first commit
This commit is contained in:
parent
3b746220b5
commit
f0c13c351f
174
README.md
174
README.md
|
@ -1,3 +1,173 @@
|
|||
# rwkv-5-world-1b5_a13650644885172224812389
|
||||
### Run Huggingface RWKV5 World Model
|
||||
|
||||
rwkv-5-world-1b5
|
||||
|
||||
#### CPU
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
def generate_prompt(instruction, input=""):
|
||||
instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
|
||||
input = input.strip().replace('\r\n','\n').replace('\n\n','\n')
|
||||
if input:
|
||||
return f"""Instruction: {instruction}
|
||||
|
||||
Input: {input}
|
||||
|
||||
Response:"""
|
||||
else:
|
||||
return f"""User: hi
|
||||
|
||||
Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
|
||||
|
||||
User: {instruction}
|
||||
|
||||
Assistant:"""
|
||||
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("RWKV/rwkv-5-world-1b5", trust_remote_code=True).to(torch.float32)
|
||||
tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-5-world-1b5", trust_remote_code=True, padding_side='left', pad_token="<s>")
|
||||
|
||||
text = "请介绍北京的旅游景点"
|
||||
prompt = generate_prompt(text)
|
||||
|
||||
inputs = tokenizer(prompt, return_tensors="pt")
|
||||
output = model.generate(inputs["input_ids"], max_new_tokens=333, do_sample=True, temperature=1.0, top_p=0.3, top_k=0, )
|
||||
print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))
|
||||
```
|
||||
|
||||
output:
|
||||
|
||||
```shell
|
||||
User: hi
|
||||
|
||||
Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
|
||||
|
||||
User: 请介绍北京的旅游景点
|
||||
|
||||
Assistant: 北京是中国的首都,拥有众多的旅游景点,以下是其中一些著名的景点:
|
||||
1. 故宫:位于北京市中心,是明清两代的皇宫,内有大量的文物和艺术品。
|
||||
2. 天安门广场:是中国最著名的广场之一,是中国人民政治协商会议的旧址,也是中国人民政治协商会议的中心。
|
||||
3. 颐和园:是中国古代皇家园林之一,有着悠久的历史和丰富的文化内涵。
|
||||
4. 长城:是中国古代的一道长城,全长约万里,是中国最著名的旅游景点之一。
|
||||
5. 北京大学:是中国著名的高等教育机构之一,有着悠久的历史和丰富的文化内涵。
|
||||
6. 北京动物园:是中国最大的动物园之一,有着丰富的动物资源和丰富的文化内涵。
|
||||
7. 故宫博物院:是中国最著名的博物馆之一,收藏了大量的文物和艺术品,是中国最重要的文化遗产之一。
|
||||
8. 天坛:是中国古代皇家
|
||||
```
|
||||
|
||||
#### GPU
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
def generate_prompt(instruction, input=""):
|
||||
instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
|
||||
input = input.strip().replace('\r\n','\n').replace('\n\n','\n')
|
||||
if input:
|
||||
return f"""Instruction: {instruction}
|
||||
|
||||
Input: {input}
|
||||
|
||||
Response:"""
|
||||
else:
|
||||
return f"""User: hi
|
||||
|
||||
Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
|
||||
|
||||
User: {instruction}
|
||||
|
||||
Assistant:"""
|
||||
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("RWKV/rwkv-5-world-1b5", trust_remote_code=True, torch_dtype=torch.float16).to(0)
|
||||
tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-5-world-1b5", trust_remote_code=True, padding_side='left', pad_token="<s>")
|
||||
|
||||
text = "介绍一下大熊猫"
|
||||
prompt = generate_prompt(text)
|
||||
|
||||
inputs = tokenizer(prompt, return_tensors="pt").to(0)
|
||||
output = model.generate(inputs["input_ids"], max_new_tokens=128, do_sample=True, temperature=1.0, top_p=0.3, top_k=0, )
|
||||
print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))
|
||||
```
|
||||
|
||||
output:
|
||||
|
||||
```shell
|
||||
User: hi
|
||||
|
||||
Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
|
||||
|
||||
User: 介绍一下大熊猫
|
||||
|
||||
Assistant: 大熊猫是一种中国特有的哺乳动物,也是中国的国宝之一。它们的外貌特征是圆形的黑白相间的身体,有着黑色的毛发和白色的耳朵。大熊猫的食物主要是竹子,它们会在竹林中寻找竹子,并且会将竹子放在竹笼中进行储存。大熊猫的寿命约为20至30年,但由于栖息地的丧失和人类活动的
|
||||
```
|
||||
|
||||
#### Batch Inference
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
def generate_prompt(instruction, input=""):
|
||||
instruction = instruction.strip().replace('\r\n', '\n').replace('\n\n', '\n')
|
||||
input = input.strip().replace('\r\n', '\n').replace('\n\n', '\n')
|
||||
if input:
|
||||
return f"""Instruction: {instruction}
|
||||
|
||||
Input: {input}
|
||||
|
||||
Response:"""
|
||||
else:
|
||||
return f"""User: hi
|
||||
|
||||
Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
|
||||
|
||||
User: {instruction}
|
||||
|
||||
Assistant:"""
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("RWKV/rwkv-5-world-1b5", trust_remote_code=True).to(torch.float32)
|
||||
tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-5-world-1b5", trust_remote_code=True, padding_side='left', pad_token="<s>")
|
||||
|
||||
texts = ["请介绍北京的旅游景点", "介绍一下大熊猫", "乌兰察布"]
|
||||
prompts = [generate_prompt(text) for text in texts]
|
||||
|
||||
inputs = tokenizer(prompts, return_tensors="pt", padding=True)
|
||||
outputs = model.generate(inputs["input_ids"], max_new_tokens=128, do_sample=True, temperature=1.0, top_p=0.3, top_k=0, )
|
||||
|
||||
for output in outputs:
|
||||
print(tokenizer.decode(output.tolist(), skip_special_tokens=True))
|
||||
|
||||
```
|
||||
|
||||
output:
|
||||
|
||||
```shell
|
||||
User: hi
|
||||
|
||||
Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
|
||||
|
||||
User: 请介绍北京的旅游景点
|
||||
|
||||
Assistant: 北京是中国的首都,拥有丰富的旅游资源和历史文化遗产。以下是一些北京的旅游景点:
|
||||
1. 故宫:位于北京市中心,是明清两代的皇宫,是中国最大的古代宫殿建筑群之一。
|
||||
2. 天安门广场:位于北京市中心,是中国最著名的城市广场之一,也是中国最大的城市广场。
|
||||
3. 颐和
|
||||
User: hi
|
||||
|
||||
Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
|
||||
|
||||
User: 介绍一下大熊猫
|
||||
|
||||
Assistant: 大熊猫是一种生活在中国中部地区的哺乳动物,也是中国的国宝之一。它们的外貌特征是圆形的黑白相间的身体,有着黑色的毛发和圆圆的眼睛。大熊猫是一种濒危物种,目前只有在野外的几个保护区才能看到它们的身影。大熊猫的食物主要是竹子,它们会在竹子上寻找食物,并且可以通
|
||||
User: hi
|
||||
|
||||
Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
|
||||
|
||||
User: 乌兰察布
|
||||
|
||||
Assistant: 乌兰察布是中国新疆维吾尔自治区的一个县级市,位于新疆维吾尔自治区中部,是新疆的第二大城市。乌兰察布市是新疆的第一大城市,也是新疆的重要城市之一。乌兰察布市是新疆的经济中心,也是新疆的重要交通枢纽之一。乌兰察布市的人口约为2.5万人,其中汉族占绝大多数。乌
|
||||
```
|
|
@ -0,0 +1,3 @@
|
|||
{
|
||||
