library_name |
pipeline_tag |
tags |
model-index |
license |
language |
new_version |
sentence-transformers |
sentence-similarity |
feature-extraction |
sentence-similarity |
mteb |
transformers |
transformers.js |
|
name |
results |
epoch_0_model |
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
mteb/amazon_counterfactual |
MTEB AmazonCounterfactualClassification (en) |
en |
test |
e8379541af4e31359cca9fbcf4b00f2671dba205 |
|
type |
value |
accuracy |
76.8507462686567 |
|
type |
value |
ap |
40.592189159090495 |
|
type |
value |
f1 |
71.01634655512476 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
mteb/amazon_polarity |
MTEB AmazonPolarityClassification |
default |
test |
e2d317d38cd51312af73b3d32a06d1a08b442046 |
|
type |
value |
accuracy |
91.51892500000001 |
|
type |
value |
ap |
88.50346762975335 |
|
type |
value |
f1 |
91.50342077459624 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
mteb/amazon_reviews_multi |
MTEB AmazonReviewsClassification (en) |
en |
test |
1399c76144fd37290681b995c656ef9b2e06e26d |
|
type |
value |
accuracy |
47.364 |
|
type |
value |
f1 |
46.72708080922794 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
arguana |
MTEB ArguAna |
default |
test |
None |
|
type |
value |
map_at_1 |
25.178 |
|
type |
value |
map_at_10 |
40.244 |
|
type |
value |
map_at_100 |
41.321999999999996 |
|
type |
value |
map_at_1000 |
41.331 |
|
type |
value |
map_at_3 |
35.016999999999996 |
|
type |
value |
map_at_5 |
37.99 |
|
type |
value |
mrr_at_1 |
25.605 |
|
type |
value |
mrr_at_10 |
40.422000000000004 |
|
type |
value |
mrr_at_100 |
41.507 |
|
type |
value |
mrr_at_1000 |
41.516 |
|
type |
value |
mrr_at_3 |
35.23 |
|
type |
value |
mrr_at_5 |
38.15 |
|
type |
value |
ndcg_at_1 |
25.178 |
|
type |
value |
ndcg_at_10 |
49.258 |
|
type |
value |
ndcg_at_100 |
53.776 |
|
type |
value |
ndcg_at_1000 |
53.995000000000005 |
|
type |
value |
ndcg_at_3 |
38.429 |
|
type |
value |
ndcg_at_5 |
43.803 |
|
type |
value |
precision_at_1 |
25.178 |
|
type |
value |
precision_at_10 |
7.831 |
|
type |
value |
precision_at_100 |
0.979 |
|
type |
value |
precision_at_1000 |
0.1 |
|
type |
value |
precision_at_3 |
16.121 |
|
type |
value |
precision_at_5 |
12.29 |
|
type |
value |
recall_at_1 |
25.178 |
|
type |
value |
recall_at_10 |
78.307 |
|
type |
value |
recall_at_100 |
97.866 |
|
type |
value |
recall_at_1000 |
99.57300000000001 |
|
type |
value |
recall_at_3 |
48.364000000000004 |
|
type |
value |
recall_at_5 |
61.451 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
mteb/arxiv-clustering-p2p |
MTEB ArxivClusteringP2P |
default |
test |
a122ad7f3f0291bf49cc6f4d32aa80929df69d5d |
|
type |
value |
v_measure |
45.93034494751465 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
mteb/arxiv-clustering-s2s |
MTEB ArxivClusteringS2S |
default |
test |
f910caf1a6075f7329cdf8c1a6135696f37dbd53 |
|
type |
value |
v_measure |
36.64579480054327 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
mteb/askubuntudupquestions-reranking |
MTEB AskUbuntuDupQuestions |
default |
test |
2000358ca161889fa9c082cb41daa8dcfb161a54 |
|
type |
value |
map |
60.601310529222054 |
|
type |
value |
mrr |
75.04484896451656 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
mteb/biosses-sts |
MTEB BIOSSES |
default |
test |
d3fb88f8f02e40887cd149695127462bbcf29b4a |
|
type |
value |
cos_sim_pearson |
88.57797718095814 |
|
type |
value |
cos_sim_spearman |
86.47064499110101 |
|
type |
value |
euclidean_pearson |
87.4559602783142 |
|
type |
value |
euclidean_spearman |
86.47064499110101 |
|
type |
value |
manhattan_pearson |
87.7232764230245 |
|
type |
value |
manhattan_spearman |
86.91222131777742 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
mteb/banking77 |
MTEB Banking77Classification |
default |
test |
0fd18e25b25c072e09e0d92ab615fda904d66300 |
|
type |
value |
accuracy |
84.5422077922078 |
|
type |
value |
f1 |
84.47657456950589 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
mteb/biorxiv-clustering-p2p |
MTEB BiorxivClusteringP2P |
default |
test |
65b79d1d13f80053f67aca9498d9402c2d9f1f40 |
|
type |
value |
v_measure |
38.48953561974464 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
mteb/biorxiv-clustering-s2s |
MTEB BiorxivClusteringS2S |
default |
test |
258694dd0231531bc1fd9de6ceb52a0853c6d908 |
|
type |
value |
v_measure |
32.75995857510105 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
BeIR/cqadupstack |
MTEB CQADupstackAndroidRetrieval |
default |
test |
None |
|
type |
value |
map_at_1 |
30.008000000000003 |
|
type |
value |
map_at_10 |
39.51 |
|
type |
value |
map_at_100 |
40.841 |
|
type |
value |
map_at_1000 |
40.973 |
|
type |
value |
map_at_3 |
36.248999999999995 |
|
type |
value |
map_at_5 |
38.096999999999994 |
|
type |
value |
mrr_at_1 |
36.481 |
|
type |
value |
mrr_at_10 |
44.818000000000005 |
|
type |
value |
mrr_at_100 |
45.64 |
|
type |
value |
mrr_at_1000 |
45.687 |
|
type |
value |
mrr_at_3 |
42.036 |
|
type |
value |
mrr_at_5 |
43.782 |
|
type |
value |
ndcg_at_1 |
36.481 |
|
type |
value |
ndcg_at_10 |
45.152 |
|
type |
value |
ndcg_at_100 |
50.449 |
|
type |
value |
ndcg_at_1000 |
52.76499999999999 |
|
type |
value |
ndcg_at_3 |
40.161 |
|
type |
value |
ndcg_at_5 |
42.577999999999996 |
|
type |
value |
precision_at_1 |
36.481 |
|
type |
value |
precision_at_10 |
8.369 |
|
type |
value |
precision_at_100 |
1.373 |
|
type |
value |
precision_at_1000 |
0.186 |
|
type |
value |
precision_at_3 |
18.693 |
|
type |
value |
precision_at_5 |
13.533999999999999 |
|
type |
value |
recall_at_1 |
30.008000000000003 |
|
type |
value |
recall_at_10 |
56.108999999999995 |
|
type |
value |
recall_at_100 |
78.55499999999999 |
|
type |
value |
recall_at_1000 |
93.659 |
|
type |
value |
recall_at_3 |
41.754999999999995 |
|
type |
value |
recall_at_5 |
48.296 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
BeIR/cqadupstack |
MTEB CQADupstackEnglishRetrieval |
default |
test |
None |
|
type |
value |
map_at_1 |
30.262 |
|
type |
value |
map_at_10 |
40.139 |
|
type |
value |
map_at_100 |
41.394 |
|
type |
value |
map_at_1000 |
41.526 |
|
type |
value |
map_at_3 |
37.155 |
|
type |
value |
map_at_5 |
38.785 |
|
type |
value |
mrr_at_1 |
38.153 |
|
type |
value |
mrr_at_10 |
46.369 |
|
type |
value |
mrr_at_100 |
47.072 |
|
type |
value |
mrr_at_1000 |
47.111999999999995 |
|
type |
value |
mrr_at_3 |
44.268 |
|
type |
value |
mrr_at_5 |
45.389 |
|
type |
value |
ndcg_at_1 |
38.153 |
|
type |
value |
ndcg_at_10 |
45.925 |
|
type |
value |
ndcg_at_100 |
50.394000000000005 |
|
type |
value |
ndcg_at_1000 |
52.37500000000001 |
|
type |
value |
ndcg_at_3 |
41.754000000000005 |
|
type |
value |
ndcg_at_5 |
43.574 |
|
type |
value |
precision_at_1 |
38.153 |
|
type |
value |
precision_at_10 |
8.796 |
|
type |
value |
precision_at_100 |
1.432 |
|
type |
value |
precision_at_1000 |
0.189 |
|
type |
value |
precision_at_3 |
20.318 |
|
type |
value |
precision_at_5 |
14.395 |
|
type |
value |
recall_at_1 |
30.262 |
|
type |
value |
recall_at_10 |
55.72200000000001 |
|
type |
value |
recall_at_100 |
74.97500000000001 |
|
type |
value |
recall_at_1000 |
87.342 |
|
type |
value |
recall_at_3 |
43.129 |
|
type |
value |
recall_at_5 |
48.336 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
BeIR/cqadupstack |
MTEB CQADupstackGamingRetrieval |
default |
test |
None |
|
type |
value |
map_at_1 |
39.951 |
|
type |
value |
map_at_10 |
51.248000000000005 |
|
type |
value |
map_at_100 |
52.188 |
|
type |
value |
map_at_1000 |
52.247 |
|
type |
value |
map_at_3 |
