forked from ailab/bert-base-chinese
first commit
This commit is contained in:
commit
19d3dcd148
|
@ -0,0 +1,10 @@
|
|||
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
||||
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
||||
*.bin filter=lfs diff=lfs merge=lfs -text
|
||||
*.h5 filter=lfs diff=lfs merge=lfs -text
|
||||
*.tflite filter=lfs diff=lfs merge=lfs -text
|
||||
*.tar.gz filter=lfs diff=lfs merge=lfs -text
|
||||
*.ot filter=lfs diff=lfs merge=lfs -text
|
||||
*.onnx filter=lfs diff=lfs merge=lfs -text
|
||||
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
||||
model.safetensors filter=lfs diff=lfs merge=lfs -text
|
|
@ -0,0 +1,75 @@
|
|||
---
|
||||
language: zh
|
||||
---
|
||||
|
||||
# Bert-base-chinese
|
||||
|
||||
## Table of Contents
|
||||
- [Model Details](#model-details)
|
||||
- [Uses](#uses)
|
||||
- [Risks, Limitations and Biases](#risks-limitations-and-biases)
|
||||
- [Training](#training)
|
||||
- [Evaluation](#evaluation)
|
||||
- [How to Get Started With the Model](#how-to-get-started-with-the-model)
|
||||
|
||||
|
||||
## Model Details
|
||||
|
||||
### Model Description
|
||||
|
||||
This model has been pre-trained for Chinese, training and random input masking has been applied independently to word pieces (as in the original BERT paper).
|
||||
|
||||
- **Developed by:** HuggingFace team
|
||||
- **Model Type:** Fill-Mask
|
||||
- **Language(s):** Chinese
|
||||
- **License:** [More Information needed]
|
||||
- **Parent Model:** See the [BERT base uncased model](https://huggingface.co/bert-base-uncased) for more information about the BERT base model.
|
||||
|
||||
### Model Sources
|
||||
- **Paper:** [BERT](https://arxiv.org/abs/1810.04805)
|
||||
|
||||
## Uses
|
||||
|
||||
#### Direct Use
|
||||
|
||||
This model can be used for masked language modeling
|
||||
|
||||
|
||||
|
||||
## Risks, Limitations and Biases
|
||||
**CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propagate historical and current stereotypes.**
|
||||
|
||||
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
|
||||
|
||||
|
||||
## Training
|
||||
|
||||
#### Training Procedure
|
||||
* **type_vocab_size:** 2
|
||||
* **vocab_size:** 21128
|
||||
* **num_hidden_layers:** 12
|
||||
|
||||
#### Training Data
|
||||
[More Information Needed]
|
||||
|
||||
## Evaluation
|
||||
|
||||
#### Results
|
||||
|
||||
[More Information Needed]
|
||||
|
||||
|
||||
## How to Get Started With the Model
|
||||
```python
|
||||
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("bert-base-chinese")
|
||||
|
||||
model = AutoModelForMaskedLM.from_pretrained("bert-base-chinese")
|
||||
|
||||
```
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,25 @@
|
|||
{
|
||||
"architectures": [
|
||||
"BertForMaskedLM"
|
||||
],
|
||||
"attention_probs_dropout_prob": 0.1,
|
||||
"directionality": "bidi",
|
||||
"hidden_act": "gelu",
|
||||
"hidden_dropout_prob": 0.1,
|
||||
"hidden_size": 768,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 3072,
|
||||
"layer_norm_eps": 1e-12,
|
||||
"max_position_embeddings": 512,
|
||||
"model_type": "bert",
|
||||
"num_attention_heads": 12,
|
||||
"num_hidden_layers": 12,
|
||||
"pad_token_id": 0,
|
||||
"pooler_fc_size": 768,
|
||||
"pooler_num_attention_heads": 12,
|
||||
"pooler_num_fc_layers": 3,
|
||||
"pooler_size_per_head": 128,
|
||||
"pooler_type": "first_token_transform",
|
||||
"type_vocab_size": 2,
|
||||
"vocab_size": 21128
|
||||
}
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
File diff suppressed because one or more lines are too long
|
@ -0,0 +1,3 @@
|
|||
{
|
||||
"do_lower_case": false
|
||||
}
|
Loading…
Reference in New Issue