"<s>": 0
|
||||
}
|
|
@ -0,0 +1,24 @@
|
|||
{
|
||||
"architectures": [
|
||||
"Rwkv5ForCausalLM"
|
||||
],
|
||||
"auto_map": {
|
||||
"AutoConfig": "configuration_rwkv5.Rwkv5Config",
|
||||
"AutoModelForCausalLM": "modeling_rwkv5.Rwkv5ForCausalLM"
|
||||
},
|
||||
"attention_hidden_size": 2048,
|
||||
"bos_token_id": 0,
|
||||
"eos_token_id": 0,
|
||||
"head_size": 64,
|
||||
"hidden_size": 2048,
|
||||
"intermediate_size": null,
|
||||
"layer_norm_epsilon": 1e-05,
|
||||
"model_type": "rwkv5",
|
||||
"num_attention_heads": 64,
|
||||
"num_hidden_layers": 24,
|
||||
"rescale_every": 6,
|
||||
"tie_word_embeddings": false,
|
||||
"transformers_version": "4.34.0",
|
||||
"use_cache": true,
|
||||
"vocab_size": 65536
|
||||
}
|
|
@ -0,0 +1,118 @@
|
|||
# coding=utf-8
|
||||
# Copyright 2023 The OpenAI Team Authors and HuggingFace Inc. team.
|
||||
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" RWKV configuration"""
|
||||
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
from transformers.utils import logging
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
RWKV5_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
||||
|
||||
|
||||
class Rwkv5Config(PretrainedConfig):
|
||||
"""
|
||||
This is the configuration class to store the configuration of a [`Rwkv5Model`]. It is used to instantiate a RWKV5
|
||||
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
||||
defaults will yield a similar configuration to that of the RWVK-4
|
||||
[RWKV/rwkv-5-world-1b5](https://huggingface.co/RWKV/rwkv-5-world-1b5) architecture.
|
||||
|
||||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||
documentation from [`PretrainedConfig`] for more information.
|
||||
|
||||
|
||||
Args:
|
||||
vocab_size (`int`, *optional*, defaults to 65536):
|
||||
Vocabulary size of the RWKV5 model. Defines the number of different tokens that can be represented by the
|
||||
`inputs_ids` passed when calling [`Rwkv5Model`].
|
||||
hidden_size (`int`, *optional*, defaults to 768):
|
||||
Dimensionality of the embeddings and hidden states.
|
||||
num_hidden_layers (`int`, *optional*, defaults to 24):
|
||||
Number of hidden layers in the model.
|
||||
attention_hidden_size (`int`, *optional*):
|
||||
Dimensionality of the attention hidden states. Will default to `hidden_size` if unset.
|
||||
num_attention_heads (`int`, *optional*, defaults to 64):
|
||||
The attention heads to use in rwkv5 self_attention module.
|
||||
head_size (`int`, *optional*, defaults to 64): head_size of rwkv5 self_attention module.
|
||||
intermediate_size (`int`, *optional*):
|
||||
Dimensionality of the inner feed-forward layers. Will default to 4 times `hidden_size` if unset.
|
||||
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
|
||||
The epsilon to use in the layer normalization layers.
|
||||
bos_token_id (`int`, *optional*, defaults to 0):
|
||||
The id of the beginning of sentence token in the vocabulary. Defaults to 0.
|
||||
eos_token_id (`int`, *optional*, defaults to 0):
|
||||
The id of the end of sentence token in the vocabulary. Defaults to 0.
|
||||
rescale_every (`int`, *optional*, defaults to 6):
|
||||
At inference, the hidden states (and weights of the correponding output layers) are divided by 2 every
|
||||
`rescale_every` layer. If set to 0 or a negative number, no rescale is done.
|
||||
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not to tie the word embeddings with the input token embeddings.
|
||||
use_cache (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not the model should return the last state.
|
||||
|
||||
|
||||
Example:
|
||||
|
||||
```python
|
||||
>>> from transformers import Rwkv5Config, Rwkv5Model
|
||||
|
||||
>>> # Initializing a Rwkv5 configuration
|
||||
>>> configuration = Rwkv5Config()
|
||||
|
||||
>>> # Initializing a model (with random weights) from the configuration
|
||||
>>> model = Rwkv5Model(configuration)
|
||||
|
||||
>>> # Accessing the model configuration
|
||||
>>> configuration = model.config
|
||||
```"""
|
||||
|
||||
model_type = "rwkv5"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=65536,
|
||||
hidden_size=768,
|
||||
num_hidden_layers=24,
|
||||
attention_hidden_size=None,
|
||||
head_size=64,
|
||||
head_size_divisor=8,
|
||||
intermediate_size=None,
|
||||
layer_norm_epsilon=1e-5,
|
||||
bos_token_id=0,
|
||||
eos_token_id=0,
|
||||
rescale_every=6,
|
||||
tie_word_embeddings=False,
|
||||
use_cache=True,
|
||||
**kwargs,
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.hidden_size = hidden_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.attention_hidden_size = attention_hidden_size if attention_hidden_size is not None else hidden_size
|
||||
self.head_size = head_size
|
||||
self.head_size_divisor = head_size_divisor
|
||||
self.intermediate_size = None
|
||||
self.layer_norm_epsilon = layer_norm_epsilon
|
||||
self.rescale_every = rescale_every
|
||||
self.use_cache = use_cache
|
||||
|
||||
self.bos_token_id = bos_token_id
|
||||
self.eos_token_id = eos_token_id
|
||||
|
||||
super().__init__(
|
||||
tie_word_embeddings=tie_word_embeddings, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs
|
||||
)
|
|
@ -0,0 +1,12 @@
|
|||
{
|
||||
"chat_format": "chatml",
|
||||
"eos_token_id": 0,
|
||||
"pad_token_id": 0,
|
||||
"max_window_size": 4096,
|
||||
"max_new_tokens": 4096,
|
||||
"do_sample": true,
|
||||
"top_k": 0,
|
||||
"top_p": 0.1,
|
||||
"repetition_penalty": 1.0,
|
||||
"transformers_version": "4.31.1"
|
||||
}
|
|
@ -0,0 +1,704 @@
|
|||
# coding=utf-8
|
||||
# Copyright 2024 The RWKV team and HuggingFace Inc. team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""PyTorch RWKV5 World model."""