48.211 |
|
type |
value |
map_at_5 |
49.797000000000004 |
|
type |
value |
mrr_at_1 |
45.329 |
|
type |
value |
mrr_at_10 |
54.749 |
|
type |
value |
mrr_at_100 |
55.367999999999995 |
|
type |
value |
mrr_at_1000 |
55.400000000000006 |
|
type |
value |
mrr_at_3 |
52.382 |
|
type |
value |
mrr_at_5 |
53.649 |
|
type |
value |
ndcg_at_1 |
45.329 |
|
type |
value |
ndcg_at_10 |
56.847 |
|
type |
value |
ndcg_at_100 |
60.738 |
|
type |
value |
ndcg_at_1000 |
61.976 |
|
type |
value |
ndcg_at_3 |
51.59 |
|
type |
value |
ndcg_at_5 |
53.915 |
|
type |
value |
precision_at_1 |
45.329 |
|
type |
value |
precision_at_10 |
8.959 |
|
type |
value |
precision_at_100 |
1.187 |
|
type |
value |
precision_at_1000 |
0.134 |
|
type |
value |
precision_at_3 |
22.612 |
|
type |
value |
precision_at_5 |
15.273 |
|
type |
value |
recall_at_1 |
39.951 |
|
type |
value |
recall_at_10 |
70.053 |
|
type |
value |
recall_at_100 |
86.996 |
|
type |
value |
recall_at_1000 |
95.707 |
|
type |
value |
recall_at_3 |
56.032000000000004 |
|
type |
value |
recall_at_5 |
61.629999999999995 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
BeIR/cqadupstack |
MTEB CQADupstackGisRetrieval |
default |
test |
None |
|
type |
value |
map_at_1 |
25.566 |
|
type |
value |
map_at_10 |
33.207 |
|
type |
value |
map_at_100 |
34.166000000000004 |
|
type |
value |
map_at_1000 |
34.245 |
|
type |
value |
map_at_3 |
30.94 |
|
type |
value |
map_at_5 |
32.01 |
|
type |
value |
mrr_at_1 |
27.345000000000002 |
|
type |
value |
mrr_at_10 |
35.193000000000005 |
|
type |
value |
mrr_at_100 |
35.965 |
|
type |
value |
mrr_at_1000 |
36.028999999999996 |
|
type |
value |
mrr_at_3 |
32.806000000000004 |
|
type |
value |
mrr_at_5 |
34.021 |
|
type |
value |
ndcg_at_1 |
27.345000000000002 |
|
type |
value |
ndcg_at_10 |
37.891999999999996 |
|
type |
value |
ndcg_at_100 |
42.664 |
|
type |
value |
ndcg_at_1000 |
44.757000000000005 |
|
type |
value |
ndcg_at_3 |
33.123000000000005 |
|
type |
value |
ndcg_at_5 |
35.035 |
|
type |
value |
precision_at_1 |
27.345000000000002 |
|
type |
value |
precision_at_10 |
5.763 |
|
type |
value |
precision_at_100 |
0.859 |
|
type |
value |
precision_at_1000 |
0.108 |
|
type |
value |
precision_at_3 |
13.71 |
|
type |
value |
precision_at_5 |
9.401 |
|
type |
value |
recall_at_1 |
25.566 |
|
type |
value |
recall_at_10 |
50.563 |
|
type |
value |
recall_at_100 |
72.86399999999999 |
|
type |
value |
recall_at_1000 |
88.68599999999999 |
|
type |
value |
recall_at_3 |
37.43 |
|
type |
value |
recall_at_5 |
41.894999999999996 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
BeIR/cqadupstack |
MTEB CQADupstackMathematicaRetrieval |
default |
test |
None |
|
type |
value |
map_at_1 |
16.663 |
|
type |
value |
map_at_10 |
23.552 |
|
type |
value |
map_at_100 |
24.538 |
|
type |
value |
map_at_1000 |
24.661 |
|
type |
value |
map_at_3 |
21.085 |
|
type |
value |
map_at_5 |
22.391 |
|
type |
value |
mrr_at_1 |
20.025000000000002 |
|
type |
value |
mrr_at_10 |
27.643 |
|
type |
value |
mrr_at_100 |
28.499999999999996 |
|
type |
value |
mrr_at_1000 |
28.582 |
|
type |
value |
mrr_at_3 |
25.083 |
|
type |
value |
mrr_at_5 |
26.544 |
|
type |
value |
ndcg_at_1 |
20.025000000000002 |
|
type |
value |
ndcg_at_10 |
28.272000000000002 |
|
type |
value |
ndcg_at_100 |
33.353 |
|
type |
value |
ndcg_at_1000 |
36.454 |
|
type |
value |
ndcg_at_3 |
23.579 |
|
type |
value |
ndcg_at_5 |
25.685000000000002 |
|
type |
value |
precision_at_1 |
20.025000000000002 |
|
type |
value |
precision_at_10 |
5.187 |
|
type |
value |
precision_at_100 |
0.897 |
|
type |
value |
precision_at_1000 |
0.13 |
|
type |
value |
precision_at_3 |
10.987 |
|
type |
value |
precision_at_5 |
8.06 |
|
type |
value |
recall_at_1 |
16.663 |
|
type |
value |
recall_at_10 |
38.808 |
|
type |
value |
recall_at_100 |
61.305 |
|
type |
value |
recall_at_1000 |
83.571 |
|
type |
value |
recall_at_3 |
25.907999999999998 |
|
type |
value |
recall_at_5 |
31.214 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
BeIR/cqadupstack |
MTEB CQADupstackPhysicsRetrieval |
default |
test |
None |
|
type |
value |
map_at_1 |
27.695999999999998 |
|
type |
value |
map_at_10 |
37.018 |
|
type |
value |
map_at_100 |
38.263000000000005 |
|
type |
value |
map_at_1000 |
38.371 |
|
type |
value |
map_at_3 |
34.226 |
|
type |
value |
map_at_5 |
35.809999999999995 |
|
type |
value |
mrr_at_1 |
32.916000000000004 |
|
type |
value |
mrr_at_10 |
42.067 |
|
type |
value |
mrr_at_100 |
42.925000000000004 |
|
type |
value |
mrr_at_1000 |
42.978 |
|
type |
value |
mrr_at_3 |
39.637 |
|
type |
value |
mrr_at_5 |
41.134 |
|
type |
value |
ndcg_at_1 |
32.916000000000004 |
|
type |
value |
ndcg_at_10 |
42.539 |
|
type |
value |
ndcg_at_100 |
47.873 |
|
type |
value |
ndcg_at_1000 |
50.08200000000001 |
|
type |
value |
ndcg_at_3 |
37.852999999999994 |
|
type |
value |
ndcg_at_5 |
40.201 |
|
type |
value |
precision_at_1 |
32.916000000000004 |
|
type |
value |
precision_at_10 |
7.5840000000000005 |
|
type |
value |
precision_at_100 |
1.199 |
|
type |
value |
precision_at_1000 |
0.155 |
|
type |
value |
precision_at_3 |
17.485 |
|
type |
value |
precision_at_5 |
12.512 |
|
type |
value |
recall_at_1 |
27.695999999999998 |
|
type |
value |
recall_at_10 |
53.638 |
|
type |
value |
recall_at_100 |
76.116 |
|
type |
value |
recall_at_1000 |
91.069 |
|
type |
value |
recall_at_3 |
41.13 |
|
type |
value |
recall_at_5 |
46.872 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
BeIR/cqadupstack |
MTEB CQADupstackProgrammersRetrieval |
default |
test |
None |
|
type |
value |
map_at_1 |
24.108 |
|
type |
value |
map_at_10 |
33.372 |
|
type |
value |
map_at_100 |
34.656 |
|
type |
value |
map_at_1000 |
34.768 |
|
type |
value |
map_at_3 |
30.830999999999996 |
|
type |
value |
map_at_5 |
32.204 |
|
type |
value |
mrr_at_1 |
29.110000000000003 |
|
type |
value |
mrr_at_10 |
37.979 |
|
type |
value |
mrr_at_100 |
38.933 |
|
type |
value |
mrr_at_1000 |
38.988 |
|
type |
value |
mrr_at_3 |
35.731 |
|
type |
value |
mrr_at_5 |
36.963 |
|
type |
value |
ndcg_at_1 |
29.110000000000003 |
|
type |
value |
ndcg_at_10 |
38.635000000000005 |
|
type |
value |
ndcg_at_100 |
44.324999999999996 |
|
type |
value |
ndcg_at_1000 |
46.747 |
|
type |
value |
ndcg_at_3 |
34.37 |
|
type |
value |
ndcg_at_5 |
36.228 |
|
type |
value |
precision_at_1 |
29.110000000000003 |
|
type |
value |
precision_at_10 |
6.963 |
|
type |
value |
precision_at_100 |
1.146 |
|
type |
value |
precision_at_1000 |
0.152 |
|
type |
value |
precision_at_3 |
16.400000000000002 |
|
type |
value |
precision_at_5 |
11.552999999999999 |
|
type |
value |
recall_at_1 |
24.108 |
|
type |
value |
recall_at_10 |
49.597 |
|
type |
value |
recall_at_100 |
73.88900000000001 |
|
type |
value |
recall_at_1000 |
90.62400000000001 |
|
type |
value |
recall_at_3 |
37.662 |
|
type |
value |
recall_at_5 |
42.565 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
BeIR/cqadupstack |
MTEB CQADupstackRetrieval |
default |
test |
None |
|
type |
value |
map_at_1 |
25.00791666666667 |
|
type |
value |
map_at_10 |
33.287749999999996 |
|
type |
value |
map_at_100 |
34.41141666666667 |
|
type |
value |
map_at_1000 |
34.52583333333333 |
|
type |
value |
map_at_3 |
30.734416666666668 |
|
type |
value |
map_at_5 |
32.137166666666666 |
|
type |
value |
mrr_at_1 |
29.305666666666664 |
|
type |
value |
mrr_at_10 |
37.22966666666666 |
|
type |
value |
mrr_at_100 |
38.066583333333334 |
|
type |
value |
mrr_at_1000 |
38.12616666666667 |
|
type |
value |
mrr_at_3 |
34.92275 |
|
type |
