forked from ailab/yolov10s
60 lines
1.4 KiB
Markdown
60 lines
1.4 KiB
Markdown
|
---
|
||
|
license: agpl-3.0
|
||
|
tags:
|
||
|
- object-detection
|
||
|
- computer-vision
|
||
|
- yolov10
|
||
|
datasets:
|
||
|
- detection-datasets/coco
|
||
|
inference: false
|
||
|
---
|
||
|
|
||
|
### Model Description
|
||
|
[YOLOv10: Real-Time End-to-End Object Detection](https://arxiv.org/abs/2405.14458v1)
|
||
|
|
||
|
- arXiv: https://arxiv.org/abs/2405.14458v1
|
||
|
- github: https://github.com/THU-MIG/yolov10
|
||
|
|
||
|
### Installation
|
||
|
```
|
||
|
pip install git+https://github.com/THU-MIG/yolov10.git
|
||
|
```
|
||
|
|
||
|
### Training and validation
|
||
|
```python
|
||
|
from ultralytics import YOLOv10
|
||
|
|
||
|
model = YOLOv10.from_pretrained('jameslahm/yolov10s')
|
||
|
# Training
|
||
|
model.train(...)
|
||
|
# after training, one can push to the hub
|
||
|
model.push_to_hub("your-hf-username/yolov10-finetuned")
|
||
|
|
||
|
# Validation
|
||
|
model.val(...)
|
||
|
```
|
||
|
|
||
|
### Inference
|
||
|
|
||
|
Here's an end-to-end example showcasing inference on a cats image:
|
||
|
|
||
|
```python
|
||
|
from ultralytics import YOLOv10
|
||
|
|
||
|
model = YOLOv10.from_pretrained('jameslahm/yolov10s')
|
||
|
source = 'http://images.cocodataset.org/val2017/000000039769.jpg'
|
||
|
model.predict(source=source, save=True)
|
||
|
```
|
||
|
which shows:
|
||
|
|
||
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/628ece6054698ce61d1e7be3/33BsCwWkygl6cEHQHAjjH.png)
|
||
|
|
||
|
### BibTeX Entry and Citation Info
|
||
|
```
|
||
|
@article{wang2024yolov10,
|
||
|
title={YOLOv10: Real-Time End-to-End Object Detection},
|
||
|
author={Wang, Ao and Chen, Hui and Liu, Lihao and Chen, Kai and Lin, Zijia and Han, Jungong and Ding, Guiguang},
|
||
|
journal={arXiv preprint arXiv:2405.14458},
|
||
|
year={2024}
|
||
|
}
|
||
|
```
|