|
||||
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import pkg_resources
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import torch.utils.checkpoint
|
||||
from torch import nn
|
||||
from torch.nn import CrossEntropyLoss
|
||||
|
||||
from transformers.modeling_utils import PreTrainedModel
|
||||
from transformers.utils import (
|
||||
ModelOutput,
|
||||
add_code_sample_docstrings,
|
||||
add_start_docstrings,
|
||||
add_start_docstrings_to_model_forward,
|
||||
is_bitsandbytes_available,
|
||||
is_ninja_available,
|
||||
is_torch_cuda_available,
|
||||
logging,
|
||||
)
|
||||
|
||||
try:
|
||||
from flash_rwkv import rwkv5_cuda_linear_attention
|
||||
# Check version
|
||||
required_version = pkg_resources.parse_version("0.2.1")
|
||||
current_version = pkg_resources.get_distribution("flash-rwkv").parsed_version
|
||||
|
||||
if current_version < required_version:
|
||||
raise Exception("Your version of flash-rwkv is below 0.2.1. Please use pip install --upgrade flash-rwkv to update or install the required version.")
|
||||
except ImportError:
|
||||
raise ImportError("The flash-rwkv package is not detected. Please install it using pip install flash-rwkv.")
|
||||
except pkg_resources.DistributionNotFound:
|
||||
raise ImportError("The flash-rwkv package is not detected. Please install it using pip install flash-rwkv.")
|
||||
|
||||
from .configuration_rwkv5 import Rwkv5Config
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
_CHECKPOINT_FOR_DOC = "RWKV/rwkv-5-world-1b5"
|
||||
_CONFIG_FOR_DOC = "Rwkv5Config"
|
||||
|
||||
|
||||
def rwkv5_linear_attention_cpu(receptance, key, value, time_decay, time_first, state):
|
||||
input_dtype = receptance.dtype
|
||||
# For CPU fallback. Will be slower and probably take more memory than the custom CUDA kernel if not executed
|
||||
# within a torch.no_grad.
|
||||
batch, seq_length, hidden_size = receptance.shape
|
||||
num_heads, head_size = time_first.shape
|
||||
key = key.float().view(batch, seq_length, num_heads, head_size).transpose(1, 2).transpose(-2, -1)
|
||||
value = value.float().view(batch, seq_length, num_heads, head_size).transpose(1, 2)
|
||||
receptance = receptance.float().view(batch, seq_length, num_heads, head_size).transpose(1, 2)
|
||||
time_decay = torch.exp(-torch.exp(time_decay.float())).reshape(-1, 1, 1).reshape(num_heads, -1, 1)
|
||||
time_first = time_first.float().reshape(-1, 1, 1).reshape(num_heads, -1, 1)
|
||||
out = torch.zeros_like(key).reshape(batch, seq_length, num_heads, head_size)
|
||||
|
||||
for current_index in range(seq_length):
|
||||
current_receptance = receptance[:, :, current_index:current_index+1, :]
|
||||
current_key = key[:, :, :, current_index:current_index+1]
|
||||
current_value = value[:, :, current_index:current_index+1, :]
|
||||
attention_output = current_key @ current_value
|
||||
out[:, current_index] = (current_receptance @ (time_first * attention_output + state)).squeeze(2)
|
||||
with torch.no_grad():
|
||||
state = attention_output + time_decay * state
|
||||
|
||||
return out, state
|
||||
|
||||
# copied from RWKV but with receptance
|
||||
def RWKV5_linear_attention(training, receptance, key, value, time_decay, time_first, state):
|
||||
no_cuda = any(t.device.type != "cuda" for t in [time_decay, time_first, key, value])