value |
mrr_at_5 |
36.23333333333334 |
|
type |
value |
ndcg_at_1 |
29.305666666666664 |
|
type |
value |
ndcg_at_10 |
38.25533333333333 |
|
type |
value |
ndcg_at_100 |
43.25266666666666 |
|
type |
value |
ndcg_at_1000 |
45.63583333333334 |
|
type |
value |
ndcg_at_3 |
33.777166666666666 |
|
type |
value |
ndcg_at_5 |
35.85 |
|
type |
value |
precision_at_1 |
29.305666666666664 |
|
type |
value |
precision_at_10 |
6.596416666666667 |
|
type |
value |
precision_at_100 |
1.0784166666666668 |
|
type |
value |
precision_at_1000 |
0.14666666666666664 |
|
type |
value |
precision_at_3 |
15.31075 |
|
type |
value |
precision_at_5 |
10.830916666666667 |
|
type |
value |
recall_at_1 |
25.00791666666667 |
|
type |
value |
recall_at_10 |
49.10933333333333 |
|
type |
value |
recall_at_100 |
71.09216666666667 |
|
type |
value |
recall_at_1000 |
87.77725000000001 |
|
type |
value |
recall_at_3 |
36.660916666666665 |
|
type |
value |
recall_at_5 |
41.94149999999999 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
BeIR/cqadupstack |
MTEB CQADupstackStatsRetrieval |
default |
test |
None |
|
type |
value |
map_at_1 |
23.521 |
|
type |
value |
map_at_10 |
30.043 |
|
type |
value |
map_at_100 |
30.936000000000003 |
|
type |
value |
map_at_1000 |
31.022 |
|
type |
value |
map_at_3 |
27.926000000000002 |
|
type |
value |
map_at_5 |
29.076999999999998 |
|
type |
value |
mrr_at_1 |
26.227 |
|
type |
value |
mrr_at_10 |
32.822 |
|
type |
value |
mrr_at_100 |
33.61 |
|
type |
value |
mrr_at_1000 |
33.672000000000004 |
|
type |
value |
mrr_at_3 |
30.776999999999997 |
|
type |
value |
mrr_at_5 |
31.866 |
|
type |
value |
ndcg_at_1 |
26.227 |
|
type |
value |
ndcg_at_10 |
34.041 |
|
type |
value |
ndcg_at_100 |
38.394 |
|
type |
value |
ndcg_at_1000 |
40.732 |
|
type |
value |
ndcg_at_3 |
30.037999999999997 |
|
type |
value |
ndcg_at_5 |
31.845000000000002 |
|
type |
value |
precision_at_1 |
26.227 |
|
type |
value |
precision_at_10 |
5.244999999999999 |
|
type |
value |
precision_at_100 |
0.808 |
|
type |
value |
precision_at_1000 |
0.107 |
|
type |
value |
precision_at_3 |
12.679000000000002 |
|
type |
value |
precision_at_5 |
8.773 |
|
type |
value |
recall_at_1 |
23.521 |
|
type |
value |
recall_at_10 |
43.633 |
|
type |
value |
recall_at_100 |
63.126000000000005 |
|
type |
value |
recall_at_1000 |
80.765 |
|
type |
value |
recall_at_3 |
32.614 |
|
type |
value |
recall_at_5 |
37.15 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
BeIR/cqadupstack |
MTEB CQADupstackTexRetrieval |
default |
test |
None |
|
type |
value |
map_at_1 |
16.236 |
|
type |
value |
map_at_10 |
22.898 |
|
type |
value |
map_at_100 |
23.878 |
|
type |
value |
map_at_1000 |
24.009 |
|
type |
value |
map_at_3 |
20.87 |
|
type |
value |
map_at_5 |
22.025 |
|
type |
value |
mrr_at_1 |
19.339000000000002 |
|
type |
value |
mrr_at_10 |
26.382 |
|
type |
value |
mrr_at_100 |
27.245 |
|
type |
value |
mrr_at_1000 |
27.33 |
|
type |
value |
mrr_at_3 |
24.386 |
|
type |
value |
mrr_at_5 |
25.496000000000002 |
|
type |
value |
ndcg_at_1 |
19.339000000000002 |
|
type |
value |
ndcg_at_10 |
27.139999999999997 |
|
type |
value |
ndcg_at_100 |
31.944 |
|
type |
value |
ndcg_at_1000 |
35.077999999999996 |
|
type |
value |
ndcg_at_3 |
23.424 |
|
type |
value |
ndcg_at_5 |
25.188 |
|
type |
value |
precision_at_1 |
19.339000000000002 |
|
type |
value |
precision_at_10 |
4.8309999999999995 |
|
type |
value |
precision_at_100 |
0.845 |
|
type |
value |
precision_at_1000 |
0.128 |
|
type |
value |
precision_at_3 |
10.874 |
|
type |
value |
precision_at_5 |
7.825 |
|
type |
value |
recall_at_1 |
16.236 |
|
type |
value |
recall_at_10 |
36.513 |
|
type |
value |
recall_at_100 |
57.999 |
|
type |
value |
recall_at_1000 |
80.512 |
|
type |
value |
recall_at_3 |
26.179999999999996 |
|
type |
value |
recall_at_5 |
30.712 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
BeIR/cqadupstack |
MTEB CQADupstackUnixRetrieval |
default |
test |
None |
|
type |
value |
map_at_1 |
24.11 |
|
type |
value |
map_at_10 |
31.566 |
|
type |
value |
map_at_100 |
32.647 |
|
type |
value |
map_at_1000 |
32.753 |
|
type |
value |
map_at_3 |
29.24 |
|
type |
value |
map_at_5 |
30.564999999999998 |
|
type |
value |
mrr_at_1 |
28.265 |
|
type |
value |
mrr_at_10 |
35.504000000000005 |
|
type |
value |
mrr_at_100 |
36.436 |
|
type |
value |
mrr_at_1000 |
36.503 |
|
type |
value |
mrr_at_3 |
33.349000000000004 |
|
type |
value |
mrr_at_5 |
34.622 |
|
type |
value |
ndcg_at_1 |
28.265 |
|
type |
value |
ndcg_at_10 |
36.192 |
|
type |
value |
ndcg_at_100 |
41.388000000000005 |
|
type |
value |
ndcg_at_1000 |
43.948 |
|
type |
value |
ndcg_at_3 |
31.959 |
|
type |
value |
ndcg_at_5 |
33.998 |
|
type |
value |
precision_at_1 |
28.265 |
|
type |
value |
precision_at_10 |
5.989 |
|
type |
value |
precision_at_100 |
0.9650000000000001 |
|
type |
value |
precision_at_1000 |
0.13 |
|
type |
value |
precision_at_3 |
14.335 |
|
type |
value |
precision_at_5 |
10.112 |
|
type |
value |
recall_at_1 |
24.11 |
|
type |
value |
recall_at_10 |
46.418 |
|
type |
value |
recall_at_100 |
69.314 |
|
type |
value |
recall_at_1000 |
87.397 |
|
type |
value |
recall_at_3 |
34.724 |
|
type |
value |
recall_at_5 |
39.925 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
BeIR/cqadupstack |
MTEB CQADupstackWebmastersRetrieval |
default |
test |
None |
|
type |
value |
map_at_1 |
22.091 |
|
type |
value |
map_at_10 |
29.948999999999998 |
|
type |
value |
map_at_100 |
31.502000000000002 |
|
type |
value |
map_at_1000 |
31.713 |
|
type |
value |
map_at_3 |
27.464 |
|
type |
value |
map_at_5 |
28.968 |
|
type |
value |
mrr_at_1 |
26.482 |
|
type |
value |
mrr_at_10 |
34.009 |
|
type |
value |
mrr_at_100 |
35.081 |
|
type |
value |
mrr_at_1000 |
35.138000000000005 |
|
type |
value |
mrr_at_3 |
31.785000000000004 |
|
type |
value |
mrr_at_5 |
33.178999999999995 |
|
type |
value |
ndcg_at_1 |
26.482 |
|
type |
value |
ndcg_at_10 |
35.008 |
|
type |
value |
ndcg_at_100 |
41.272999999999996 |
|
type |
value |
ndcg_at_1000 |
43.972 |
|
type |
value |
ndcg_at_3 |
30.804 |
|
type |
value |
ndcg_at_5 |
33.046 |
|
type |
value |
precision_at_1 |
26.482 |
|
type |
value |
precision_at_10 |
6.462 |
|
type |
value |
precision_at_100 |
1.431 |
|
type |
value |
precision_at_1000 |
0.22899999999999998 |
|
type |
value |
precision_at_3 |
14.360999999999999 |
|
type |
value |
precision_at_5 |
10.474 |
|
type |
value |
recall_at_1 |
22.091 |
|
type |
value |
recall_at_10 |
45.125 |
|
type |
value |
recall_at_100 |
72.313 |
|
type |
value |
recall_at_1000 |
89.503 |
|
type |
value |
recall_at_3 |
33.158 |
|
type |
value |
recall_at_5 |
39.086999999999996 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
BeIR/cqadupstack |
MTEB CQADupstackWordpressRetrieval |
default |
test |
None |
|
type |
value |
map_at_1 |
19.883 |
|
type |
value |
map_at_10 |
26.951000000000004 |
|
type |
value |
map_at_100 |
27.927999999999997 |
|
type |
value |
map_at_1000 |
28.022000000000002 |
|
type |
value |
map_at_3 |
24.616 |
|
type |
value |
map_at_5 |
25.917 |
|
type |
value |
mrr_at_1 |
21.996 |
|
type |
value |
mrr_at_10 |
29.221000000000004 |
|
type |
value |
mrr_at_100 |
30.024 |
|
type |
value |
mrr_at_1000 |
30.095 |
|
type |
value |
mrr_at_3 |
26.833000000000002 |
|
type |
value |
mrr_at_5 |
28.155 |
|
type |
value |
ndcg_at_1 |
21.996 |
|
type |
value |
ndcg_at_10 |
31.421 |
|
type |
value |
ndcg_at_100 |
36.237 |
|
type |
value |
ndcg_at_1000 |
38.744 |
|
type |
value |
ndcg_at_3 |
26.671 |
|
type |
value |
ndcg_at_5 |
28.907 |
