--- license: agpl-3.0 tags: - object-detection - computer-vision - yolov10 datasets: - detection-datasets/coco inference: false --- ### Model Description [YOLOv10: Real-Time End-to-End Object Detection](https://arxiv.org/abs/2405.14458v1) - arXiv: https://arxiv.org/abs/2405.14458v1 - github: https://github.com/THU-MIG/yolov10 ### Installation ``` pip install git+https://github.com/THU-MIG/yolov10.git ``` ### Training and validation ```python from ultralytics import YOLOv10 model = YOLOv10.from_pretrained('jameslahm/yolov10l') # Training model.train(...) # after training, one can push to the hub model.push_to_hub("your-hf-username/yolov10-finetuned") # Validation model.val(...) ``` ### Inference Here's an end-to-end example showcasing inference on a cats image: ```python from ultralytics import YOLOv10 model = YOLOv10.from_pretrained('jameslahm/yolov10l') source = 'http://images.cocodataset.org/val2017/000000039769.jpg' model.predict(source=source, save=True) ``` which shows: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/628ece6054698ce61d1e7be3/fVLFVoDrFtjPc6kB3fy-m.png) ### BibTeX Entry and Citation Info ``` @article{wang2024yolov10, title={YOLOv10: Real-Time End-to-End Object Detection}, author={Wang, Ao and Chen, Hui and Liu, Lihao and Chen, Kai and Lin, Zijia and Han, Jungong and Ding, Guiguang}, journal={arXiv preprint arXiv:2405.14458}, year={2024} } ```