|
||||
# Launching the CUDA kernel for just one token will actually be slower (there is no for loop in the CPU version
|
||||
# in this case).
|
||||
one_token = key.size(1) == 1
|
||||
if not training or no_cuda or one_token:
|
||||
return rwkv5_linear_attention_cpu(
|
||||
receptance, key, value, time_decay, time_first, state
|
||||
)
|
||||
else:
|
||||
return rwkv5_cuda_linear_attention(receptance.float(), key.float(), value.float(), time_decay.float().flatten(), time_first.float().flatten(), state)
|
||||
|
||||
|
||||
class Rwkv5SelfAttention(nn.Module):
|
||||
def __init__(self, config, layer_id=0):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.layer_id = layer_id
|
||||
hidden_size = config.hidden_size
|
||||
attention_hidden_size = config.attention_hidden_size
|
||||
self.attention_hidden_size = attention_hidden_size
|
||||
head_size = config.head_size
|
||||
num_heads = attention_hidden_size // head_size
|
||||
|
||||
self.time_decay = nn.Parameter(torch.empty(num_heads, head_size))
|
||||
self.time_faaaa = nn.Parameter(torch.empty(num_heads, head_size))
|
||||
self.time_mix_gate = nn.Parameter(torch.empty(1, 1, hidden_size))
|
||||
|
||||
self.time_mix_key = nn.Parameter(torch.empty(1, 1, hidden_size))
|
||||
self.time_mix_value = nn.Parameter(torch.empty(1, 1, hidden_size))
|
||||
self.time_mix_receptance = nn.Parameter(torch.empty(1, 1, hidden_size))
|
||||
|
||||
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
|
||||
self.key = nn.Linear(hidden_size, attention_hidden_size, bias=False)
|
||||
self.value = nn.Linear(hidden_size, attention_hidden_size, bias=False)
|
||||
self.receptance = nn.Linear(hidden_size, attention_hidden_size, bias=False)
|
||||
self.gate = nn.Linear(hidden_size, attention_hidden_size, bias=False)
|
||||
self.output = nn.Linear(attention_hidden_size, hidden_size, bias=False)
|
||||
self.ln_x = nn.GroupNorm(num_heads, hidden_size)
|
||||
|
||||
def extract_key_value(self, hidden, state=None):
|
||||
# Mix hidden with the previous timestep to produce key, value, receptance
|
||||
if hidden.size(1) == 1 and state is not None:
|
||||
shifted = state[0][:, :, self.layer_id]
|
||||
else:
|
||||
shifted = self.time_shift(hidden)
|
||||
if state is not None:
|
||||
shifted[:, 0] = state[0][:, :, self.layer_id]
|
||||
if len(shifted.size()) == 2:
|
||||
shifted = shifted.unsqueeze(1)
|
||||
|
||||
key = hidden * self.time_mix_key + shifted * (1 - self.time_mix_key)
|
||||
value = hidden * self.time_mix_value + shifted * (1 - self.time_mix_value)
|
||||
receptance = hidden * self.time_mix_receptance + shifted * (1 - self.time_mix_receptance)
|
||||
gate = hidden * self.time_mix_gate + shifted * (1 - self.time_mix_gate)
|
||||
|
||||
key = self.key(key)
|
||||
value = self.value(value)
|
||||
receptance = self.receptance(receptance)
|
||||
gate = F.silu(self.gate(gate))
|
||||
|
||||
if state is not None:
|
||||
state[0][:, :, self.layer_id] = hidden[:, -1]
|
||||
|
||||
return receptance, key, value, gate, state
|
||||
|
||||
def forward(self, hidden, state=None, use_cache=False, seq_mode=True):
|
||||
receptance, key, value, gate, state = self.extract_key_value(hidden, state=state)
|
||||
|
||||
B,T,C = receptance.shape
|
||||
H, S = self.time_faaaa.shape
|
||||
|
||||
layer_state = state[1][:, :, :, :, self.layer_id] if state is not None else None
|
||||
out, layer_state = RWKV5_linear_attention(
|
||||
self.training, receptance, key, value, self.time_decay, self.time_faaaa, layer_state
|
||||
)
|
||||
|
||||
if layer_state is not None:
|
||||
state[1][:, :, :, :, self.layer_id] = layer_state
|
||||
|
||||
out = out.reshape(B * T, H * S)
|
||||
out = F.group_norm(out / self.config.head_size_divisor, num_groups=H, weight=self.ln_x.weight.to(out.dtype), bias=self.ln_x.bias.to(out.dtype), eps=self.ln_x.eps).reshape(B, T, H * S)
|
||||
out = out.to(dtype=hidden.dtype) * gate
|
||||
out = self.output(out)
|
||||
return out, state
|
||||
|
||||
# Copied from rwkv except for the intermediate size
|
||||
class Rwkv5FeedForward(nn.Module):
|
||||
def __init__(self, config, layer_id=0):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.layer_id = layer_id
|
||||
hidden_size = config.hidden_size
|
||||
intermediate_size = (
|
||||
config.intermediate_size
|
||||
if config.intermediate_size is not None
|
||||
else int((config.hidden_size * 3.5) // 32 * 32)
|
||||
)
|
||||
|
||||
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
|
||||
self.time_mix_key = nn.Parameter(torch.empty(1, 1, hidden_size))
|
||||
self.time_mix_receptance = nn.Parameter(torch.empty(1, 1, hidden_size))
|
||||
|
||||
self.key = nn.Linear(hidden_size, intermediate_size, bias=False)
|
||||
self.receptance = nn.Linear(hidden_size, hidden_size, bias=False)
|
||||
self.value = nn.Linear(intermediate_size, hidden_size, bias=False)
|
||||
|
||||
def forward(self, hidden, state=None):
|
||||
if hidden.size(1) == 1 and state is not None:
|
||||
shifted = state[2][:, :, self.layer_id]
|
||||
else:
|
||||
shifted = self.time_shift(hidden)
|
||||
if state is not None:
|
||||
shifted[:, 0] = state[2][:, :, self.layer_id]
|
||||
if len(shifted.size()) == 2:
|
||||
shifted = shifted.unsqueeze(1)
|
||||
key = hidden * self.time_mix_key + shifted * (1 - self.time_mix_key)
|
||||
receptance = hidden * self.time_mix_receptance + shifted * (1 - self.time_mix_receptance)
|
||||
|
||||
key = torch.square(torch.relu(self.key(key)))
|
||||
value = self.value(key)
|
||||
receptance = torch.sigmoid(self.receptance(receptance))
|
||||
|
||||
if state is not None:
|
||||
state[2][:, :, self.layer_id] = hidden[:, -1]
|
||||
|
||||
return receptance * value, state
|
||||
|
||||
|
||||
# Copied from transformers.models.rwkv.modeling_rwkv.RwkvBlock with Rwkv->Rwkv5
|
||||
class Rwkv5Block(nn.Module):
|
||||
def __init__(self, config, layer_id):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.layer_id = layer_id
|
||||
|
||||
if layer_id == 0:
|
||||
self.pre_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
||||
|
||||
self.ln1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
||||
self.ln2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
||||
|
||||
self.attention = Rwkv5SelfAttention(config, layer_id)
|
||||
self.feed_forward = Rwkv5FeedForward(config, layer_id)
|
||||
|
||||
def forward(self, hidden, state=None, use_cache=False, output_attentions=False, seq_mode=True):
|
||||
if self.layer_id == 0:
|
||||
hidden = self.pre_ln(hidden)
|
||||
attention, state = self.attention(self.ln1(hidden), state=state, use_cache=use_cache, seq_mode=seq_mode)
|
||||
hidden = hidden + attention
|
||||
|
||||
feed_forward, state = self.feed_forward(self.ln2(hidden), state=state)
|
||||
hidden = hidden + feed_forward
|
||||
|
||||
outputs = (hidden, state)
|
||||
if output_attentions:
|
||||
outputs += (attention,)
|
||||
else:
|
||||
outputs += (None,)
|
||||
|
||||
return outputs
|
||||
|
||||
|
||||
# Copied from transformers.models.rwkv.modeling_rwkv.RwkvPreTrainedModel with Rwkv->Rwkv5
|
||||
class Rwkv5PreTrainedModel(PreTrainedModel):
|
||||
"""
|
||||
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||||
models.