|
type |
value |
precision_at_1 |
21.996 |
|
type |
value |
precision_at_10 |
5.009 |
|
type |
value |
precision_at_100 |
0.799 |
|
type |
value |
precision_at_1000 |
0.11199999999999999 |
|
type |
value |
precision_at_3 |
11.275 |
|
type |
value |
precision_at_5 |
8.059 |
|
type |
value |
recall_at_1 |
19.883 |
|
type |
value |
recall_at_10 |
43.132999999999996 |
|
type |
value |
recall_at_100 |
65.654 |
|
type |
value |
recall_at_1000 |
84.492 |
|
type |
value |
recall_at_3 |
30.209000000000003 |
|
type |
value |
recall_at_5 |
35.616 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
climate-fever |
MTEB ClimateFEVER |
default |
test |
None |
|
type |
value |
map_at_1 |
17.756 |
|
type |
value |
map_at_10 |
30.378 |
|
type |
value |
map_at_100 |
32.537 |
|
type |
value |
map_at_1000 |
32.717 |
|
type |
value |
map_at_3 |
25.599 |
|
type |
value |
map_at_5 |
28.372999999999998 |
|
type |
value |
mrr_at_1 |
41.303 |
|
type |
value |
mrr_at_10 |
53.483999999999995 |
|
type |
value |
mrr_at_100 |
54.106 |
|
type |
value |
mrr_at_1000 |
54.127 |
|
type |
value |
mrr_at_3 |
50.315 |
|
type |
value |
mrr_at_5 |
52.396 |
|
type |
value |
ndcg_at_1 |
41.303 |
|
type |
value |
ndcg_at_10 |
40.503 |
|
type |
value |
ndcg_at_100 |
47.821000000000005 |
|
type |
value |
ndcg_at_1000 |
50.788 |
|
type |
value |
ndcg_at_3 |
34.364 |
|
type |
value |
ndcg_at_5 |
36.818 |
|
type |
value |
precision_at_1 |
41.303 |
|
type |
value |
precision_at_10 |
12.463000000000001 |
|
type |
value |
precision_at_100 |
2.037 |
|
type |
value |
precision_at_1000 |
0.26 |
|
type |
value |
precision_at_3 |
25.798 |
|
type |
value |
precision_at_5 |
19.896 |
|
type |
value |
recall_at_1 |
17.756 |
|
type |
value |
recall_at_10 |
46.102 |
|
type |
value |
recall_at_100 |
70.819 |
|
type |
value |
recall_at_1000 |
87.21799999999999 |
|
type |
value |
recall_at_3 |
30.646 |
|
type |
value |
recall_at_5 |
38.022 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
dbpedia-entity |
MTEB DBPedia |
default |
test |
None |
|
type |
value |
map_at_1 |
9.033 |
|
type |
value |
map_at_10 |
20.584 |
|
type |
value |
map_at_100 |
29.518 |
|
type |
value |
map_at_1000 |
31.186000000000003 |
|
type |
value |
map_at_3 |
14.468 |
|
type |
value |
map_at_5 |
17.177 |
|
type |
value |
mrr_at_1 |
69.75 |
|
type |
value |
mrr_at_10 |
77.025 |
|
type |
value |
mrr_at_100 |
77.36699999999999 |
|
type |
value |
mrr_at_1000 |
77.373 |
|
type |
value |
mrr_at_3 |
75.583 |
|
type |
value |
mrr_at_5 |
76.396 |
|
type |
value |
ndcg_at_1 |
58.5 |
|
type |
value |
ndcg_at_10 |
45.033 |
|
type |
value |
ndcg_at_100 |
49.071 |
|
type |
value |
ndcg_at_1000 |
56.056 |
|
type |
value |
ndcg_at_3 |
49.936 |
|
type |
value |
ndcg_at_5 |
47.471999999999994 |
|
type |
value |
precision_at_1 |
69.75 |
|
type |
value |
precision_at_10 |
35.775 |
|
type |
value |
precision_at_100 |
11.594999999999999 |
|
type |
value |
precision_at_1000 |
2.062 |
|
type |
value |
precision_at_3 |
52.5 |
|
type |
value |
precision_at_5 |
45.300000000000004 |
|
type |
value |
recall_at_1 |
9.033 |
|
type |
value |
recall_at_10 |
26.596999999999998 |
|
type |
value |
recall_at_100 |
54.607000000000006 |
|
type |
value |
recall_at_1000 |
76.961 |
|
type |
value |
recall_at_3 |
15.754999999999999 |
|
type |
value |
recall_at_5 |
20.033 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
mteb/emotion |
MTEB EmotionClassification |
default |
test |
4f58c6b202a23cf9a4da393831edf4f9183cad37 |
|
type |
value |
accuracy |
48.345000000000006 |
|
type |
value |
f1 |
43.4514918068706 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
fever |
MTEB FEVER |
default |
test |
None |
|
type |
value |
map_at_1 |
71.29100000000001 |
|
type |
value |
map_at_10 |
81.059 |
|
type |
value |
map_at_100 |
81.341 |
|
type |
value |
map_at_1000 |
81.355 |
|
type |
value |
map_at_3 |
79.74799999999999 |
|
type |
value |
map_at_5 |
80.612 |
|
type |
value |
mrr_at_1 |
76.40299999999999 |
|
type |
value |
mrr_at_10 |
84.615 |
|
type |
value |
mrr_at_100 |
84.745 |
|
type |
value |
mrr_at_1000 |
84.748 |
|
type |
value |
mrr_at_3 |
83.776 |
|
type |
value |
mrr_at_5 |
84.343 |
|
type |
value |
ndcg_at_1 |
76.40299999999999 |
|
type |
value |
ndcg_at_10 |
84.981 |
|
type |
value |
ndcg_at_100 |
86.00999999999999 |
|
type |
value |
ndcg_at_1000 |
86.252 |
|
type |
value |
ndcg_at_3 |
82.97 |
|
type |
value |
ndcg_at_5 |
84.152 |
|
type |
value |
precision_at_1 |
76.40299999999999 |
|
type |
value |
precision_at_10 |
10.446 |
|
type |
value |
precision_at_100 |
1.1199999999999999 |
|
type |
value |
precision_at_1000 |
0.116 |
|
type |
value |
precision_at_3 |
32.147999999999996 |
|
type |
value |
precision_at_5 |
20.135 |
|
type |
value |
recall_at_1 |
71.29100000000001 |
|
type |
value |
recall_at_10 |
93.232 |
|
type |
value |
recall_at_100 |
97.363 |
|
type |
value |
recall_at_1000 |
98.905 |
|
type |
value |
recall_at_3 |
87.893 |
|
type |
value |
recall_at_5 |
90.804 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
fiqa |
MTEB FiQA2018 |
default |
test |
None |
|
type |
value |
map_at_1 |
18.667 |
|
type |
value |
map_at_10 |
30.853 |
|
type |
value |
map_at_100 |
32.494 |
|
type |
value |
map_at_1000 |
32.677 |
|
type |
value |
map_at_3 |
26.91 |
|
type |
value |
map_at_5 |
29.099000000000004 |
|
type |
value |
mrr_at_1 |
37.191 |
|
type |
value |
mrr_at_10 |
46.171 |
|
type |
value |
mrr_at_100 |
47.056 |
|
type |
value |
mrr_at_1000 |
47.099000000000004 |
|
type |
value |
mrr_at_3 |
44.059 |
|
type |
value |
mrr_at_5 |
45.147 |
|
type |
value |
ndcg_at_1 |
37.191 |
|
type |
value |
ndcg_at_10 |
38.437 |
|
type |
value |
ndcg_at_100 |
44.62 |
|
type |
value |
ndcg_at_1000 |
47.795 |
|
type |
value |
ndcg_at_3 |
35.003 |
|
type |
value |
ndcg_at_5 |
36.006 |
|
type |
value |
precision_at_1 |
37.191 |
|
type |
value |
precision_at_10 |
10.586 |
|
type |
value |
precision_at_100 |
1.688 |
|
type |
value |
precision_at_1000 |
0.22699999999999998 |
|
type |
value |
precision_at_3 |
23.302 |
|
type |
value |
precision_at_5 |
17.006 |
|
type |
value |
recall_at_1 |
18.667 |
|
type |
value |
recall_at_10 |
45.367000000000004 |
|
type |
value |
recall_at_100 |
68.207 |
|
type |
value |
recall_at_1000 |
87.072 |
|
type |
value |
recall_at_3 |
32.129000000000005 |
|
type |
value |
recall_at_5 |
37.719 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
hotpotqa |
MTEB HotpotQA |
default |
test |
None |
|
type |
value |
map_at_1 |
39.494 |
|
type |
value |
map_at_10 |
66.223 |
|
type |
value |
map_at_100 |
67.062 |
|
type |
value |
map_at_1000 |
67.11500000000001 |
|
type |
value |
map_at_3 |
62.867 |
|
type |
value |
map_at_5 |
64.994 |
|
type |
value |
mrr_at_1 |
78.987 |
|
type |
value |
mrr_at_10 |
84.585 |
|
type |
value |
mrr_at_100 |
84.773 |
|
type |
value |
mrr_at_1000 |
84.77900000000001 |
|
type |
value |
mrr_at_3 |
83.592 |
|
type |
value |
mrr_at_5 |
84.235 |
|
type |
value |
ndcg_at_1 |
78.987 |
|
type |
value |
ndcg_at_10 |
73.64 |
|
type |
value |
ndcg_at_100 |
76.519 |
|
type |
value |
ndcg_at_1000 |
77.51 |
|
type |
value |
ndcg_at_3 |
68.893 |
|
type |
value |
ndcg_at_5 |
71.585 |
|
type |
value |
precision_at_1 |
78.987 |
|
type |
value |
precision_at_10 |
15.529000000000002 |
|
type |
value |
precision_at_100 |
1.7770000000000001 |
|
type |
value |
precision_at_1000 |
0.191 |
|
type |
value |
precision_at_3 |
44.808 |
|
type |
value |
precision_at_5 |
29.006999999999998 |
|
type |
value |
recall_at_1 |
39.494 |
|
type |
value |
recall_at_10 |
77.643 |
|
type |
value |
recall_at_100 |
