142 lines
5.7 KiB
Python
142 lines
5.7 KiB
Python
|
# modified from https://github.com/huggingface/transformers/blob/main/src/transformers/models/whisper/modeling_whisper.py
|
||
|
# see this issue for the commentary: https://github.com/huggingface/transformers/issues/25744
|
||
|
#
|
||
|
# Copyright 2022 The OpenAI Authors and The HuggingFace Inc. team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import transformers
|
||
|
import transformers.modeling_outputs
|
||
|
from transformers.models.whisper import modeling_whisper as whisper
|
||
|
|
||
|
|
||
|
class WhisperEncoder(whisper.WhisperEncoder):
|
||
|
"""
|
||
|
Encoder portion of OpenAI's Whisper model.
|
||
|
|
||
|
This implementation is a slightly modified version of HF Transformers' Whisper Encoder, with only a few fixes:
|
||
|
1. base_model_prefix updated to allow for doing `.from_pretrained` directly on the encoder
|
||
|
2. allow less than 30 second of audio padding to be passed in:
|
||
|
- relaxed ValueError check for `input_features` length to be less than or equal to `expected_seq_length` instead of strictly equal
|
||
|
- embed_pos is now sliced to match the length of `inputs_embeds`
|
||
|
|
||
|
Original: https://github.com/huggingface/transformers/blob/main/src/transformers/models/whisper/modeling_whisper.py
|
||
|
"""
|
||
|
|
||
|
base_model_prefix = "model.encoder"
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
input_features,
|
||
|
attention_mask=None,
|
||
|
head_mask=None,
|
||
|
output_attentions=None,
|
||
|
output_hidden_states=None,
|
||
|
return_dict=None,
|
||
|
):
|
||
|
expected_seq_length = (
|
||
|
self.config.max_source_positions
|
||
|
* self.conv1.stride[0]
|
||
|
* self.conv2.stride[0]
|
||
|
)
|
||
|
if input_features.shape[-1] > expected_seq_length:
|
||
|
raise ValueError(
|
||
|
f"Whisper expects the mel input features to be of length {expected_seq_length} or less, but found {input_features.shape[-1]}. Make sure to pad the input mel features to {expected_seq_length}."
|
||
|
)
|
||
|
|
||
|
output_attentions = (
|
||
|
output_attentions
|
||
|
if output_attentions is not None
|
||
|
else self.config.output_attentions
|
||
|
)
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states
|
||
|
if output_hidden_states is not None
|
||
|
else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = (
|
||
|
return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
)
|
||
|
inputs_embeds = nn.functional.gelu(self.conv1(input_features))
|
||
|
inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds))
|
||
|
|
||
|
inputs_embeds = inputs_embeds.permute(0, 2, 1)
|
||
|
embed_pos = self.embed_positions.weight[: inputs_embeds.size(-2)]
|
||
|
|
||
|
hidden_states = inputs_embeds + embed_pos
|
||
|
hidden_states = nn.functional.dropout(
|
||
|
hidden_states, p=self.dropout, training=self.training
|
||
|
)
|
||
|
|
||
|
encoder_states = () if output_hidden_states else None
|
||
|
all_attentions = () if output_attentions else None
|
||
|
|
||
|
# check if head_mask has a correct number of layers specified if desired
|
||
|
if head_mask is not None:
|
||
|
assert head_mask.size()[0] == (
|
||
|
len(self.layers)
|
||
|
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
|
||
|
|
||
|
for idx, encoder_layer in enumerate(self.layers):
|
||
|
if output_hidden_states:
|
||
|
encoder_states = encoder_states + (hidden_states,)
|
||
|
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
||
|
to_drop = False
|
||
|
if self.training:
|
||
|
dropout_probability = torch.rand([])
|
||
|
if dropout_probability < self.layerdrop: # skip the layer
|
||
|
to_drop = True
|
||
|
|
||
|
if to_drop:
|
||
|
layer_outputs = (None, None)
|
||
|
else:
|
||
|
if self.gradient_checkpointing and self.training:
|
||
|
layer_outputs = self._gradient_checkpointing_func(
|
||
|
encoder_layer.__call__,
|
||
|
hidden_states,
|
||
|
None,
|
||
|
(head_mask[idx] if head_mask is not None else None),
|
||
|
output_attentions,
|
||
|
)
|
||
|
else:
|
||
|
layer_outputs = encoder_layer(
|
||
|
hidden_states,
|
||
|
None,
|
||
|
layer_head_mask=(
|
||
|
head_mask[idx] if head_mask is not None else None
|
||
|
),
|
||
|
output_attentions=output_attentions,
|
||
|
)
|
||
|
|
||
|
hidden_states = layer_outputs[0]
|
||
|
|
||
|
if output_attentions:
|
||
|
all_attentions = all_attentions + (layer_outputs[1],)
|
||
|
|
||
|
hidden_states = self.layer_norm(hidden_states)
|
||
|
if output_hidden_states:
|
||
|
encoder_states = encoder_states + (hidden_states,)
|
||
|
|
||
|
if not return_dict:
|
||
|
return tuple(
|
||
|
v
|
||
|
for v in [hidden_states, encoder_states, all_attentions]
|
||
|
if v is not None
|
||
|
)
|
||
|
return transformers.modeling_outputs.BaseModelOutput(
|
||
|
last_hidden_state=hidden_states,
|
||
|
hidden_states=encoder_states,
|
||
|
attentions=all_attentions,
|
||
|
)
|