|
||||
"""
|
||||
|
||||
config_class = Rwkv5Config
|
||||
base_model_prefix = "rwkv5"
|
||||
_no_split_modules = ["Rwkv5Block"]
|
||||
_keep_in_fp32_modules = ["time_decay", "time_first"]
|
||||
supports_gradient_checkpointing = True
|
||||
|
||||
def _init_weights(self, module):
|
||||
"""Initialize the weights."""
|
||||
if isinstance(module, Rwkv5SelfAttention):
|
||||
layer_id = module.layer_id
|
||||
num_hidden_layers = module.config.num_hidden_layers
|
||||
hidden_size = module.config.hidden_size
|
||||
attention_hidden_size = module.attention_hidden_size
|
||||
head_size = module.config.head_size
|
||||
num_heads = attention_hidden_size // head_size
|
||||
|
||||
ratio_0_to_1 = layer_id / (num_hidden_layers - 1) # 0 to 1
|
||||
ratio_1_to_almost0 = 1.0 - (layer_id / num_hidden_layers) # 1 to ~0
|
||||
|
||||
time_weight = torch.tensor(
|
||||
[i / hidden_size for i in range(hidden_size)],
|
||||
dtype=module.time_mix_key.dtype,
|
||||
device=module.time_mix_key.device,
|
||||
)
|
||||
time_weight = time_weight[None, None, :]
|
||||
|
||||
decay_speed = [
|
||||
-6.0 + 5.0 * (h / (attention_hidden_size - 1)) ** (0.7 + 1.3 * ratio_0_to_1)
|
||||
for h in range(attention_hidden_size)
|
||||
]
|
||||
decay_speed = torch.tensor(decay_speed, dtype=module.time_decay.dtype, device=module.time_decay.device)
|
||||
tmp = torch.tensor(
|
||||
[
|
||||
(1.0 - (i / (attention_hidden_size - 1.0))) * ratio_0_to_1 + 0.1 * ((i + 1) % 3 - 1)
|
||||
for i in range(attention_hidden_size)
|
||||
],
|
||||
dtype=module.time_faaaa.dtype,
|
||||
device=module.time_faaaa.device,
|
||||
)
|
||||
|
||||
with torch.no_grad():
|
||||
module.time_decay.data = decay_speed.reshape(num_heads, head_size)
|
||||
module.time_faaaa.data = tmp.reshape(num_heads, head_size)
|
||||
module.time_mix_key.data = torch.pow(time_weight, ratio_1_to_almost0)
|
||||
|
||||
module.time_mix_value.data = torch.pow(time_weight, ratio_1_to_almost0) + 0.3 * ratio_0_to_1
|
||||
module.time_mix_receptance.data = torch.pow(time_weight, 0.5 * ratio_1_to_almost0)
|
||||
module.time_mix_gate.data = torch.pow(time_weight, 0.5 * ratio_1_to_almost0)
|
||||
|
||||
elif isinstance(module, Rwkv5FeedForward):
|
||||
layer_id = module.layer_id
|
||||
num_hidden_layers = module.config.num_hidden_layers
|
||||
hidden_size = module.config.hidden_size
|
||||
|
||||
ratio_1_to_almost0 = 1.0 - (layer_id / num_hidden_layers) # 1 to ~0
|
||||
|
||||
time_weight = torch.tensor(
|
||||
[i / hidden_size for i in range(hidden_size)],
|
||||
dtype=module.time_mix_key.dtype,
|
||||
device=module.time_mix_key.device,
|
||||
)
|
||||
time_weight = time_weight[None, None, :]
|
||||
|
||||
with torch.no_grad():
|
||||
module.time_mix_key.data = torch.pow(time_weight, ratio_1_to_almost0)
|
||||
module.time_mix_receptance.data = torch.pow(time_weight, ratio_1_to_almost0)
|
||||
|
||||
|
||||
# Copied from transformers.models.rwkv.modeling_rwkv.RwkvOutput with Rwkv->Rwkv5
|
||||
@dataclass
|
||||
class Rwkv5Output(ModelOutput):
|
||||
"""
|
||||
Class for the RWKV5 model outputs.
|
||||
|
||||
Args:
|
||||
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
||||
Sequence of hidden-states at the output of the last layer of the model.
|
||||
state (list of five `torch.FloatTensor` of shape `(batch_size, hidden_size, num_hidden_layers)`):
|
||||
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
|
||||
avoid providing the old `input_ids`.
|
||||
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||||
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
||||
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of
|
||||
the model at the output of each layer plus the optional initial embedding outputs.
|
||||
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||||
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
||||
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
|
||||
the self-attention heads.
|
||||
"""
|
||||
|
||||
last_hidden_state: torch.FloatTensor = None
|
||||
state: Optional[List[torch.FloatTensor]] = None
|
||||
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||||
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
||||
|
||||
|
||||
# Copied from transformers.models.rwkv.modeling_rwkv.RwkvCausalLMOutput with Rwkv->Rwkv5
|
||||
@dataclass
|
||||
class Rwkv5CausalLMOutput(ModelOutput):
|
||||
"""
|
||||
Base class for causal language model (or autoregressive) outputs.
|
||||
|
||||
Args:
|
||||
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
||||
Language modeling loss (for next-token prediction).
|
||||
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
||||
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
||||
state (list of five `torch.FloatTensor` of shape `(batch_size, hidden_size, num_hidden_layers)`):
|
||||
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
|
||||
avoid providing the old `input_ids`.
|
||||
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||||
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
||||
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of
|
||||
the model at the output of each layer plus the optional initial embedding outputs.
|
||||
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||||
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
||||
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
|
||||
the self-attention heads.
|
||||
"""
|
||||
|
||||
loss: Optional[torch.FloatTensor] = None
|
||||
logits: torch.FloatTensor = None
|
||||
state: Optional[List[torch.FloatTensor]] = None
|
||||
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||||
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
||||
|
||||
|
||||
RWKV5_START_DOCSTRING = r"""
|
||||
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||||
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
||||
etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module)
|
||||
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
|
||||
general usage and behavior.
|
||||
|
||||
Parameters:
|
||||
config ([`Rwkv5Config`]): Model configuration class with all the parameters of the model.