88.825 |
|
type |
value |
recall_at_1000 |
95.321 |
|
type |
value |
recall_at_3 |
67.211 |
|
type |
value |
recall_at_5 |
72.519 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
mteb/imdb |
MTEB ImdbClassification |
default |
test |
3d86128a09e091d6018b6d26cad27f2739fc2db7 |
|
type |
value |
accuracy |
85.55959999999999 |
|
type |
value |
ap |
80.7246500384617 |
|
type |
value |
f1 |
85.52336485065454 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
msmarco |
MTEB MSMARCO |
default |
dev |
None |
|
type |
value |
map_at_1 |
23.631 |
|
type |
value |
map_at_10 |
36.264 |
|
type |
value |
map_at_100 |
37.428 |
|
type |
value |
map_at_1000 |
37.472 |
|
type |
value |
map_at_3 |
32.537 |
|
type |
value |
map_at_5 |
34.746 |
|
type |
value |
mrr_at_1 |
24.312 |
|
type |
value |
mrr_at_10 |
36.858000000000004 |
|
type |
value |
mrr_at_100 |
37.966 |
|
type |
value |
mrr_at_1000 |
38.004 |
|
type |
value |
mrr_at_3 |
33.188 |
|
type |
value |
mrr_at_5 |
35.367 |
|
type |
value |
ndcg_at_1 |
24.312 |
|
type |
value |
ndcg_at_10 |
43.126999999999995 |
|
type |
value |
ndcg_at_100 |
48.642 |
|
type |
value |
ndcg_at_1000 |
49.741 |
|
type |
value |
ndcg_at_3 |
35.589 |
|
type |
value |
ndcg_at_5 |
39.515 |
|
type |
value |
precision_at_1 |
24.312 |
|
type |
value |
precision_at_10 |
6.699 |
|
type |
value |
precision_at_100 |
0.9450000000000001 |
|
type |
value |
precision_at_1000 |
0.104 |
|
type |
value |
precision_at_3 |
15.153 |
|
type |
value |
precision_at_5 |
11.065999999999999 |
|
type |
value |
recall_at_1 |
23.631 |
|
type |
value |
recall_at_10 |
64.145 |
|
type |
value |
recall_at_100 |
89.41 |
|
type |
value |
recall_at_1000 |
97.83500000000001 |
|
type |
value |
recall_at_3 |
43.769000000000005 |
|
type |
value |
recall_at_5 |
53.169 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
mteb/mtop_domain |
MTEB MTOPDomainClassification (en) |
en |
test |
d80d48c1eb48d3562165c59d59d0034df9fff0bf |
|
type |
value |
accuracy |
93.4108527131783 |
|
type |
value |
f1 |
93.1415880261038 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
mteb/mtop_intent |
MTEB MTOPIntentClassification (en) |
en |
test |
ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba |
|
type |
value |
accuracy |
77.24806201550388 |
|
type |
value |
f1 |
60.531916308197175 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
mteb/amazon_massive_intent |
MTEB MassiveIntentClassification (en) |
en |
test |
31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
type |
value |
accuracy |
73.71553463349024 |
|
type |
value |
f1 |
71.70753174900791 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
mteb/amazon_massive_scenario |
MTEB MassiveScenarioClassification (en) |
en |
test |
7d571f92784cd94a019292a1f45445077d0ef634 |
|
type |
value |
accuracy |
77.79757901815736 |
|
type |
value |
f1 |
77.83719850433258 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
mteb/medrxiv-clustering-p2p |
MTEB MedrxivClusteringP2P |
default |
test |
e7a26af6f3ae46b30dde8737f02c07b1505bcc73 |
|
type |
value |
v_measure |
33.74193296622113 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
mteb/medrxiv-clustering-s2s |
MTEB MedrxivClusteringS2S |
default |
test |
35191c8c0dca72d8ff3efcd72aa802307d469663 |
|
type |
value |
v_measure |
30.64257594108566 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
mteb/mind_small |
MTEB MindSmallReranking |
default |
test |
3bdac13927fdc888b903db93b2ffdbd90b295a69 |
|
type |
value |
map |
30.811018518883625 |
|
type |
value |
mrr |
31.910376577445003 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
nfcorpus |
MTEB NFCorpus |
default |
test |
None |
|
type |
value |
map_at_1 |
5.409 |
|
type |
value |
map_at_10 |
13.093 |
|
type |
value |
map_at_100 |
16.256999999999998 |
|
type |
value |
map_at_1000 |
17.617 |
|
type |
value |
map_at_3 |
9.555 |
|
type |
value |
map_at_5 |
11.428 |
|
type |
value |
mrr_at_1 |
45.201 |
|
type |
value |
mrr_at_10 |
54.179 |
|
type |
value |
mrr_at_100 |
54.812000000000005 |
|
type |
value |
mrr_at_1000 |
54.840999999999994 |
|
type |
value |
mrr_at_3 |
51.909000000000006 |
|
type |
value |
mrr_at_5 |
53.519000000000005 |
|
type |
value |
ndcg_at_1 |
43.189 |
|
type |
value |
ndcg_at_10 |
35.028 |
|
type |
value |
ndcg_at_100 |
31.226 |
|
type |
value |
ndcg_at_1000 |
39.678000000000004 |
|
type |
value |
ndcg_at_3 |
40.596 |
|
type |
value |
ndcg_at_5 |
38.75 |
|
type |
value |
precision_at_1 |
44.582 |
|
type |
value |
precision_at_10 |
25.974999999999998 |
|
type |
value |
precision_at_100 |
7.793 |
|
type |
value |
precision_at_1000 |
2.036 |
|
type |
value |
precision_at_3 |
38.493 |
|
type |
value |
precision_at_5 |
33.994 |
|
type |
value |
recall_at_1 |
5.409 |
|
type |
value |
recall_at_10 |
16.875999999999998 |
|
type |
value |
recall_at_100 |
30.316 |
|
type |
value |
recall_at_1000 |
60.891 |
|
type |
value |
recall_at_3 |
10.688 |
|
type |
value |
recall_at_5 |
13.832 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
nq |
MTEB NQ |
default |
test |
None |
|
type |
value |
map_at_1 |
36.375 |
|
type |
value |
map_at_10 |
51.991 |
|
type |
value |
map_at_100 |
52.91400000000001 |
|
type |
value |
map_at_1000 |
52.93600000000001 |
|
type |
value |
map_at_3 |
48.014 |
|
type |
value |
map_at_5 |
50.381 |
|
type |
value |
mrr_at_1 |
40.759 |
|
type |
value |
mrr_at_10 |
54.617000000000004 |
|
type |
value |
mrr_at_100 |
55.301 |
|
type |
value |
mrr_at_1000 |
55.315000000000005 |
|
type |
value |
mrr_at_3 |
51.516 |
|
type |
value |
mrr_at_5 |
53.435 |
|
type |
value |
ndcg_at_1 |
40.759 |
|
type |
value |
ndcg_at_10 |
59.384 |
|
type |
value |
ndcg_at_100 |
63.157 |
|
type |
value |
ndcg_at_1000 |
63.654999999999994 |
|
type |
value |
ndcg_at_3 |
52.114000000000004 |
|
type |
value |
ndcg_at_5 |
55.986000000000004 |
|
type |
value |
precision_at_1 |
40.759 |
|
type |
value |
precision_at_10 |
9.411999999999999 |
|
type |
value |
precision_at_100 |
1.153 |
|
type |
value |
precision_at_1000 |
0.12 |
|
type |
value |
precision_at_3 |
23.329 |
|
type |
value |
precision_at_5 |
16.256999999999998 |
|
type |
value |
recall_at_1 |
36.375 |
|
type |
value |
recall_at_10 |
79.053 |
|
type |
value |
recall_at_100 |
95.167 |
|
type |
value |
recall_at_1000 |
98.82 |
|
type |
value |
recall_at_3 |
60.475 |
|
type |
value |
recall_at_5 |
69.327 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
quora |
MTEB QuoraRetrieval |
default |
test |
None |
|
type |
value |
map_at_1 |
70.256 |
|
type |
value |
map_at_10 |
83.8 |
|
type |
value |
map_at_100 |
84.425 |
|
type |
value |
map_at_1000 |
84.444 |
|
type |
value |
map_at_3 |
80.906 |
|
type |
value |
map_at_5 |
82.717 |
|
type |
value |
mrr_at_1 |
80.97999999999999 |
|
type |
value |
mrr_at_10 |
87.161 |
|
type |
value |
mrr_at_100 |
87.262 |
|
type |
value |
mrr_at_1000 |
87.263 |
|
type |
value |
mrr_at_3 |
86.175 |
|
type |
value |
mrr_at_5 |
86.848 |
|
type |
value |
ndcg_at_1 |
80.97999999999999 |
|
type |
value |
ndcg_at_10 |
87.697 |
|
type |
value |
ndcg_at_100 |
88.959 |
|
type |
value |
ndcg_at_1000 |
89.09899999999999 |
|
type |
value |
ndcg_at_3 |
84.83800000000001 |
|
type |
value |
ndcg_at_5 |
86.401 |
|
type |
value |
precision_at_1 |
80.97999999999999 |
|
type |
value |
precision_at_10 |
13.261000000000001 |
|
type |
value |
precision_at_100 |
1.5150000000000001 |
|
type |
value |
precision_at_1000 |
0.156 |
|
type |
value |
precision_at_3 |
37.01 |
|
type |
value |
precision_at_5 |
24.298000000000002 |
|
type |
value |
recall_at_1 |
70.256 |
|
type |
value |
recall_at_10 |
