
|
||||
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# This code is based on transformers/src/transformers/models/llama/configuration_llama.py
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" InternLM3 model configuration"""
|
||||
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
from transformers.modeling_rope_utils import rope_config_validation
|
||||
from transformers.utils import logging
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class InternLM3Config(PretrainedConfig):
|
||||
r"""
|
||||
This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
|
||||
an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
|
||||
configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
|
||||
|
||||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||
documentation from [`PretrainedConfig`] for more information.
|
||||
|
||||
|
||||
Args:
|
||||
vocab_size (`int`, *optional*, defaults to 151936):
|
||||
Vocabulary size of the InternLM3 model. Defines the number of different tokens that can be represented by the
|
||||
`inputs_ids` passed when calling [`InternLM3Model`]
|
||||
hidden_size (`int`, *optional*, defaults to 4096):
|
||||
Dimension of the hidden representations.
|
||||
intermediate_size (`int`, *optional*, defaults to 22016):
|
||||
Dimension of the MLP representations.
|
||||
num_hidden_layers (`int`, *optional*, defaults to 32):
|
||||
Number of hidden layers in the Transformer encoder.
|
||||
num_attention_heads (`int`, *optional*, defaults to 32):
|
||||
Number of attention heads for each attention layer in the Transformer encoder.
|
||||
num_key_value_heads (`int`, *optional*, defaults to 32):
|
||||
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
||||
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
||||
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
||||
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
||||
by meanpooling all the original heads within that group. For more details checkout [this
|
||||
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
|
||||
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
||||
The non-linear activation function (function or string) in the decoder.
|
||||
max_position_embeddings (`int`, *optional*, defaults to 32768):
|
||||
The maximum sequence length that this model might ever be used with.
|
||||
initializer_range (`float`, *optional*, defaults to 0.02):
|
||||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
||||
The epsilon used by the rms normalization layers.
|
||||
use_cache (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
||||
relevant if `config.is_decoder=True`.
|
||||
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
||||
Whether the model's input and output word embeddings should be tied.
|
||||
rope_theta (`float`, *optional*, defaults to 10000.0):
|
||||
The base period of the RoPE embeddings.
|
||||
rope_scaling (`Dict`, *optional*):
|
||||
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
||||
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
||||
accordingly.
|
||||
Expected contents:
|
||||
`rope_type` (`str`):
|
||||
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
||||
'llama3'], with 'default' being the original RoPE implementation.
|
||||
`factor` (`float`, *optional*):
|
||||
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
||||
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
||||
original maximum pre-trained length.
|
||||
`original_max_position_embeddings` (`int`, *optional*):
|
||||
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
|
||||
pretraining.
|
||||
`attention_factor` (`float`, *optional*):
|
||||
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
||||
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
||||
`factor` field to infer the suggested value.
|
||||
`beta_fast` (`float`, *optional*):
|
||||
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
||||
ramp function. If unspecified, it defaults to 32.
|
||||
`beta_slow` (`float`, *optional*):
|
||||
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
||||
ramp function. If unspecified, it defaults to 1.
|
||||
`short_factor` (`List[float]`, *optional*):
|
||||
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
||||
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
||||
size divided by the number of attention heads divided by 2
|
||||
`long_factor` (`List[float]`, *optional*):
|
||||
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
||||
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
||||
size divided by the number of attention heads divided by 2
|
||||
`low_freq_factor` (`float`, *optional*):
|
||||
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
||||
`high_freq_factor` (`float`, *optional*):
|
||||
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
||||
qkv_bias (`bool`, *optional*, defaults to `False`):
|
||||
Whether to use a bias in the query, key and value projection layers during self-attention.
|
||||
attention_dropout (`float`, *optional*, defaults to 0.0):
|
||||
The dropout ratio for the attention probabilities.
|
||||
bias (`bool`, *optional*, defaults to `False`):
|
||||
Whether to use a bias in o_proj, up_proj, down_proj and gate_proj layers.
|
||||
head_dim (`int`, *optional*):
|
||||
The attention head dimension. If None, it will default to hidden_size // num_heads
|
||||
|
||||
```python
|
||||
>>> from transformers import InternLM3Model, InternLM3Config
|
||||
|
||||
>>> # Initializing a InternLM3 style configuration
|
||||
>>> configuration = InternLM3Config()
|
||||
|
||||
>>> # Initializing a model from the InternLM3-8B style configuration
|
||||
>>> model = InternLM3Model(configuration)
|
||||
|
||||
>>> # Accessing the model configuration
|
||||
>>> configuration = model.config
|
||||
```"""
|
||||
|
||||
model_type = "internlm3"
|
||||
keys_to_ignore_at_inference = ["past_key_values"]
|
||||
|
||||
# Default tensor parallel plan for base model `InternLM3`
|
||||
base_model_tp_plan = {
|
||||
"layers.*.self_attn.q_proj": "colwise",
|
||||
"layers.*.self_attn.k_proj": "colwise",
|
||||
"layers.*.self_attn.v_proj": "colwise",
|
||||
"layers.*.self_attn.o_proj": "rowwise",
|
||||
"layers.*.mlp.gate_proj": "colwise",
|
||||
"layers.*.mlp.up_proj": "colwise",
|
||||
"layers.*.mlp.down_proj": "rowwise",
|
||||
}
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=128512,
|
||||
hidden_size=4096,
|
||||
intermediate_size=11008,
|
||||
num_hidden_layers=32,
|
||||
num_attention_heads=32,
|
||||
num_key_value_heads=32,
|
||||
hidden_act="silu",
|
||||
max_position_embeddings=32768,
|
||||
initializer_range=0.02,
|
||||
rms_norm_eps=1e-6,
|
||||
use_cache=True,
|
||||
tie_word_embeddings=False,
|
||||
rope_theta=10000.0,
|
||||
rope_scaling=None,
|
||||
qkv_bias=False,
|
||||
attention_dropout=0.0,
|
||||
bias=False,
|
||||
head_dim=None,
|
||||
**kwargs,
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.hidden_size = hidden_size
|
||||
self.intermediate_size = intermediate_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
|
||||
# for backward compatibility
|
||||
if num_key_value_heads is None:
|
||||
num_key_value_heads = num_attention_heads
|
||||
|
||||
self.num_key_value_heads = num_key_value_heads
|
||||
self.hidden_act = hidden_act
|
||||
self.initializer_range = initializer_range
|
||||
self.rms_norm_eps = rms_norm_eps
|
||||
self.use_cache = use_cache
|
||||
self.rope_theta = rope_theta
|
||||
self.rope_scaling = rope_scaling
|
||||
self.qkv_bias = qkv_bias
|
||||
self.attention_dropout = attention_dropout
|
||||
self.bias = bias
|
||||
self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
|
||||
# Validate the correctness of rotary position embeddings parameters
|
||||
# BC: if there is a 'type' field, move it to 'rope_type'.
|
||||
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
||||
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
||||
rope_config_validation(self)
|
||||
|
||||
super().__init__(
|
||||
tie_word_embeddings=tie_word_embeddings,
|
||||
**kwargs,
|
||||
)
|
|
@ -0,0 +1,9 @@
|
|||
{
|
||||
"bos_token_id": 1,
|
||||
"eos_token_id": [
|
||||
2,
|
||||
128131
|
||||
],
|
||||
"pad_token_id": 2,
|
||||
"transformers_version": "4.47.1"
|
||||
}
|
Binary file not shown.
Binary file not shown.
Loading…
Reference in New Issue