forked from ailab/resnet-18
first commit
This commit is contained in:
commit
1d6f278b6f
|
@ -0,0 +1,28 @@
|
||||||
|
*.7z filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.arrow filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.bin filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.ftz filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.gz filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.h5 filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.joblib filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.model filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.onnx filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.ot filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.parquet filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.pb filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.pt filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.pth filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.rar filter=lfs diff=lfs merge=lfs -text
|
||||||
|
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.tflite filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.tgz filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.xz filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.zip filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
||||||
|
model.safetensors filter=lfs diff=lfs merge=lfs -text
|
|
@ -0,0 +1,65 @@
|
||||||
|
---
|
||||||
|
license: apache-2.0
|
||||||
|
tags:
|
||||||
|
- vision
|
||||||
|
- image-classification
|
||||||
|
|
||||||
|
datasets:
|
||||||
|
- imagenet-1k
|
||||||
|
|
||||||
|
widget:
|
||||||
|
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg
|
||||||
|
example_title: Tiger
|
||||||
|
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg
|
||||||
|
example_title: Teapot
|
||||||
|
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg
|
||||||
|
example_title: Palace
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
# ResNet
|
||||||
|
|
||||||
|
ResNet model trained on imagenet-1k. It was introduced in the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) and first released in [this repository](https://github.com/KaimingHe/deep-residual-networks).
|
||||||
|
|
||||||
|
Disclaimer: The team releasing ResNet did not write a model card for this model so this model card has been written by the Hugging Face team.
|
||||||
|
|
||||||
|
## Model description
|
||||||
|
|
||||||
|
ResNet introduced residual connections, they allow to train networks with an unseen number of layers (up to 1000). ResNet won the 2015 ILSVRC & COCO competition, one important milestone in deep computer vision.
|
||||||
|
|
||||||
|
![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/resnet_architecture.png)
|
||||||
|
|
||||||
|
## Intended uses & limitations
|
||||||
|
|
||||||
|
You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=resnet) to look for
|
||||||
|
fine-tuned versions on a task that interests you.
|
||||||
|
|
||||||
|
### How to use
|
||||||
|
|
||||||
|
Here is how to use this model:
|
||||||
|
|
||||||
|
```python
|
||||||
|
>>> from transformers import AutoImageProcessor, AutoModelForImageClassification
|
||||||
|
>>> import torch
|
||||||
|
>>> from datasets import load_dataset
|
||||||
|
|
||||||
|
>>> dataset = load_dataset("huggingface/cats-image")
|
||||||
|
>>> image = dataset["test"]["image"][0]
|
||||||
|
|
||||||
|
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/resnet-18")
|
||||||
|
>>> model = AutoModelForImageClassification.from_pretrained("microsoft/resnet-18")
|
||||||
|
|
||||||
|
>>> inputs = image_processor(image, return_tensors="pt")
|
||||||
|
|
||||||
|
>>> with torch.no_grad():
|
||||||
|
... logits = model(**inputs).logits
|
||||||
|
|
||||||
|
>>> # model predicts one of the 1000 ImageNet classes
|
||||||
|
>>> predicted_label = logits.argmax(-1).item()
|
||||||
|
>>> print(model.config.id2label[predicted_label])
|
||||||
|
tiger cat
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/resnet).
|
File diff suppressed because it is too large
Load Diff
Binary file not shown.
|
@ -0,0 +1,18 @@
|
||||||
|
{
|
||||||
|
"crop_pct": 0.875,
|
||||||
|
"do_normalize": true,
|
||||||
|
"do_resize": true,
|
||||||
|
"feature_extractor_type": "ConvNextFeatureExtractor",
|
||||||
|
"image_mean": [
|
||||||
|
0.485,
|
||||||
|
0.456,
|
||||||
|
0.406
|
||||||
|
],
|
||||||
|
"image_std": [
|
||||||
|
0.229,
|
||||||
|
0.224,
|
||||||
|
0.225
|
||||||
|
],
|
||||||
|
"resample": 3,
|
||||||
|
"size": 224
|
||||||
|
}
|
Binary file not shown.
Binary file not shown.
Loading…
Reference in New Issue