94.935 |
|
type |
value |
recall_at_100 |
99.274 |
|
type |
value |
recall_at_1000 |
99.928 |
|
type |
value |
recall_at_3 |
86.602 |
|
type |
value |
recall_at_5 |
91.133 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
mteb/reddit-clustering |
MTEB RedditClustering |
default |
test |
24640382cdbf8abc73003fb0fa6d111a705499eb |
|
type |
value |
v_measure |
56.322692497613104 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
mteb/reddit-clustering-p2p |
MTEB RedditClusteringP2P |
default |
test |
282350215ef01743dc01b456c7f5241fa8937f16 |
|
type |
value |
v_measure |
61.895813503775074 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
scidocs |
MTEB SCIDOCS |
default |
test |
None |
|
type |
value |
map_at_1 |
4.338 |
|
type |
value |
map_at_10 |
10.767 |
|
type |
value |
map_at_100 |
12.537999999999998 |
|
type |
value |
map_at_1000 |
12.803999999999998 |
|
type |
value |
map_at_3 |
7.788 |
|
type |
value |
map_at_5 |
9.302000000000001 |
|
|
type |
value |
mrr_at_10 |
31.637999999999998 |
|
type |
value |
mrr_at_100 |
32.688 |
|
type |
value |
mrr_at_1000 |
32.756 |
|
type |
value |
mrr_at_3 |
28.433000000000003 |
|
type |
value |
mrr_at_5 |
30.178 |
|
type |
value |
ndcg_at_1 |
21.4 |
|
type |
value |
ndcg_at_10 |
18.293 |
|
type |
value |
ndcg_at_100 |
25.274 |
|
type |
value |
ndcg_at_1000 |
30.284 |
|
type |
value |
ndcg_at_3 |
17.391000000000002 |
|
type |
value |
ndcg_at_5 |
15.146999999999998 |
|
type |
value |
precision_at_1 |
21.4 |
|
type |
value |
precision_at_10 |
9.48 |
|
type |
value |
precision_at_100 |
1.949 |
|
type |
value |
precision_at_1000 |
0.316 |
|
type |
value |
precision_at_3 |
16.167 |
|
type |
value |
precision_at_5 |
13.22 |
|
type |
value |
recall_at_1 |
4.338 |
|
type |
value |
recall_at_10 |
19.213 |
|
type |
value |
recall_at_100 |
39.562999999999995 |
|
type |
value |
recall_at_1000 |
64.08 |
|
type |
value |
recall_at_3 |
9.828000000000001 |
|
type |
value |
recall_at_5 |
13.383000000000001 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
mteb/sickr-sts |
MTEB SICK-R |
default |
test |
a6ea5a8cab320b040a23452cc28066d9beae2cee |
|
type |
value |
cos_sim_pearson |
82.42568163642142 |
|
type |
value |
cos_sim_spearman |
78.5797159641342 |
|
type |
value |
euclidean_pearson |
80.22151260811604 |
|
type |
value |
euclidean_spearman |
78.5797151953878 |
|
type |
value |
manhattan_pearson |
80.21224215864788 |
|
type |
value |
manhattan_spearman |
78.55641478381344 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
mteb/sts12-sts |
MTEB STS12 |
default |
test |
a0d554a64d88156834ff5ae9920b964011b16384 |
|
type |
value |
cos_sim_pearson |
85.44020710812569 |
|
type |
value |
cos_sim_spearman |
78.91631735081286 |
|
type |
value |
euclidean_pearson |
81.64188964182102 |
|
type |
value |
euclidean_spearman |
78.91633286881678 |
|
type |
value |
manhattan_pearson |
81.69294748512496 |
|
type |
value |
manhattan_spearman |
78.93438558002656 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
mteb/sts13-sts |
MTEB STS13 |
default |
test |
7e90230a92c190f1bf69ae9002b8cea547a64cca |
|
type |
value |
cos_sim_pearson |
84.27165426412311 |
|
type |
value |
cos_sim_spearman |
85.40429140249618 |
|
type |
value |
euclidean_pearson |
84.7509580724893 |
|
type |
value |
euclidean_spearman |
85.40429140249618 |
|
type |
value |
manhattan_pearson |
84.76488289321308 |
|
type |
value |
manhattan_spearman |
85.4256793698708 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
mteb/sts14-sts |
MTEB STS14 |
default |
test |
6031580fec1f6af667f0bd2da0a551cf4f0b2375 |
|
type |
value |
cos_sim_pearson |
83.138851760732 |
|
type |
value |
cos_sim_spearman |
81.64101363896586 |
|
type |
value |
euclidean_pearson |
82.55165038934942 |
|
type |
value |
euclidean_spearman |
81.64105257080502 |
|
type |
value |
manhattan_pearson |
82.52802949883335 |
|
type |
value |
manhattan_spearman |
81.61255430718158 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
mteb/sts15-sts |
MTEB STS15 |
default |
test |
ae752c7c21bf194d8b67fd573edf7ae58183cbe3 |
|
type |
value |
cos_sim_pearson |
86.0654695484029 |
|
type |
value |
cos_sim_spearman |
87.20408521902229 |
|
type |
value |
euclidean_pearson |
86.8110651362115 |
|
type |
value |
euclidean_spearman |
87.20408521902229 |
|
type |
value |
manhattan_pearson |
86.77984656478691 |
|
type |
value |
manhattan_spearman |
87.1719947099227 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
mteb/sts16-sts |
MTEB STS16 |
default |
test |
4d8694f8f0e0100860b497b999b3dbed754a0513 |
|
type |
value |
cos_sim_pearson |
83.77823915496512 |
|
type |
value |
cos_sim_spearman |
85.43566325729779 |
|
type |
value |
euclidean_pearson |
84.5396956658821 |
|
type |
value |
euclidean_spearman |
85.43566325729779 |
|
type |
value |
manhattan_pearson |
84.5665398848169 |
|
type |
value |
manhattan_spearman |
85.44375870303232 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
mteb/sts17-crosslingual-sts |
MTEB STS17 (en-en) |
en-en |
test |
af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
type |
value |
cos_sim_pearson |
87.20030208471798 |
|
type |
value |
cos_sim_spearman |
87.20485505076539 |
|
type |
value |
euclidean_pearson |
88.10588324368722 |
|
type |
value |
euclidean_spearman |
87.20485505076539 |
|
type |
value |
manhattan_pearson |
87.92324770415183 |
|
type |
value |
manhattan_spearman |
87.0571314561877 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
mteb/sts22-crosslingual-sts |
MTEB STS22 (en) |
en |
test |
6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
type |
value |
cos_sim_pearson |
63.06093161604453 |
|
type |
value |
cos_sim_spearman |
64.2163140357722 |
|
type |
value |
euclidean_pearson |
65.27589680994006 |
|
type |
value |
euclidean_spearman |
64.2163140357722 |
|
type |
value |
manhattan_pearson |
65.45904383711101 |
|
type |
value |
manhattan_spearman |
64.55404716679305 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
mteb/stsbenchmark-sts |
MTEB STSBenchmark |
default |
test |
b0fddb56ed78048fa8b90373c8a3cfc37b684831 |
|
type |
value |
cos_sim_pearson |
84.32976164578706 |
|
type |
value |
cos_sim_spearman |
85.54302197678368 |
|
type |
value |
euclidean_pearson |
85.26307149193056 |
|
type |
value |
euclidean_spearman |
85.54302197678368 |
|
type |
value |
manhattan_pearson |
85.26647282029371 |
|
type |
value |
manhattan_spearman |
85.5316135265568 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
mteb/scidocs-reranking |
MTEB SciDocsRR |
default |
test |
d3c5e1fc0b855ab6097bf1cda04dd73947d7caab |
|
type |
value |
map |
81.44675968318754 |
|
type |
value |
mrr |
94.92741826075158 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
scifact |
MTEB SciFact |
default |
test |
None |
|
type |
value |
map_at_1 |
56.34400000000001 |
|
type |
value |
map_at_10 |
65.927 |
|
type |
value |
map_at_100 |
66.431 |
|
type |
value |
map_at_1000 |
66.461 |
|
type |
value |
map_at_3 |
63.529 |
|
type |
value |
map_at_5 |
64.818 |
|
type |
value |
mrr_at_1 |
59.333000000000006 |
|
type |
value |
mrr_at_10 |
67.54599999999999 |
|
type |
value |
mrr_at_100 |
67.892 |
|
type |
value |
mrr_at_1000 |
67.917 |
|
type |
value |
mrr_at_3 |
65.778 |
|
type |
value |
mrr_at_5 |
66.794 |
|
type |
value |
ndcg_at_1 |
59.333000000000006 |
|
type |
value |
ndcg_at_10 |
70.5 |
|
type |
value |
ndcg_at_100 |
72.688 |
|
type |
value |
ndcg_at_1000 |
73.483 |
|
type |
value |
ndcg_at_3 |
66.338 |
|
type |
value |
ndcg_at_5 |
68.265 |
|
type |
value |
precision_at_1 |
59.333000000000006 |
|
type |
value |