|
||||
Initializing with a config file does not load the weights associated with the model, only the
|
||||
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||||
"""
|
||||
|
||||
RWKV5_INPUTS_DOCSTRING = r"""
|
||||
Args:
|
||||
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
||||
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else
|
||||
`past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
|
||||
sequence tokens in the vocabulary. If `past_key_values` is used, only `input_ids` that do not have their
|
||||
past calculated should be passed as `input_ids`. Indices can be obtained using [`AutoTokenizer`]. See
|
||||
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input
|
||||
IDs?](../glossary#input-ids)
|
||||
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||||
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
||||
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
||||
model's internal embedding lookup matrix.
|
||||
state (tuple of five `torch.FloatTensor` of shape `(batch_size, hidden_size, num_hidden_layers)`, *optional*):
|
||||
If passed along, the model uses the previous state in all the blocks (which will give the output for the
|
||||
`input_ids` provided as if the model add `state_input_ids + input_ids` as context).
|
||||
use_cache (`bool`, *optional*):
|
||||
If set to `True`, the last state is returned and can be used to quickly generate the next logits.
|
||||
output_attentions (`bool`, *optional*):
|
||||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||||
tensors for more detail.
|
||||
output_hidden_states (`bool`, *optional*):
|
||||
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||||
more detail.
|
||||
return_dict (`bool`, *optional*):
|
||||
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||||
"""
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"The bare RWKV5 Model transformer outputting raw hidden-states without any specific head on top.",
|
||||
RWKV5_START_DOCSTRING,
|
||||
)
|
||||
class Rwkv5Model(Rwkv5PreTrainedModel):
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
|
||||
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
|
||||
self.blocks = nn.ModuleList([Rwkv5Block(config, layer_id=idx) for idx in range(config.num_hidden_layers)])
|
||||
self.ln_out = nn.LayerNorm(config.hidden_size)
|
||||
|
||||
self.layers_are_rescaled = False
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.embeddings
|
||||
|
||||
def set_input_embeddings(self, new_embeddings):
|
||||
self.embeddings = new_embeddings
|
||||
|
||||
@add_start_docstrings_to_model_forward(RWKV5_INPUTS_DOCSTRING)
|
||||
@add_code_sample_docstrings(
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
output_type=Rwkv5Output,
|
||||
config_class=_CONFIG_FOR_DOC,
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.LongTensor] = None, # noqa
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
state: Optional[List[torch.FloatTensor]] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, Rwkv5Output]:
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
# FIXME - training is supportable with the CUDA code
|
||||
# rwkv5 only support inference in huggingface.
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
if self.training == self.layers_are_rescaled and (
|
||||
self.embeddings.weight.dtype == torch.float16 or self.embeddings.weight.dtype == torch.bfloat16
|
||||
):
|
||||
self._rescale_layers()
|
||||
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
||||
elif input_ids is None and inputs_embeds is None:
|
||||
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.embeddings(input_ids)
|
||||
|
||||
if state is None:
|
||||
state = []
|
||||
head_size = self.config.head_size
|
||||
num_heads = self.config.attention_hidden_size // head_size
|
||||
state_attn_x = torch.zeros(
|
||||
(inputs_embeds.size(0), self.config.hidden_size, self.config.num_hidden_layers),
|
||||
dtype=inputs_embeds.dtype,
|
||||
requires_grad=False,
|
||||
device=inputs_embeds.device,
|
||||
).contiguous()
|
||||
state_attn_kv = torch.zeros(
|
||||
(
|
||||
inputs_embeds.size(0),
|
||||
num_heads,
|
||||
head_size,
|
||||
head_size,
|
||||
self.config.num_hidden_layers,
|
||||
),
|
||||
dtype=torch.float32,
|
||||
requires_grad=False,
|
||||
device=inputs_embeds.device,
|
||||
).contiguous()
|
||||
state_ffn_x = torch.zeros(
|
||||
(inputs_embeds.size(0), self.config.hidden_size, self.config.num_hidden_layers),
|
||||
dtype=inputs_embeds.dtype,
|
||||
requires_grad=False,
|
||||
device=inputs_embeds.device,
|
||||
).contiguous()
|
||||
state.append(state_attn_x)
|
||||
state.append(state_attn_kv)
|
||||
state.append(state_ffn_x)
|
||||
|
||||
seq_mode = inputs_embeds.shape[1] > 1
|
||||
hidden_states = inputs_embeds
|
||||
|
||||
all_self_attentions = () if output_attentions else None
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
for idx, block in enumerate(self.blocks):
|
||||
hidden_states, state, attentions = block(
|
||||
hidden_states, state=state, use_cache=use_cache, output_attentions=output_attentions, seq_mode=seq_mode
|
||||
)
|
||||
if (
|
||||
self.layers_are_rescaled
|
||||
and self.config.rescale_every > 0
|
||||
and (idx + 1) % self.config.rescale_every == 0
|
||||
):
|
||||
hidden_states = hidden_states / 2
|
||||
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
if output_attentions:
|
||||
all_self_attentions = all_self_attentions + (attentions,)
|
||||
|
||||
hidden_states = self.ln_out(hidden_states)
|
||||
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
if not return_dict:
|
||||
return (hidden_states, state, all_hidden_states, all_self_attentions)
|
||||
|
||||
return Rwkv5Output(
|
||||
last_hidden_state=hidden_states,
|
||||
state=state,
|
||||
hidden_states=all_hidden_states, # None
|
||||
attentions=all_self_attentions, # None
|
||||
)
|
||||
|
||||
def _rescale_layers(self):
|
||||
# Layers should be rescaled for inference only.
|
||||
if self.layers_are_rescaled == (not self.training):
|
||||
return
|
||||
if self.config.rescale_every > 0:
|
||||
with torch.no_grad():
|
||||
for block_id, block in enumerate(self.blocks):
|
||||
if self.training:
|
||||
block.attention.output.weight.mul_(2 ** int(block_id // self.config.rescale_every))
|
||||
block.feed_forward.value.weight.mul_(2 ** int(block_id // self.config.rescale_every))
|
||||
else:
|
||||
# Deal with quantization statistics
|
||||
if hasattr(block.attention.output.weight, "SCB"):
|
||||
block.attention.output.weight.SCB.div_(2 ** int(block_id // self.config.rescale_every))
|
||||
block.feed_forward.value.weight.SCB.div_(2 ** int(block_id // self.config.rescale_every))
|
||||
elif hasattr(block.attention.output.weight, "quant_state"):
|
||||
self._bnb_4bit_dequantize_and_rescale(block.attention.output, block_id)
|
||||
self._bnb_4bit_dequantize_and_rescale(block.feed_forward.value, block_id)
|
||||
else:
|
||||
block.attention.output.weight.div_(2 ** int(block_id // self.config.rescale_every))
|
||||
block.feed_forward.value.weight.div_(2 ** int(block_id // self.config.rescale_every))
|
||||
|
||||
self.layers_are_rescaled = not self.training
|
||||
|
||||
def _bnb_4bit_dequantize_and_rescale(self, target_layer, block_id):
|
||||
r"""
|
||||
Perform the dequantization and rescaling of the weights of a given layer. After that operation the layer will
|
||||
be quantized again.
