--- license: apache-2.0 language: - en pipeline_tag: visual-question-answering tags: - chat --- # mPLUG-Owl3 ## Introduction mPLUG-Owl3 is a state-of-the-art multi-modal large language model designed to tackle the challenges of long image sequence understanding. We propose Hyper Attention, which boosts the speed of long visual sequence understanding in multimodal large language models by sixfold, allowing for processing of visual sequences that are eight times longer. Meanwhile, we maintain excellent performance on single-image, multi-image, and video tasks. Github: [mPLUG-Owl](https://github.com/X-PLUG/mPLUG-Owl) ## Quickstart Load the mPLUG-Owl3. We now only support attn_implementation in ```['sdpa', 'flash_attention_2']```. ```Python import torch from modelscope import AutoConfig, AutoModel model_path = 'iic/mPLUG-Owl3-2B-241014' config = AutoConfig.from_pretrained(model_path, trust_remote_code=True) print(config) # model = mPLUGOwl3Model(config).cuda().half() model = AutoModel.from_pretrained(model_path, attn_implementation='sdpa', torch_dtype=torch.half, trust_remote_code=True) model.eval().cuda() ``` Chat with images. ```Python from PIL import Image from modelscope import AutoTokenizer from decord import VideoReader, cpu model_path = 'iic/mPLUG-Owl3-2B-241014' tokenizer = AutoTokenizer.from_pretrained(model_path) processor = model.init_processor(tokenizer) image = Image.new('RGB', (500, 500), color='red') messages = [ {"role": "user", "content": """<|image|> Describe this image."""}, {"role": "assistant", "content": ""} ] inputs = processor(messages, images=[image], videos=None) inputs.to('cuda') inputs.update({ 'tokenizer': tokenizer, 'max_new_tokens':100, 'decode_text':True, }) g = model.generate(**inputs) print(g) ``` Chat with a video. ```Python from PIL import Image from modelscope import AutoTokenizer from decord import VideoReader, cpu # pip install decord model_path = 'iic/mPLUG-Owl3-2B-241014' tokenizer = AutoTokenizer.from_pretrained(model_path) processor = model.init_processor(tokenizer) messages = [ {"role": "user", "content": """<|video|> Describe this video."""}, {"role": "assistant", "content": ""} ] videos = ['/nas-mmu-data/examples/car_room.mp4'] MAX_NUM_FRAMES=16 def encode_video(video_path): def uniform_sample(l, n): gap = len(l) / n idxs = [int(i * gap + gap / 2) for i in range(n)] return [l[i] for i in idxs] vr = VideoReader(video_path, ctx=cpu(0)) sample_fps = round(vr.get_avg_fps() / 1) # FPS frame_idx = [i for i in range(0, len(vr), sample_fps)] if len(frame_idx) > MAX_NUM_FRAMES: frame_idx = uniform_sample(frame_idx, MAX_NUM_FRAMES) frames = vr.get_batch(frame_idx).asnumpy() frames = [Image.fromarray(v.astype('uint8')) for v in frames] print('num frames:', len(frames)) return frames video_frames = [encode_video(_) for _ in videos] inputs = processor(messages, images=None, videos=video_frames) inputs.to('cuda') inputs.update({ 'tokenizer': tokenizer, 'max_new_tokens':100, 'decode_text':True, }) g = model.generate(**inputs) print(g) ``` ## Citation If you find our work helpful, feel free to give us a cite. ``` @misc{ye2024mplugowl3longimagesequenceunderstanding, title={mPLUG-Owl3: Towards Long Image-Sequence Understanding in Multi-Modal Large Language Models}, author={Jiabo Ye and Haiyang Xu and Haowei Liu and Anwen Hu and Ming Yan and Qi Qian and Ji Zhang and Fei Huang and Jingren Zhou}, year={2024}, eprint={2408.04840}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2408.04840}, } ```