precision_at_10 |
9.3 |
|
type |
value |
precision_at_100 |
1.053 |
|
type |
value |
precision_at_1000 |
0.11199999999999999 |
|
type |
value |
precision_at_3 |
25.889 |
|
type |
value |
precision_at_5 |
16.866999999999997 |
|
type |
value |
recall_at_1 |
56.34400000000001 |
|
type |
value |
recall_at_10 |
82.789 |
|
type |
value |
recall_at_100 |
92.767 |
|
type |
value |
recall_at_1000 |
99 |
|
type |
value |
recall_at_3 |
71.64399999999999 |
|
type |
value |
recall_at_5 |
76.322 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
mteb/sprintduplicatequestions-pairclassification |
MTEB SprintDuplicateQuestions |
default |
test |
d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 |
|
type |
value |
cos_sim_accuracy |
99.75742574257426 |
|
type |
value |
cos_sim_ap |
93.52081548447406 |
|
type |
value |
cos_sim_f1 |
87.33850129198966 |
|
type |
value |
cos_sim_precision |
90.37433155080214 |
|
type |
value |
cos_sim_recall |
84.5 |
|
type |
value |
dot_accuracy |
99.75742574257426 |
|
type |
value |
dot_ap |
93.52081548447406 |
|
type |
value |
dot_f1 |
87.33850129198966 |
|
type |
value |
dot_precision |
90.37433155080214 |
|
type |
value |
dot_recall |
84.5 |
|
type |
value |
euclidean_accuracy |
99.75742574257426 |
|
type |
value |
euclidean_ap |
93.52081548447406 |
|
type |
value |
euclidean_f1 |
87.33850129198966 |
|
type |
value |
euclidean_precision |
90.37433155080214 |
|
type |
value |
euclidean_recall |
84.5 |
|
type |
value |
manhattan_accuracy |
99.75841584158415 |
|
type |
value |
manhattan_ap |
93.4975678585854 |
|
type |
value |
manhattan_f1 |
87.26708074534162 |
|
type |
value |
manhattan_precision |
90.45064377682404 |
|
type |
value |
manhattan_recall |
84.3 |
|
type |
value |
max_accuracy |
99.75841584158415 |
|
type |
value |
max_ap |
93.52081548447406 |
|
type |
value |
max_f1 |
87.33850129198966 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
mteb/stackexchange-clustering |
MTEB StackExchangeClustering |
default |
test |
6cbc1f7b2bc0622f2e39d2c77fa502909748c259 |
|
type |
value |
v_measure |
64.31437036686651 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
mteb/stackexchange-clustering-p2p |
MTEB StackExchangeClusteringP2P |
default |
test |
815ca46b2622cec33ccafc3735d572c266efdb44 |
|
type |
value |
v_measure |
33.25569319007206 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
mteb/stackoverflowdupquestions-reranking |
MTEB StackOverflowDupQuestions |
default |
test |
e185fbe320c72810689fc5848eb6114e1ef5ec69 |
|
type |
value |
map |
49.90474939720706 |
|
type |
value |
mrr |
50.568115503777264 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
mteb/summeval |
MTEB SummEval |
default |
test |
cda12ad7615edc362dbf25a00fdd61d3b1eaf93c |
|
type |
value |
cos_sim_pearson |
29.866828641244712 |
|
type |
value |
cos_sim_spearman |
30.077555055873866 |
|
type |
value |
dot_pearson |
29.866832988572266 |
|
type |
value |
dot_spearman |
30.077555055873866 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
trec-covid |
MTEB TRECCOVID |
default |
test |
None |
|
type |
value |
map_at_1 |
0.232 |
|
type |
value |
map_at_10 |
2.094 |
|
type |
value |
map_at_100 |
11.971 |
|
type |
value |
map_at_1000 |
28.158 |
|
type |
value |
map_at_3 |
0.688 |
|
type |
value |
map_at_5 |
1.114 |
|
|
type |
value |
mrr_at_10 |
93.4 |
|
type |
value |
mrr_at_100 |
93.4 |
|
type |
value |
mrr_at_1000 |
93.4 |
|
|
|
|
type |
value |
ndcg_at_10 |
79.923 |
|
type |
value |
ndcg_at_100 |
61.17 |
|
type |
value |
ndcg_at_1000 |
53.03 |
|
type |
value |
ndcg_at_3 |
84.592 |
|
type |
value |
ndcg_at_5 |
82.821 |
|
type |
value |
precision_at_1 |
88 |
|
type |
value |
precision_at_10 |
85 |
|
type |
value |
precision_at_100 |
63.019999999999996 |
|
type |
value |
precision_at_1000 |
23.554 |
|
type |
value |
precision_at_3 |
89.333 |
|
type |
value |
precision_at_5 |
87.2 |
|
type |
value |
recall_at_1 |
0.232 |
|
type |
value |
recall_at_10 |
2.255 |
|
type |
value |
recall_at_100 |
14.823 |
|
type |
value |
recall_at_1000 |
49.456 |
|
type |
value |
recall_at_3 |
0.718 |
|
type |
value |
recall_at_5 |
1.175 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
webis-touche2020 |
MTEB Touche2020 |
default |
test |
None |
|
type |
value |
map_at_1 |
2.547 |
|
type |
value |
map_at_10 |
11.375 |
|
type |
value |
map_at_100 |
18.194 |
|
type |
value |
map_at_1000 |
19.749 |
|
type |
value |
map_at_3 |
5.825 |
|
type |
value |
map_at_5 |
8.581 |
|
type |
value |
mrr_at_1 |
32.653 |
|
type |
value |
mrr_at_10 |
51.32 |
|
type |
value |
mrr_at_100 |
51.747 |
|
type |
value |
mrr_at_1000 |
51.747 |
|
type |
value |
mrr_at_3 |
47.278999999999996 |
|
type |
value |
mrr_at_5 |
48.605 |
|
type |
value |
ndcg_at_1 |
29.592000000000002 |
|
type |
value |
ndcg_at_10 |
28.151 |
|
type |
value |
ndcg_at_100 |
39.438 |
|
type |
value |
ndcg_at_1000 |
50.769 |
|
type |
value |
ndcg_at_3 |
30.758999999999997 |
|
type |
value |
ndcg_at_5 |
30.366 |
|
type |
value |
precision_at_1 |
32.653 |
|
type |
value |
precision_at_10 |
25.714 |
|
type |
value |
precision_at_100 |
8.041 |
|
type |
value |
precision_at_1000 |
1.555 |
|
type |
value |
precision_at_3 |
33.333 |
|
type |
value |
precision_at_5 |
31.837 |
|
type |
value |
recall_at_1 |
2.547 |
|
type |
value |
recall_at_10 |
18.19 |
|
type |
value |
recall_at_100 |
49.538 |
|
type |
value |
recall_at_1000 |
83.86 |
|
type |
value |
recall_at_3 |
7.329 |
|
type |
value |
recall_at_5 |
11.532 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
mteb/toxic_conversations_50k |
MTEB ToxicConversationsClassification |
default |
test |
d7c0de2777da35d6aae2200a62c6e0e5af397c4c |
|
type |
value |
accuracy |
71.4952 |
|
type |
value |
ap |
14.793362635531409 |
|
type |
value |
f1 |
55.204635551516915 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
mteb/tweet_sentiment_extraction |
MTEB TweetSentimentExtractionClassification |
default |
test |
d604517c81ca91fe16a244d1248fc021f9ecee7a |
|
type |
value |
accuracy |
61.5365025466893 |
|
type |
value |
f1 |
61.81742556334845 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
mteb/twentynewsgroups-clustering |
MTEB TwentyNewsgroupsClustering |
default |
test |
6125ec4e24fa026cec8a478383ee943acfbd5449 |
|
type |
value |
v_measure |
49.05531070301185 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
mteb/twittersemeval2015-pairclassification |
MTEB TwitterSemEval2015 |
default |
test |
70970daeab8776df92f5ea462b6173c0b46fd2d1 |
|
type |
value |
cos_sim_accuracy |
86.51725576682364 |
|
type |
value |
cos_sim_ap |
75.2292304265163 |
|
type |
value |
cos_sim_f1 |
69.54022988505749 |
|
type |
value |
cos_sim_precision |
63.65629110039457 |
|
type |
value |
cos_sim_recall |
76.62269129287598 |
|
type |
value |
dot_accuracy |
86.51725576682364 |
|
type |
value |
dot_ap |
75.22922386081054 |
|
type |
value |
dot_f1 |
69.54022988505749 |
|
type |
value |
dot_precision |
63.65629110039457 |
|
type |
value |
dot_recall |
76.62269129287598 |
|
type |
value |
euclidean_accuracy |
86.51725576682364 |
|
type |
value |
euclidean_ap |
75.22925730473472 |
|
type |
value |
euclidean_f1 |
69.54022988505749 |
|
type |
value |
euclidean_precision |
63.65629110039457 |
|
type |
value |
euclidean_recall |
76.62269129287598 |
|
type |
value |
manhattan_accuracy |
86.52321630804077 |
|
type |
value |
manhattan_ap |
75.20608115037336 |
|
type |
value |
manhattan_f1 |
69.60000000000001 |
|
type |
value |
manhattan_precision |
64.37219730941705 |
|
type |
value |
manhattan_recall |
75.75197889182058 |
|
type |
value |
max_accuracy |
86.52321630804077 |
|
type |
value |
max_ap |
75.22925730473472 |
|
type |
value |
max_f1 |
69.60000000000001 |
|
|
|
task |
dataset |
metrics |
|
type |
name |
config |
split |
revision |
mteb/twitterurlcorpus-pairclassification |
MTEB TwitterURLCorpus |
default |
test |
8b6510b0b1fa4e4c4f879467980e9be563ec1cdf |
|
type |
value |
cos_sim_accuracy |
89.34877944657896 |
|
type |
value |
cos_sim_ap |
86.71257569277373 |
|
type |
value |
cos_sim_f1 |
79.10386355986088 |
|
type |
value |
cos_sim_precision |
76.91468470434214 |
|
type |
value |
cos_sim_recall |
81.4213119802895 |
|
type |
value |
dot_accuracy |
89.34877944657896 |
|
type |
value |
dot_ap |
86.71257133133368 |
|
type |
value |
dot_f1 |
79.10386355986088 |
|
type |
value |
dot_precision |
76.91468470434214 |
|
type |
value |
dot_recall |
81.4213119802895 |
|
type |
value |
euclidean_accuracy |
89.34877944657896 |
|
type |
value |
euclidean_ap |
86.71257651501476 |
|
type |
value |
euclidean_f1 |
79.10386355986088 |
|
type |
value |
euclidean_precision |
76.91468470434214 |
|
type |
value |
euclidean_recall |
81.4213119802895 |
|
type |
value |
manhattan_accuracy |
89.35848177901967 |
|
type |
value |
manhattan_ap |
86.69330615469126 |
|
type |
value |
manhattan_f1 |
79.13867741453949 |
|
type |
value |
manhattan_precision |
76.78881807647741 |
|
type |
value |
manhattan_recall |
81.63689559593472 |
|
type |
value |
max_accuracy |
89.35848177901967 |
|
type |
value |
max_ap |
86.71257651501476 |
|
type |
value |
max_f1 |
79.13867741453949 |
|
|
|
|
|
|
apache-2.0 |
|
nomic-ai/nomic-embed-text-v1.5 |
nomic-embed-text-v1: A Reproducible Long Context (8192) Text Embedder
nomic-embed-text-v1
is 8192 context length text encoder that surpasses OpenAI text-embedding-ada-002 and text-embedding-3-small performance on short and long context tasks.
Performance Benchmarks
Name |
SeqLen |
MTEB |
LoCo |
Jina Long Context |
Open Weights |
Open Training Code |
Open Data |
nomic-embed-text-v1 |
8192 |
62.39 |
85.53 |
54.16 |
✅ |
✅ |
✅ |
jina-embeddings-v2-base-en |
8192 |
60.39 |
85.45 |
51.90 |
✅ |
❌ |
❌ |
text-embedding-3-small |
8191 |
62.26 |
82.40 |
58.20 |
❌ |
❌ |
❌ |
text-embedding-ada-002 |
8191 |
60.99 |
52.7 |
55.25 |
❌ |
❌ |
❌ |
Exciting Update!: nomic-embed-text-v1
is now multimodal! nomic-embed-vision-v1 is aligned to the embedding space of nomic-embed-text-v1
, meaning any text embedding is multimodal!
Usage
Important: the text prompt must include a task instruction prefix, instructing the model which task is being performed.
For example, if you are implementing a RAG application, you embed your documents as search_document: <text here>
and embed your user queries as search_query: <text here>
.
Task instruction prefixes
search_document
Purpose: embed texts as documents from a dataset
This prefix is used for embedding texts as documents, for example as documents for a RAG index.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("nomic-ai/nomic-embed-text-v1", trust_remote_code=True)
sentences = ['search_document: TSNE is a dimensionality reduction algorithm created by Laurens van Der Maaten']
embeddings = model.encode(sentences)
print(embeddings)
search_query
Purpose: embed texts as questions to answer
This prefix is used for embedding texts as questions that documents from a dataset could resolve, for example as queries to be answered by a RAG application.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("nomic-ai/nomic-embed-text-v1", trust_remote_code=True)
sentences = ['search_query: Who is Laurens van Der Maaten?']
embeddings = model.encode(sentences)
print(embeddings)
clustering
Purpose: embed texts to group them into clusters
This prefix is used for embedding texts in order to group them into clusters, discover common topics, or remove semantic duplicates.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("nomic-ai/nomic-embed-text-v1", trust_remote_code=True)
sentences = ['clustering: the quick brown fox']
embeddings = model.encode(sentences)
print(embeddings)
classification
Purpose: embed texts to classify them
This prefix is used for embedding texts into vectors that will be used as features for a classification model
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("nomic-ai/nomic-embed-text-v1", trust_remote_code=True)
sentences = ['classification: the quick brown fox']
embeddings = model.encode(sentences)
print(embeddings)
Sentence Transformers
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("nomic-ai/nomic-embed-text-v1", trust_remote_code=True)
sentences = ['search_query: What is TSNE?', 'search_query: Who is Laurens van der Maaten?']
embeddings = model.encode(sentences)
print(embeddings)
Transformers
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['search_query: What is TSNE?', 'search_query: Who is Laurens van der Maaten?']
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1', trust_remote_code=True)
model.eval()
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
embeddings = F.normalize(embeddings, p=2, dim=1)
print(embeddings)
The model natively supports scaling of the sequence length past 2048 tokens. To do so,
- tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
+ tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased', model_max_length=8192)
- model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1', trust_remote_code=True)
+ model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1', trust_remote_code=True, rotary_scaling_factor=2)
Transformers.js
import { pipeline } from '@xenova/transformers';
// Create a feature extraction pipeline
const extractor = await pipeline('feature-extraction', 'nomic-ai/nomic-embed-text-v1', {
quantized: false, // Comment out this line to use the quantized version
});
// Compute sentence embeddings
const texts = ['search_query: What is TSNE?', 'search_query: Who is Laurens van der Maaten?'];
const embeddings = await extractor(texts, { pooling: 'mean', normalize: true });
console.log(embeddings);
Nomic API
The easiest way to get started with Nomic Embed is through the Nomic Embedding API.
Generating embeddings with the nomic
Python client is as easy as
from nomic import embed
output = embed.text(
texts=['Nomic Embedding API', '#keepAIOpen'],
model='nomic-embed-text-v1',
task_type='search_document'
)
print(output)
For more information, see the API reference
Training
Click the Nomic Atlas map below to visualize a 5M sample of our contrastive pretraining data!
We train our embedder using a multi-stage training pipeline. Starting from a long-context BERT model,
the first unsupervised contrastive stage trains on a dataset generated from weakly related text pairs, such as question-answer pairs from forums like StackExchange and Quora, title-body pairs from Amazon reviews, and summarizations from news articles.
In the second finetuning stage, higher quality labeled datasets such as search queries and answers from web searches are leveraged. Data curation and hard-example mining is crucial in this stage.
For more details, see the Nomic Embed Technical Report and corresponding blog post.
Training data to train the models is released in its entirety. For more details, see the contrastors
repository
Citation
If you find the model, dataset, or training code useful, please cite our work
@misc{nussbaum2024nomic,
title={Nomic Embed: Training a Reproducible Long Context Text Embedder},
author={Zach Nussbaum and John X. Morris and Brandon Duderstadt and Andriy Mulyar},
year={2024},
eprint={2402.01613},
archivePrefix={arXiv},
primaryClass={cs.CL}
}