|
||||
"""
|
||||
if not is_bitsandbytes_available():
|
||||
raise ImportError("Please install bitsandbytes to use this method.")
|
||||
import bitsandbytes as bnb
|
||||
|
||||
dequant_weights = bnb.functional.dequantize_4bit(target_layer.weight.data, target_layer.weight.quant_state)
|
||||
|
||||
dequant_weights.div_(2 ** int(block_id // self.config.rescale_every))
|
||||
|
||||
# re-quantize the model:
|
||||
# we need to put it first on CPU then back to the device
|
||||
# this will create an overhead :/
|
||||
# We set requires_grad=False as we cannot compute gradients on top of 4bit parameters anyway and to avoid
|
||||
# bugs with bnb
|
||||
quant_weight = bnb.nn.Params4bit(dequant_weights.to("cpu"), requires_grad=False).to(dequant_weights.device)
|
||||
setattr(target_layer, "weight", quant_weight)
|
||||
|
||||
|
||||
# copied from HuggingFace https://github.com/huggingface/transformers/blob/main/src/transformers/models/rwkv/modeling_rwkv.py
|
||||
@add_start_docstrings(
|
||||
"""
|
||||
The RWKV5 Model transformer with a language modeling head on top (linear layer with weights tied to the input
|
||||
embeddings).
|
||||
""",
|
||||
RWKV5_START_DOCSTRING,
|
||||
)
|
||||
# Copied from transformers.models.rwkv.modeling_rwkv.RwkvForCausalLM with Rwkv->Rwkv5
|
||||
class Rwkv5ForCausalLM(Rwkv5PreTrainedModel):
|
||||
_tied_weights_keys = ["head.weight"]
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.rwkv = Rwkv5Model(config)
|
||||
self.head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||||
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def get_output_embeddings(self):
|
||||
return self.head
|
||||
|
||||
def set_output_embeddings(self, new_embeddings):
|
||||
self.head = new_embeddings
|
||||
|
||||
def prepare_inputs_for_generation(self, input_ids, state=None, inputs_embeds=None, **kwargs):
|
||||
# only last token for inputs_ids if the state is passed along.
|
||||
if state is not None:
|
||||
input_ids = input_ids[:, -1].unsqueeze(-1)
|
||||
|
||||
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
||||
if inputs_embeds is not None and state is None:
|
||||
model_inputs = {"inputs_embeds": inputs_embeds}
|
||||
else:
|
||||
model_inputs = {"input_ids": input_ids}
|
||||
|
||||
model_inputs["state"] = state
|
||||
return model_inputs
|
||||
|
||||
@add_start_docstrings_to_model_forward(RWKV5_INPUTS_DOCSTRING)
|
||||
@add_code_sample_docstrings(
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
output_type=Rwkv5CausalLMOutput,
|
||||
config_class=_CONFIG_FOR_DOC,
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.LongTensor] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
state: Optional[List[torch.FloatTensor]] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, Rwkv5CausalLMOutput]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
||||
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
||||
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
||||
"""
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
outputs = self.rwkv(
|
||||
input_ids,
|
||||
inputs_embeds=inputs_embeds,
|
||||
state=state,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
hidden_states = outputs[0]
|
||||
|
||||
logits = self.head(hidden_states)
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
# move labels to correct device to enable model parallelism
|
||||
labels = labels.to(logits.device)
|
||||
# Shift so that tokens < n predict n
|
||||
shift_logits = logits[..., :-1, :].contiguous()
|
||||
shift_labels = labels[..., 1:].contiguous()
|
||||
# Flatten the tokens
|
||||
loss_fct = CrossEntropyLoss()
|
||||
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
||||
|
||||
if not return_dict:
|
||||
output = (logits,) + outputs[1:]
|
||||
return ((loss,) + output) if loss is not None else output
|
||||
|
||||
return Rwkv5CausalLMOutput(
|
||||
loss=loss,
|
||||
logits=logits,
|
||||
state=outputs.state,
|
||||
hidden_states=outputs.hidden_states,
|
||||
attentions=outputs.attentions,
|
||||
)
|
|
@ -0,0 +1,5 @@
|
|||
{
|
||||
"bos_token": "<s>",
|
||||
"eos_token": "<s>",
|
||||
"unk_token": "<s>"
|
||||
}
|
|
@ -0,0 +1,229 @@
|
|||
# coding=utf-8
|
||||
# Copyright 2024 The HuggingFace Inc. team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Tokenization classes for RWKV5."""
|
||||
|
||||
import os
|
||||
import re
|
||||
from typing import TYPE_CHECKING, List, Optional, Tuple
|
||||
|
||||
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
||||
from transformers.utils import logging
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
pass
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
VOCAB_FILES_NAMES = {
|
||||
"vocab_file": "vocab.txt",
|
||||
}
|
||||
PRETRAINED_VOCAB_FILES_MAP = {
|
||||
"vocab_file": {
|
||||
"ArthurZ/rwkv-5-utf": "https://huggingface.co/ArthurZ/rwkv-5-utf/blob/main/vocab.txt",
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
def whitespace_tokenize(text):
|
||||
"""Runs basic whitespace cleaning and splitting on a piece of text.
|
||||
The separators are kept
|
||||
"""
|
||||
text = text.strip()
|
||||
if not text:
|
||||
return []
|
||||
tokens = re.split(b"(?= )", text)
|
||||
return tokens
|
||||
|
||||
|
||||
class WordpieceTokenizer(object):
|
||||
"""Runs WordPiece tokenization."""
|
||||
|
||||
def __init__(self, vocab, unk_token):
|
||||
self.vocab = vocab
|
||||
self.unk_token = unk_token
|
||||
|
||||
def tokenize(self, text):
|
||||
"""
|
||||
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
|
||||
tokenization using the given vocabulary.
|
||||
|
||||
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
|
||||
|
||||
Args:
|
||||
text: A single token or whitespace separated tokens. This should have
|
||||
already been passed through *BasicTokenizer*.
|
||||
|
||||
Returns:
|
||||
A list of wordpiece tokens.
|
||||
"""
|
||||
|
||||
output_tokens = []
|
||||
for token in whitespace_tokenize(text):
|
||||
chars = list(token)
|
||||
is_bad = False
|
||||
start = 0
|
||||
sub_tokens = []
|
||||
while start < len(chars):
|
||||
end = len(chars)
|
||||
cur_substr = None
|
||||
while start < end:
|
||||
substr = bytes(chars[start:end])
|
||||
if substr in self.vocab:
|
||||
cur_substr = substr
|
||||
break
|
||||
end -= 1
|
||||
if cur_substr is None:
|
||||
is_bad = True
|
||||
break
|
||||
try:
|
||||
cur_substr = cur_substr.decode()
|
||||
except UnicodeDecodeError:
|
||||
cur_substr = str(cur_substr)
|
||||
sub_tokens.append(cur_substr)
|
||||
start = end
|
||||
if is_bad:
|
||||
output_tokens.append(self.unk_token)
|
||||
else:
|
||||
output_tokens.extend(sub_tokens)
|
||||
return output_tokens
|
||||
|
||||
|
||||
class Rwkv5Tokenizer(PreTrainedTokenizer):
|
||||
vocab_files_names = VOCAB_FILES_NAMES
|
||||
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
||||
max_model_input_sizes = {"ArthurZ/rwkv-5-utf": 2048}
|
||||
|
||||
model_input_names = ["input_ids", "attention_mask"]
|
||||
|
||||
def __init__(self, vocab_file, bos_token="<s>", eos_token="<s>", unk_token="<s>", **kwargs):
|
||||
if not os.path.isfile(vocab_file):
|
||||
raise ValueError(
|
||||
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
|
||||
" model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
|
||||
)
|
||||
|
||||
with open(vocab_file, "r") as reader:
|
||||
tokens = reader.readlines()
|
||||
vocab = {}
|
||||
for index, token in enumerate(tokens):
|
||||
token = eval(token.rstrip("\n"))
|
||||
vocab[token] = index
|
||||
|
||||
self.add_bos_token = True
|
||||
self.encoder = vocab
|
||||
self.decoder = {v: k for k, v in vocab.items()}
|
||||
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.encoder, unk_token=str(unk_token))
|
||||
self._added_tokens_decoder = {0: AddedToken(str(bos_token))}
|
||||
super().__init__(bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, **kwargs)
|
||||
|
||||
@property
|
||||
def vocab_size(self):
|
||||
return len(self.encoder)
|
||||
|
||||
def get_vocab(self):
|
||||
vocab = {str(self.convert_ids_to_tokens(i)): i for i in range(self.vocab_size)}
|
||||
vocab.update(self.added_tokens_encoder)
|
||||
return vocab
|
||||
|
||||
def _tokenize(self, text, split_special_tokens=False):
|
||||
return self.wordpiece_tokenizer.tokenize(text.encode("utf-8"))
|
||||
|
||||
def _convert_token_to_id(self, token):
|
||||
"""Converts a token (byte) to an id using the vocab."""
|
||||
if token.startswith("b'\\"):
|
||||
token = eval(token)
|
||||
elif not isinstance(token, bytes):
|
||||
token = token.encode("utf-8", errors="replace")
|
||||
return self.encoder.get(token, self.unk_token_id)
|
||||
|
||||
def _convert_id_to_token(self, index):
|
||||
"""Converts an index (integer) in a token (byte) using the vocab."""
|
||||
token = self.decoder.get(index, self.unk_token)
|
||||
if isinstance(token, (bytes)):
|
||||
token = token.decode("utf-8", errors="replace")
|
||||
return token
|
||||
|
||||
def convert_tokens_to_string(self, tokens):
|
||||
"""Converts a sequence of tokens (bytes) in a single string. Additional tokens are encoded to bytes"""
|
||||
out_string = b"".join([k.encode(errors="replace") if isinstance(k, str) else k for k in tokens]).decode(
|
||||
"utf-8"
|
||||
)
|
||||
return out_string
|
||||
|
||||
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
||||
index = 0
|
||||
if os.path.isdir(save_directory):
|
||||
vocab_file = os.path.join(
|
||||
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
||||
)
|
||||
else:
|
||||
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
|
||||
with open(vocab_file, "w") as writer:
|
||||
for token, token_index in sorted(self.encoder.items(), key=lambda kv: kv[1]):
|
||||
if index != token_index:
|
||||
logger.warning(
|
||||
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
|
||||
" Please check that the vocabulary is not corrupted!"
|
||||
)
|
||||
index = token_index
|
||||
writer.write(str(token) + "\n")
|
||||
index += 1
|
||||
return (vocab_file,)
|
||||
|
||||
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
||||
if self.add_bos_token:
|
||||
bos_token_ids = [self.bos_token_id]
|
||||
else:
|
||||
bos_token_ids = []
|
||||
|
||||
output = bos_token_ids + token_ids_0
|
||||
|
||||
if token_ids_1 is None:
|
||||
return output
|
||||
|
||||
return output + bos_token_ids + token_ids_1
|
||||
|
||||
def get_special_tokens_mask(
|
||||
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
||||
) -> List[int]:
|
||||
"""
|
||||
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
|
||||
special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
|
||||
|
||||
Args:
|
||||
token_ids_0 (`List[int]`):
|
||||
List of IDs.
|
||||
token_ids_1 (`List[int]`, *optional*):
|
||||
Optional second list of IDs for sequence pairs.
|
||||
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not the token list is already formatted with special tokens for the model.
|
||||
|
||||
Returns:
|
||||
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
||||
"""
|
||||
if already_has_special_tokens:
|
||||
return super().get_special_tokens_mask(
|
||||
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
||||
)
|
||||
|
||||
if not self.add_bos_token:
|
||||
return super().get_special_tokens_mask(
|
||||
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=False
|
||||
)
|
||||
|
||||
if token_ids_1 is None:
|
||||
return [1] + ([0] * len(token_ids_0))
|
||||
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1))
|
|
@ -0,0 +1,12 @@
|
|||
{
|
||||
"name_or_path": "rwkv-5-tokenizer",
|
||||
"add_prefix_space": false,
|
||||
"tokenizer_class": "Rwkv5Tokenizer",
|
||||
"use_fast": false,
|
||||
"auto_map": {
|
||||
"AutoTokenizer": [
|
||||
"tokenization_rwkv5.Rwkv5Tokenizer",
|
||||
null
|
||||
]
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue