first commit

This commit is contained in:
ailab 2024-06-08 07:06:13 +08:00
commit 53bbdcfc8a
29 changed files with 414683 additions and 0 deletions

37
.gitattributes vendored Normal file
View File

@ -0,0 +1,37 @@
*.7z filter=lfs diff=lfs merge=lfs -text
*.arrow filter=lfs diff=lfs merge=lfs -text
*.bin filter=lfs diff=lfs merge=lfs -text
*.bz2 filter=lfs diff=lfs merge=lfs -text
*.ckpt filter=lfs diff=lfs merge=lfs -text
*.ftz filter=lfs diff=lfs merge=lfs -text
*.gz filter=lfs diff=lfs merge=lfs -text
*.h5 filter=lfs diff=lfs merge=lfs -text
*.joblib filter=lfs diff=lfs merge=lfs -text
*.lfs.* filter=lfs diff=lfs merge=lfs -text
*.mlmodel filter=lfs diff=lfs merge=lfs -text
*.model filter=lfs diff=lfs merge=lfs -text
*.msgpack filter=lfs diff=lfs merge=lfs -text
*.npy filter=lfs diff=lfs merge=lfs -text
*.npz filter=lfs diff=lfs merge=lfs -text
*.onnx filter=lfs diff=lfs merge=lfs -text
*.ot filter=lfs diff=lfs merge=lfs -text
*.parquet filter=lfs diff=lfs merge=lfs -text
*.pb filter=lfs diff=lfs merge=lfs -text
*.pickle filter=lfs diff=lfs merge=lfs -text
*.pkl filter=lfs diff=lfs merge=lfs -text
*.pt filter=lfs diff=lfs merge=lfs -text
*.pth filter=lfs diff=lfs merge=lfs -text
*.rar filter=lfs diff=lfs merge=lfs -text
*.safetensors filter=lfs diff=lfs merge=lfs -text
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
*.tar.* filter=lfs diff=lfs merge=lfs -text
*.tar filter=lfs diff=lfs merge=lfs -text
*.tflite filter=lfs diff=lfs merge=lfs -text
*.tgz filter=lfs diff=lfs merge=lfs -text
*.wasm filter=lfs diff=lfs merge=lfs -text
*.xz filter=lfs diff=lfs merge=lfs -text
*.zip filter=lfs diff=lfs merge=lfs -text
*.zst filter=lfs diff=lfs merge=lfs -text
*tfevents* filter=lfs diff=lfs merge=lfs -text
*.png filter=lfs diff=lfs merge=lfs -text
*.gif filter=lfs diff=lfs merge=lfs -text

212
README.md Normal file
View File

@ -0,0 +1,212 @@
---
pipeline_tag: visual-question-answering
language:
- en
- zh
datasets:
- HaoyeZhang/RLAIF-V-Dataset
---
<h1>A GPT-4V Level Multimodal LLM on Your Phone</h1>
[GitHub](https://github.com/OpenBMB/MiniCPM-V) | [Demo](https://huggingface.co/spaces/openbmb/MiniCPM-Llama3-V-2_5) | <a href="https://github.com/OpenBMB/MiniCPM-V/blob/main/docs/wechat.md" target="_blank"> WeChat</a>
## News <!-- omit in toc -->
#### 📌 Pinned
* [2024.05.28] 🚀🚀🚀 MiniCPM-Llama3-V 2.5 now fully supports its feature in llama.cpp and ollama! Please pull the latest code **of our provided forks** ([llama.cpp](https://github.com/OpenBMB/llama.cpp/blob/minicpm-v2.5/examples/minicpmv/README.md), [ollama](https://github.com/OpenBMB/ollama/tree/minicpm-v2.5)). GGUF models in various sizes are available [here](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf/tree/main). We are working hard to merge PRs into official repositories. Please stay tuned! You can visit our [GitHub](https://github.com/OpenBMB/MiniCPM-V) repository for more information!
* [2024.05.28] 💫 We now support LoRA fine-tuning for MiniCPM-Llama3-V 2.5, using only 2 V100 GPUs! See more statistics [here](https://github.com/OpenBMB/MiniCPM-V/tree/main/finetune#model-fine-tuning-memory-usage-statistics).
* [2024.05.23] 🔍 We've released a comprehensive comparison between Phi-3-vision-128k-instruct and MiniCPM-Llama3-V 2.5, including benchmarks evaluations, multilingual capabilities, and inference efficiency 🌟📊🌍🚀. Click [here](https://github.com/OpenBMB/MiniCPM-V/blob/main/docs/compare_with_phi-3_vision.md) to view more details.
* [2024.05.23] 🔥🔥🔥 MiniCPM-V tops GitHub Trending and HuggingFace Trending! Our demo, recommended by Hugging Face Gradios official account, is available [here](https://huggingface.co/spaces/openbmb/MiniCPM-Llama3-V-2_5). Come and try it out!
<br>
* [2024.06.03] Now, you can run MiniCPM-Llama3-V 2.5 on multiple low VRAM GPUs(12 GB or 16 GB) by distributing the model's layers across multiple GPUs. For more details, Check this [link](https://github.com/OpenBMB/MiniCPM-V/blob/main/docs/inference_on_multiple_gpus.md).
* [2024.05.25] MiniCPM-Llama3-V 2.5 now supports streaming outputs and customized system prompts. Try it at [here](#usage)
* [2024.05.24] We release the [MiniCPM-Llama3-V 2.5 gguf](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf), which supports [llama.cpp](https://github.com/OpenBMB/MiniCPM-V/tree/main?tab=readme-ov-file#inference-with-llamacpp) inference and provides a 6~8 token/s smooth decoding on mobile phones. Try it now!
* [2024.05.20] We open-soure MiniCPM-Llama3-V 2.5, it has improved OCR capability and supports 30+ languages, representing the first end-side MLLM achieving GPT-4V level performance! We provide [efficient inference](#deployment-on-mobile-phone) and [simple fine-tuning](https://github.com/OpenBMB/MiniCPM-V/blob/main/finetune/readme.md). Try it now!
## Model Summary
**MiniCPM-Llama3-V 2.5** is the latest model in the MiniCPM-V series. The model is built on SigLip-400M and Llama3-8B-Instruct with a total of 8B parameters. It exhibits a significant performance improvement over MiniCPM-V 2.0. Notable features of MiniCPM-Llama3-V 2.5 include:
- 🔥 **Leading Performance.**
MiniCPM-Llama3-V 2.5 has achieved an average score of 65.1 on OpenCompass, a comprehensive evaluation over 11 popular benchmarks. **With only 8B parameters, it surpasses widely used proprietary models like GPT-4V-1106, Gemini Pro, Claude 3 and Qwen-VL-Max** and greatly outperforms other Llama 3-based MLLMs.
- 💪 **Strong OCR Capabilities.**
MiniCPM-Llama3-V 2.5 can process images with any aspect ratio and up to 1.8 million pixels (e.g., 1344x1344), achieving an **700+ score on OCRBench, surpassing proprietary models such as GPT-4o, GPT-4V-0409, Qwen-VL-Max and Gemini Pro**. Based on recent user feedback, MiniCPM-Llama3-V 2.5 has now enhanced full-text OCR extraction, table-to-markdown conversion, and other high-utility capabilities, and has further strengthened its instruction-following and complex reasoning abilities, enhancing multimodal interaction experiences.
- 🏆 **Trustworthy Behavior.**
Leveraging the latest [RLAIF-V](https://github.com/RLHF-V/RLAIF-V/) method (the newest technology in the [RLHF-V](https://github.com/RLHF-V) [CVPR'24] series), MiniCPM-Llama3-V 2.5 exhibits more trustworthy behavior. It achieves **10.3%** hallucination rate on Object HalBench, lower than GPT-4V-1106 (13.6%), achieving the best-level performance within the open-source community. [Data released](https://huggingface.co/datasets/openbmb/RLAIF-V-Dataset).
- 🌏 **Multilingual Support.**
Thanks to the strong multilingual capabilities of Llama 3 and the cross-lingual generalization technique from [VisCPM](https://github.com/OpenBMB/VisCPM), MiniCPM-Llama3-V 2.5 extends its bilingual (Chinese-English) multimodal capabilities to **over 30 languages including German, French, Spanish, Italian, Russian etc.** [All Supported Languages](./assets/minicpm-llama-v-2-5_languages.md).
- 🚀 **Efficient Deployment.**
MiniCPM-Llama3-V 2.5 systematically employs **model quantization, CPU optimizations, NPU optimizations and compilation optimizations**, achieving high-efficiency deployment on edge devices. For mobile phones with Qualcomm chips, we have integrated the NPU acceleration framework QNN into llama.cpp for the first time. After systematic optimization, MiniCPM-Llama3-V 2.5 has realized a **150-fold acceleration in multimodal large model end-side image encoding** and a **3-fold increase in language decoding speed**.
- 💫 **Easy Usage.**
MiniCPM-Llama3-V 2.5 can be easily used in various ways: (1) [llama.cpp](https://github.com/OpenBMB/llama.cpp/blob/minicpm-v2.5/examples/minicpmv/README.md) and [ollama](https://github.com/OpenBMB/ollama/tree/minicpm-v2.5/examples/minicpm-v2.5) support for efficient CPU inference on local devices, (2) [GGUF](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf) format quantized models in 16 sizes, (3) efficient [LoRA](https://github.com/OpenBMB/MiniCPM-V/tree/main/finetune#lora-finetuning) fine-tuning with only 2 V100 GPUs, (4) [streaming output](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5#usage), (5) quick local WebUI demo setup with [Gradio](https://github.com/OpenBMB/MiniCPM-V/blob/main/web_demo_2.5.py) and [Streamlit](https://github.com/OpenBMB/MiniCPM-V/blob/main/web_demo_streamlit-2_5.py), and (6) interactive demos on [HuggingFace Spaces](https://huggingface.co/spaces/openbmb/MiniCPM-Llama3-V-2_5).
### Evaluation <!-- omit in toc -->
Results on TextVQA, DocVQA, OCRBench, OpenCompass MultiModal Avg , MME, MMBench, MMMU, MathVista, LLaVA Bench, RealWorld QA, Object HalBench.
<div align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/64abc4aa6cadc7aca585dddf/v2KE3wqQgM05ZW3dH2wbx.png" width="110%" />
</div>
Evaluation results of multilingual LLaVA Bench
<div align="center">
<img src="assets/minicpmv-llama3-v2.5/llavabench_compare.png" width="110%" />
</div>
### Examples <!-- omit in toc -->
<table align="center">
<p align="center">
<img src="assets/minicpmv-llama3-v2.5/cases_all.png" width=95%/>
</p>
</table>
We deploy MiniCPM-Llama3-V 2.5 on end devices. The demo video is the raw screen recording on a Xiaomi 14 Pro without edition.
<table align="center">
<p align="center">
<img src="assets/gif_cases/ticket.gif" width=40% style="display:inline-block;"/>
<img src="assets/gif_cases/meal_plan.gif" width=40% style="display:inline-block;"/>
</p>
</table>
<table align="center">
<p align="center">
<img src="assets/gif_cases/1-4.gif" width=80%/>
</p>
</table>
## Demo
Click here to try out the Demo of [MiniCPM-Llama3-V 2.5](https://huggingface.co/spaces/openbmb/MiniCPM-Llama3-V-2_5).
## Deployment on Mobile Phone
Coming soon.
## Usage
Inference using Huggingface transformers on NVIDIA GPUs. Requirements tested on python 3.10
```
Pillow==10.1.0
torch==2.1.2
torchvision==0.16.2
transformers==4.40.0
sentencepiece==0.1.99
```
```python
# test.py
import torch
from PIL import Image
from transformers import AutoModel, AutoTokenizer
model = AutoModel.from_pretrained('openbmb/MiniCPM-Llama3-V-2_5', trust_remote_code=True, torch_dtype=torch.float16)
model = model.to(device='cuda')
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-Llama3-V-2_5', trust_remote_code=True)
model.eval()
image = Image.open('xx.jpg').convert('RGB')
question = 'What is in the image?'
msgs = [{'role': 'user', 'content': question}]
res = model.chat(
image=image,
msgs=msgs,
tokenizer=tokenizer,
sampling=True, # if sampling=False, beam_search will be used by default
temperature=0.7,
# system_prompt='' # pass system_prompt if needed
)
print(res)
## if you want to use streaming, please make sure sampling=True and stream=True
## the model.chat will return a generator
res = model.chat(
image=image,
msgs=msgs,
tokenizer=tokenizer,
sampling=True,
temperature=0.7,
stream=True
)
generated_text = ""
for new_text in res:
generated_text += new_text
print(new_text, flush=True, end='')
```
Please look at [GitHub](https://github.com/OpenBMB/MiniCPM-V) for more detail about usage.
## Inference with llama.cpp<a id="llamacpp"></a>
MiniCPM-Llama3-V 2.5 can run with llama.cpp now! See our fork of [llama.cpp](https://github.com/OpenBMB/llama.cpp/tree/minicpm-v2.5/examples/minicpmv) for more detail.
## Int4 quantized version
Download the int4 quantized version for lower GPU memory (8GB) usage: [MiniCPM-Llama3-V-2_5-int4](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-int4).
## MiniCPM-V 2.0 <!-- omit in toc -->
Please see the info about MiniCPM-V 2.0 [here](https://huggingface.co/openbmb/MiniCPM-V-2).
## License
#### Model License
* The code in this repo is released under the [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) License.
* The usage of MiniCPM-V series model weights must strictly follow [MiniCPM Model License.md](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md).
* The models and weights of MiniCPM are completely free for academic research. after filling out a ["questionnaire"](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g) for registration, are also available for free commercial use.
#### Statement
* As an LLM, MiniCPM-Llama3-V 2.5 generates contents by learning a large mount of texts, but it cannot comprehend, express personal opinions or make value judgement. Anything generated by MiniCPM-Llama3-V 2.5 does not represent the views and positions of the model developers
* We will not be liable for any problems arising from the use of the MinCPM-V open Source model, including but not limited to data security issues, risk of public opinion, or any risks and problems arising from the misdirection, misuse, dissemination or misuse of the model.
## Other Multimodal Projects from Our Team
[VisCPM](https://github.com/OpenBMB/VisCPM/tree/main) | [RLHF-V](https://github.com/RLHF-V/RLHF-V) | [LLaVA-UHD](https://github.com/thunlp/LLaVA-UHD) | [RLAIF-V](https://github.com/RLHF-V/RLAIF-V)
## Citation
If you find our work helpful, please consider citing the following papers
```bib
@article{yu2023rlhf,
title={Rlhf-v: Towards trustworthy mllms via behavior alignment from fine-grained correctional human feedback},
author={Yu, Tianyu and Yao, Yuan and Zhang, Haoye and He, Taiwen and Han, Yifeng and Cui, Ganqu and Hu, Jinyi and Liu, Zhiyuan and Zheng, Hai-Tao and Sun, Maosong and others},
journal={arXiv preprint arXiv:2312.00849},
year={2023}
}
@article{viscpm,
title={Large Multilingual Models Pivot Zero-Shot Multimodal Learning across Languages},
author={Jinyi Hu and Yuan Yao and Chongyi Wang and Shan Wang and Yinxu Pan and Qianyu Chen and Tianyu Yu and Hanghao Wu and Yue Zhao and Haoye Zhang and Xu Han and Yankai Lin and Jiao Xue and Dahai Li and Zhiyuan Liu and Maosong Sun},
journal={arXiv preprint arXiv:2308.12038},
year={2023}
}
@article{xu2024llava-uhd,
title={{LLaVA-UHD}: an LMM Perceiving Any Aspect Ratio and High-Resolution Images},
author={Xu, Ruyi and Yao, Yuan and Guo, Zonghao and Cui, Junbo and Ni, Zanlin and Ge, Chunjiang and Chua, Tat-Seng and Liu, Zhiyuan and Huang, Gao},
journal={arXiv preprint arXiv:2403.11703},
year={2024}
}
@article{yu2024rlaifv,
title={RLAIF-V: Aligning MLLMs through Open-Source AI Feedback for Super GPT-4V Trustworthiness},
author={Yu, Tianyu and Zhang, Haoye and Yao, Yuan and Dang, Yunkai and Chen, Da and Lu, Xiaoman and Cui, Ganqu and He, Taiwen and Liu, Zhiyuan and Chua, Tat-Seng and Sun, Maosong},
journal={arXiv preprint arXiv:2405.17220},
year={2024},
}
```

BIN
assets/MiniCPM-Llama3-V-2.5-benchmark.png (Stored with Git LFS) Normal file

Binary file not shown.

BIN
assets/MiniCPM-Llama3-V-2.5-peformance.png (Stored with Git LFS) Normal file

Binary file not shown.

BIN
assets/gif_cases/1-4.gif (Stored with Git LFS) Normal file

Binary file not shown.

BIN
assets/gif_cases/meal_plan.gif (Stored with Git LFS) Normal file

Binary file not shown.

BIN
assets/gif_cases/ticket.gif (Stored with Git LFS) Normal file

Binary file not shown.

BIN
assets/minicpmv-llama3-v2.5/case_OCR_en.png (Stored with Git LFS) Normal file

Binary file not shown.

BIN
assets/minicpmv-llama3-v2.5/case_complex_reasoning.png (Stored with Git LFS) Normal file

Binary file not shown.

BIN
assets/minicpmv-llama3-v2.5/case_long_img.png (Stored with Git LFS) Normal file

Binary file not shown.

BIN
assets/minicpmv-llama3-v2.5/case_markdown.png (Stored with Git LFS) Normal file

Binary file not shown.

BIN
assets/minicpmv-llama3-v2.5/cases_all.png (Stored with Git LFS) Normal file

Binary file not shown.

BIN
assets/minicpmv-llama3-v2.5/llavabench_compare.png (Stored with Git LFS) Normal file

Binary file not shown.

54
config.json Normal file
View File

@ -0,0 +1,54 @@
{
"_name_or_path": "openbmb/MiniCPM-Llama3-V-2_5",
"architectures": [
"MiniCPMV"
],
"attention_bias": false,
"attention_dropout": 0.0,
"auto_map": {
"AutoConfig": "configuration_minicpm.MiniCPMVConfig",
"AutoModel": "modeling_minicpmv.MiniCPMV",
"AutoModelForCausalLM": "modeling_minicpmv.MiniCPMV"
},
"batch_vision_input": true,
"bos_token_id": 128000,
"drop_vision_last_layer": false,
"eos_token_id": 128001,
"hidden_act": "silu",
"hidden_size": 4096,
"image_size": 448,
"initializer_range": 0.02,
"intermediate_size": 14336,
"max_position_embeddings": 8192,
"mm_use_im_start_end": true,
"model_type": "minicpmv",
"num_attention_heads": 32,
"num_hidden_layers": 32,
"num_key_value_heads": 8,
"patch_size": 14,
"pretraining_tp": 1,
"query_num": 96,
"rms_norm_eps": 1e-05,
"rope_scaling": null,
"rope_theta": 500000.0,
"slice_config": {
"max_slice_nums": 9,
"patch_size": 14,
"model_type": "minicpmv"
},
"slice_mode": true,
"tie_word_embeddings": false,
"torch_dtype": "float16",
"transformers_version": "4.40.0",
"use_cache": false,
"vision_config": {
"hidden_size": 1152,
"image_size": 980,
"intermediate_size": 4304,
"model_type": "idefics2",
"num_attention_heads": 16,
"num_hidden_layers": 27,
"patch_size": 14
},
"vocab_size": 128256
}

113
configuration_minicpm.py Normal file
View File

@ -0,0 +1,113 @@
# coding=utf-8
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" MiniCPM model configuration"""
import os
from typing import Union
from transformers.utils import logging
from transformers import LlamaConfig, PretrainedConfig
from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionConfig
logger = logging.get_logger(__name__)
class MiniCPMVSliceConfig(PretrainedConfig):
model_type = "minicpmv"
def __init__(
self,
patch_size=14,
max_slice_nums=9,
scale_resolution=448,
**kwargs,
):
super().__init__(**kwargs)
self.patch_size = patch_size
self.max_slice_nums = max_slice_nums
self.scale_resolution = scale_resolution
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
if config_dict.get("model_type") == "minicpmv":
config_dict = config_dict["slice_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class MiniCPMVConfig(LlamaConfig):
model_type = "minicpmv"
keys_to_ignore_at_inference = ["past_key_values"]
default_vision_config = {
"hidden_size": 1152,
"image_size": 980,
"intermediate_size": 4304,
"model_type": "idefics2",
"num_attention_heads": 16,
"num_hidden_layers": 27,
"patch_size": 14,
}
def __init__(
self,
use_cache=True,
query_num=64,
image_size=448,
drop_vision_last_layer=True,
batch_vision_input=True,
slice_config=None,
vision_config=None,
**kwargs,
):
self.use_cache = use_cache
self.query_num = query_num
self.image_size = image_size
self.drop_vision_last_layer = drop_vision_last_layer
self.batch_vision_input = batch_vision_input
if slice_config is None:
self.slice_config = MiniCPMVSliceConfig(max_slice_nums=1)
else:
self.slice_config = MiniCPMVSliceConfig(**slice_config)
self.slice_mode = True
# same as HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
if vision_config is None:
self.vision_config = Idefics2VisionConfig(**self.default_vision_config)
logger.info("vision_config is None, using default vision config")
elif isinstance(vision_config, dict):
self.vision_config = Idefics2VisionConfig(**vision_config)
elif isinstance(vision_config, Idefics2VisionConfig):
self.vision_config = vision_config
self.patch_size = self.vision_config.patch_size
super().__init__(**kwargs)

6
generation_config.json Normal file
View File

@ -0,0 +1,6 @@
{
"_from_model_config": true,
"bos_token_id": 128000,
"eos_token_id": 128001,
"transformers_version": "4.40.0"
}

BIN
model-00001-of-00007.safetensors (Stored with Git LFS) Normal file

Binary file not shown.

BIN
model-00002-of-00007.safetensors (Stored with Git LFS) Normal file

Binary file not shown.

BIN
model-00003-of-00007.safetensors (Stored with Git LFS) Normal file

Binary file not shown.

BIN
model-00004-of-00007.safetensors (Stored with Git LFS) Normal file

Binary file not shown.

BIN
model-00005-of-00007.safetensors (Stored with Git LFS) Normal file

Binary file not shown.

BIN
model-00006-of-00007.safetensors (Stored with Git LFS) Normal file

Binary file not shown.

BIN
model-00007-of-00007.safetensors (Stored with Git LFS) Normal file

Binary file not shown.

View File

@ -0,0 +1,748 @@
{
"metadata": {
"total_size": 34148369344
},
"weight_map": {
"llm.lm_head.weight": "model-00007-of-00007.safetensors",
"llm.model.embed_tokens.weight": "model-00001-of-00007.safetensors",
"llm.model.layers.0.input_layernorm.weight": "model-00001-of-00007.safetensors",
"llm.model.layers.0.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
"llm.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
"llm.model.layers.0.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
"llm.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
"llm.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
"llm.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
"llm.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
"llm.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
"llm.model.layers.1.input_layernorm.weight": "model-00001-of-00007.safetensors",
"llm.model.layers.1.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
"llm.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
"llm.model.layers.1.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
"llm.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
"llm.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
"llm.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
"llm.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
"llm.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
"llm.model.layers.10.input_layernorm.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.10.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.10.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.10.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.10.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.10.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.10.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.10.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.10.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.11.input_layernorm.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.11.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.11.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.11.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.11.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.11.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.11.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.11.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.11.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.12.input_layernorm.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.12.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.12.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.12.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.12.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.12.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.12.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.12.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.12.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.13.input_layernorm.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.13.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.13.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.13.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.13.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.13.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.13.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.13.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.13.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.14.input_layernorm.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.14.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.14.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.14.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.14.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.14.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.14.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.14.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.14.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.15.input_layernorm.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.15.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.15.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.15.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.15.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.15.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.15.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.15.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.15.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.16.input_layernorm.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.16.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.16.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.16.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.16.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.16.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.16.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.16.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.16.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.17.input_layernorm.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.17.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.17.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.17.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.17.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.17.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.17.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.17.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.17.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.18.input_layernorm.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.18.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.18.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.18.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.18.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.18.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.18.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.18.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.18.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.19.input_layernorm.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.19.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.19.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.19.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.19.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.19.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.19.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.19.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.19.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.2.input_layernorm.weight": "model-00001-of-00007.safetensors",
"llm.model.layers.2.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
"llm.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
"llm.model.layers.2.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
"llm.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
"llm.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
"llm.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
"llm.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
"llm.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
"llm.model.layers.20.input_layernorm.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.20.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.20.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.20.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.20.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.20.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.20.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.20.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.20.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
"llm.model.layers.21.input_layernorm.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.21.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.21.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.21.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.21.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.21.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.21.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.21.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.21.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.22.input_layernorm.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.22.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.22.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.22.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.22.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.22.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.22.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.22.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.22.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.23.input_layernorm.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.23.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.23.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.23.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.23.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.23.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.23.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.23.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.23.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.24.input_layernorm.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.24.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.24.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.24.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.24.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.24.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.24.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.24.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.24.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.25.input_layernorm.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.25.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.25.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.25.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.25.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.25.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.25.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.25.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.25.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
"llm.model.layers.26.input_layernorm.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.26.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.26.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.26.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.26.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.26.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.26.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.26.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.26.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.27.input_layernorm.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.27.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.27.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.27.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.27.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.27.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.27.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.27.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.27.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.28.input_layernorm.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.28.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.28.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.28.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.28.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.28.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.28.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.28.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.28.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.29.input_layernorm.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.29.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.29.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.29.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.29.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.29.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.29.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.29.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.29.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.3.input_layernorm.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.3.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.3.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.3.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.3.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
"llm.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
"llm.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
"llm.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
"llm.model.layers.30.input_layernorm.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.30.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.30.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.30.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.30.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.30.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.30.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.30.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.30.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.31.input_layernorm.weight": "model-00007-of-00007.safetensors",
"llm.model.layers.31.mlp.down_proj.weight": "model-00007-of-00007.safetensors",
"llm.model.layers.31.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.31.mlp.up_proj.weight": "model-00007-of-00007.safetensors",
"llm.model.layers.31.post_attention_layernorm.weight": "model-00007-of-00007.safetensors",
"llm.model.layers.31.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.31.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.31.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.31.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
"llm.model.layers.4.input_layernorm.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.4.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.4.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.4.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.4.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.4.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.4.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.4.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.4.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.5.input_layernorm.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.5.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.5.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.5.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.5.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.5.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.5.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.5.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.5.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.6.input_layernorm.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.6.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.6.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.6.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.6.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.6.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.6.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.6.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.6.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.7.input_layernorm.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.7.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.7.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.7.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.7.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.7.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.7.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.7.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.7.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.8.input_layernorm.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.8.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.8.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.8.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.8.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.8.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.8.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.8.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.8.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
"llm.model.layers.9.input_layernorm.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.9.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.9.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.9.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.9.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.9.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.9.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.9.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
"llm.model.layers.9.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
"llm.model.norm.weight": "model-00007-of-00007.safetensors",
"resampler.attn.in_proj_bias": "model-00007-of-00007.safetensors",
"resampler.attn.in_proj_weight": "model-00007-of-00007.safetensors",
"resampler.attn.out_proj.bias": "model-00007-of-00007.safetensors",
"resampler.attn.out_proj.weight": "model-00007-of-00007.safetensors",
"resampler.kv_proj.weight": "model-00007-of-00007.safetensors",
"resampler.ln_kv.bias": "model-00007-of-00007.safetensors",
"resampler.ln_kv.weight": "model-00007-of-00007.safetensors",
"resampler.ln_post.bias": "model-00007-of-00007.safetensors",
"resampler.ln_post.weight": "model-00007-of-00007.safetensors",
"resampler.ln_q.bias": "model-00007-of-00007.safetensors",
"resampler.ln_q.weight": "model-00007-of-00007.safetensors",
"resampler.proj": "model-00007-of-00007.safetensors",
"resampler.query": "model-00007-of-00007.safetensors",
"vpm.embeddings.patch_embedding.bias": "model-00007-of-00007.safetensors",
"vpm.embeddings.patch_embedding.weight": "model-00007-of-00007.safetensors",
"vpm.embeddings.position_embedding.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.0.layer_norm1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.0.layer_norm1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.0.layer_norm2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.0.layer_norm2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.0.mlp.fc1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.0.mlp.fc1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.0.mlp.fc2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.0.mlp.fc2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.0.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.0.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.0.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.0.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.0.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.0.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.0.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.0.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.1.layer_norm1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.1.layer_norm1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.1.layer_norm2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.1.layer_norm2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.1.mlp.fc1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.1.mlp.fc1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.1.mlp.fc2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.1.mlp.fc2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.1.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.1.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.1.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.1.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.1.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.1.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.1.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.1.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.10.layer_norm1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.10.layer_norm1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.10.layer_norm2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.10.layer_norm2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.10.mlp.fc1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.10.mlp.fc1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.10.mlp.fc2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.10.mlp.fc2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.10.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.10.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.10.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.10.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.10.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.10.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.10.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.10.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.11.layer_norm1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.11.layer_norm1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.11.layer_norm2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.11.layer_norm2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.11.mlp.fc1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.11.mlp.fc1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.11.mlp.fc2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.11.mlp.fc2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.11.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.11.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.11.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.11.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.11.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.11.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.11.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.11.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.12.layer_norm1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.12.layer_norm1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.12.layer_norm2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.12.layer_norm2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.12.mlp.fc1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.12.mlp.fc1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.12.mlp.fc2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.12.mlp.fc2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.12.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.12.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.12.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.12.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.12.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.12.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.12.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.12.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.13.layer_norm1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.13.layer_norm1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.13.layer_norm2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.13.layer_norm2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.13.mlp.fc1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.13.mlp.fc1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.13.mlp.fc2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.13.mlp.fc2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.13.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.13.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.13.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.13.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.13.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.13.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.13.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.13.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.14.layer_norm1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.14.layer_norm1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.14.layer_norm2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.14.layer_norm2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.14.mlp.fc1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.14.mlp.fc1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.14.mlp.fc2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.14.mlp.fc2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.14.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.14.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.14.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.14.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.14.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.14.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.14.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.14.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.15.layer_norm1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.15.layer_norm1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.15.layer_norm2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.15.layer_norm2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.15.mlp.fc1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.15.mlp.fc1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.15.mlp.fc2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.15.mlp.fc2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.15.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.15.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.15.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.15.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.15.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.15.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.15.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.15.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.16.layer_norm1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.16.layer_norm1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.16.layer_norm2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.16.layer_norm2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.16.mlp.fc1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.16.mlp.fc1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.16.mlp.fc2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.16.mlp.fc2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.16.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.16.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.16.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.16.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.16.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.16.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.16.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.16.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.17.layer_norm1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.17.layer_norm1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.17.layer_norm2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.17.layer_norm2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.17.mlp.fc1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.17.mlp.fc1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.17.mlp.fc2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.17.mlp.fc2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.17.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.17.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.17.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.17.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.17.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.17.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.17.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.17.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.18.layer_norm1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.18.layer_norm1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.18.layer_norm2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.18.layer_norm2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.18.mlp.fc1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.18.mlp.fc1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.18.mlp.fc2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.18.mlp.fc2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.18.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.18.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.18.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.18.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.18.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.18.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.18.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.18.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.19.layer_norm1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.19.layer_norm1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.19.layer_norm2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.19.layer_norm2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.19.mlp.fc1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.19.mlp.fc1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.19.mlp.fc2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.19.mlp.fc2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.19.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.19.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.19.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.19.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.19.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.19.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.19.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.19.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.2.layer_norm1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.2.layer_norm1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.2.layer_norm2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.2.layer_norm2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.2.mlp.fc1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.2.mlp.fc1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.2.mlp.fc2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.2.mlp.fc2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.2.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.2.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.2.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.2.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.2.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.2.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.2.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.2.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.20.layer_norm1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.20.layer_norm1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.20.layer_norm2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.20.layer_norm2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.20.mlp.fc1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.20.mlp.fc1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.20.mlp.fc2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.20.mlp.fc2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.20.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.20.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.20.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.20.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.20.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.20.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.20.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.20.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.21.layer_norm1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.21.layer_norm1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.21.layer_norm2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.21.layer_norm2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.21.mlp.fc1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.21.mlp.fc1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.21.mlp.fc2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.21.mlp.fc2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.21.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.21.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.21.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.21.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.21.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.21.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.21.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.21.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.22.layer_norm1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.22.layer_norm1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.22.layer_norm2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.22.layer_norm2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.22.mlp.fc1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.22.mlp.fc1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.22.mlp.fc2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.22.mlp.fc2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.22.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.22.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.22.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.22.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.22.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.22.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.22.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.22.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.23.layer_norm1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.23.layer_norm1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.23.layer_norm2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.23.layer_norm2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.23.mlp.fc1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.23.mlp.fc1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.23.mlp.fc2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.23.mlp.fc2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.23.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.23.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.23.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.23.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.23.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.23.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.23.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.23.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.24.layer_norm1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.24.layer_norm1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.24.layer_norm2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.24.layer_norm2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.24.mlp.fc1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.24.mlp.fc1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.24.mlp.fc2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.24.mlp.fc2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.24.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.24.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.24.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.24.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.24.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.24.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.24.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.24.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.25.layer_norm1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.25.layer_norm1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.25.layer_norm2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.25.layer_norm2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.25.mlp.fc1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.25.mlp.fc1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.25.mlp.fc2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.25.mlp.fc2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.25.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.25.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.25.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.25.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.25.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.25.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.25.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.25.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.26.layer_norm1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.26.layer_norm1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.26.layer_norm2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.26.layer_norm2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.26.mlp.fc1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.26.mlp.fc1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.26.mlp.fc2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.26.mlp.fc2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.26.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.26.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.26.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.26.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.26.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.26.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.26.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.26.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.3.layer_norm1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.3.layer_norm1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.3.layer_norm2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.3.layer_norm2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.3.mlp.fc1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.3.mlp.fc1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.3.mlp.fc2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.3.mlp.fc2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.3.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.3.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.3.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.3.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.3.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.3.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.3.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.3.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.4.layer_norm1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.4.layer_norm1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.4.layer_norm2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.4.layer_norm2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.4.mlp.fc1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.4.mlp.fc1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.4.mlp.fc2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.4.mlp.fc2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.4.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.4.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.4.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.4.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.4.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.4.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.4.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.4.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.5.layer_norm1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.5.layer_norm1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.5.layer_norm2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.5.layer_norm2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.5.mlp.fc1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.5.mlp.fc1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.5.mlp.fc2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.5.mlp.fc2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.5.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.5.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.5.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.5.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.5.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.5.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.5.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.5.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.6.layer_norm1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.6.layer_norm1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.6.layer_norm2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.6.layer_norm2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.6.mlp.fc1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.6.mlp.fc1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.6.mlp.fc2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.6.mlp.fc2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.6.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.6.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.6.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.6.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.6.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.6.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.6.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.6.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.7.layer_norm1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.7.layer_norm1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.7.layer_norm2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.7.layer_norm2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.7.mlp.fc1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.7.mlp.fc1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.7.mlp.fc2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.7.mlp.fc2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.7.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.7.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.7.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.7.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.7.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.7.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.7.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.7.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.8.layer_norm1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.8.layer_norm1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.8.layer_norm2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.8.layer_norm2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.8.mlp.fc1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.8.mlp.fc1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.8.mlp.fc2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.8.mlp.fc2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.8.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.8.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.8.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.8.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.8.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.8.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.8.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.8.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.9.layer_norm1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.9.layer_norm1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.9.layer_norm2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.9.layer_norm2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.9.mlp.fc1.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.9.mlp.fc1.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.9.mlp.fc2.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.9.mlp.fc2.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.9.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.9.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.9.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.9.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.9.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.9.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.9.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
"vpm.encoder.layers.9.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
"vpm.post_layernorm.bias": "model-00007-of-00007.safetensors",
"vpm.post_layernorm.weight": "model-00007-of-00007.safetensors"
}
}

696
modeling_minicpmv.py Normal file
View File

@ -0,0 +1,696 @@
import math
from typing import List, Optional
import json
import torch
import torchvision
from threading import Thread
from copy import deepcopy
from PIL import Image
from torchvision import transforms
from transformers import LlamaTokenizer, LlamaPreTrainedModel, LlamaForCausalLM, AutoModel, PreTrainedTokenizerFast, TextIteratorStreamer
from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionTransformer
from .configuration_minicpm import MiniCPMVConfig
from .resampler import Resampler
IMAGENET_INCEPTION_MEAN = (0.5, 0.5, 0.5) # timm.data.IMAGENET_INCEPTION_MEAN
IMAGENET_INCEPTION_STD = (0.5, 0.5, 0.5) # timm.data.IMAGENET_INCEPTION_STD
class MiniCPMVPreTrainedModel(LlamaPreTrainedModel):
config_class = MiniCPMVConfig
class MiniCPMV(MiniCPMVPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.llm = LlamaForCausalLM(config)
self.vpm = self.init_vision_module()
self.vision_dim = self.vpm.embed_dim
self.embed_dim = self.llm.config.hidden_size
self.resampler = self.init_resampler(self.embed_dim, self.vision_dim)
self.transform = self.init_transform()
def init_vision_module(self):
# same as HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
model = Idefics2VisionTransformer(self.config.vision_config)
if self.config.drop_vision_last_layer:
model.encoder.layers = model.encoder.layers[:-1]
setattr(model, 'embed_dim', model.embeddings.embed_dim)
setattr(model, 'patch_size', model.embeddings.patch_size)
return model
def init_resampler(self, embed_dim, vision_dim):
return Resampler(
num_queries=self.config.query_num,
embed_dim=embed_dim,
num_heads=embed_dim // 128,
kv_dim=vision_dim,
adaptive=True
)
def init_transform(self):
return transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize(
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD
),
]
)
def get_vllm_embedding(self, data):
if 'vision_hidden_states' not in data:
dtype = self.vpm.embeddings.position_embedding.weight.dtype
device = self.vpm.embeddings.position_embedding.weight.device
tgt_sizes = data['tgt_sizes']
pixel_values_list = data['pixel_values']
vision_hidden_states = []
all_pixel_values = []
img_cnt = []
for pixel_values in pixel_values_list:
img_cnt.append(len(pixel_values))
all_pixel_values.extend([i.flatten(end_dim=1).permute(1, 0) for i in pixel_values])
# exist image
if all_pixel_values:
tgt_sizes = torch.vstack(tgt_sizes).type(torch.int32)
if self.config.batch_vision_input:
max_patches = torch.max(tgt_sizes[:, 0] * tgt_sizes[:, 1])
all_pixel_values = torch.nn.utils.rnn.pad_sequence(all_pixel_values, batch_first=True,
padding_value=0.0)
B, L, _ = all_pixel_values.shape
all_pixel_values = all_pixel_values.permute(0, 2, 1).reshape(B, 3, -1, L)
patch_attn_mask = torch.zeros((B, 1, max_patches), dtype=torch.bool, device=device)
for i in range(B):
patch_attn_mask[i, :tgt_sizes[i][0] * tgt_sizes[i][1]] = True
vision_embedding = self.vpm(all_pixel_values.type(dtype), patch_attention_mask=patch_attn_mask).last_hidden_state
vision_embedding = self.resampler(vision_embedding, tgt_sizes)
else:
# get vision_embedding foreach
vision_embedding = []
for single_tgt_size, single_pixel_values in zip(tgt_sizes, all_pixel_values):
single_pixel_values = single_pixel_values.unsqueeze(0)
B, L, _ = single_pixel_values.shape
single_pixel_values = single_pixel_values.permute(0, 2, 1).reshape(B, 3, -1, L)
single_vision_embedding = self.vpm(single_pixel_values.type(dtype)).last_hidden_state
single_vision_embedding = self.resampler(single_vision_embedding, single_tgt_size.unsqueeze(0))
vision_embedding.append(single_vision_embedding)
vision_embedding = torch.vstack(vision_embedding)
start = 0
for pixel_values in pixel_values_list:
img_cnt = len(pixel_values)
if img_cnt > 0:
vision_hidden_states.append(vision_embedding[start: start + img_cnt])
start += img_cnt
else:
vision_hidden_states.append([])
else: # no image
if self.training:
dummy_image = torch.zeros(
(1, 3, 224, 224),
device=device, dtype=dtype
)
tgt_sizes = torch.Tensor([[(224 // self.config.patch_size), math.ceil(224 / self.config.patch_size)]]).type(torch.int32)
dummy_feature = self.resampler(self.vpm(dummy_image).last_hidden_state, tgt_sizes)
else:
dummy_feature = []
for _ in range(len(pixel_values_list)):
vision_hidden_states.append(dummy_feature)
else:
vision_hidden_states = data['vision_hidden_states']
if hasattr(self.llm.config, 'scale_emb'):
vllm_embedding = self.llm.model.embed_tokens(data['input_ids']) * self.llm.config.scale_emb
else:
vllm_embedding = self.llm.model.embed_tokens(data['input_ids'])
vision_hidden_states = [i.type(vllm_embedding.dtype) if isinstance(
i, torch.Tensor) else i for i in vision_hidden_states]
bs = len(data['input_ids'])
for i in range(bs):
cur_vs_hs = vision_hidden_states[i]
if len(cur_vs_hs) > 0:
cur_vllm_emb = vllm_embedding[i]
cur_image_bound = data['image_bound'][i]
if len(cur_image_bound) > 0:
image_indices = torch.stack(
[torch.arange(r[0], r[1], dtype=torch.long) for r in cur_image_bound]
).to(vllm_embedding.device)
cur_vllm_emb.scatter_(0, image_indices.view(-1, 1).repeat(1, cur_vllm_emb.shape[-1]),
cur_vs_hs.view(-1, cur_vs_hs.shape[-1]))
elif self.training:
cur_vllm_emb += cur_vs_hs[0].mean() * 0
return vllm_embedding, vision_hidden_states
def forward(self, data, **kwargs):
vllm_embedding, vision_hidden_states = self.get_vllm_embedding(data)
position_ids = data["position_ids"]
if position_ids.dtype != torch.int64:
position_ids = position_ids.long()
return self.llm(
input_ids=None,
position_ids=position_ids,
inputs_embeds=vllm_embedding,
**kwargs
)
def _convert_to_tensors(
self, tokenizer, input_ids, max_inp_length: Optional[int] = None
):
if max_inp_length is not None:
input_ids = input_ids[:max_inp_length]
input_ids = torch.tensor(input_ids, dtype=torch.int32)
image_start_tokens = torch.where(input_ids == tokenizer.im_start_id)[0]
# 跳过 im_start
image_start_tokens += 1
image_end_tokens = torch.where(input_ids == tokenizer.im_end_id)[0]
valid_image_nums = max(len(image_start_tokens), len(image_end_tokens))
image_bound = torch.hstack(
[
image_start_tokens[:valid_image_nums].unsqueeze(-1),
image_end_tokens[:valid_image_nums].unsqueeze(-1),
]
)
model_input = {}
model_input["input_ids"] = input_ids.unsqueeze(0).to(self.device)
model_input["image_bound"] = image_bound
return model_input
def _process_list(
self, tokenizer, input_id_list, max_inp_length: Optional[int] = None
):
pad_keys = ["input_ids"]
input_tensors = []
for input_ids in input_id_list:
input_tensors.append(
self._convert_to_tensors(tokenizer, input_ids, max_inp_length)
)
padded = {}
for key in pad_keys:
padded[key] = pad(input_tensors, key, padding_side="left").to(self.device)
padded["image_bound"] = [i["image_bound"] for i in input_tensors]
return padded
def _decode(self, inputs_embeds, tokenizer, **kwargs):
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
output = self.llm.generate(
inputs_embeds=inputs_embeds,
pad_token_id=0,
eos_token_id=terminators,
**kwargs
)
return self._decode_text(output, tokenizer)
def _decode_stream(self, inputs_embeds, tokenizer, **kwargs):
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
streamer = TextIteratorStreamer(tokenizer=tokenizer)
generation_kwargs = {
'inputs_embeds': inputs_embeds,
'pad_token_id': 0,
'eos_token_id': terminators,
'streamer': streamer
}
generation_kwargs.update(kwargs)
thread = Thread(target=self.llm.generate, kwargs=generation_kwargs)
thread.start()
return streamer
def _decode_text(self, result_ids, tokenizer):
result_text = []
for result in result_ids:
result = result[result != 0]
if result[0] == tokenizer.bos_id:
result = result[1:]
if result[-1] == tokenizer.eos_id or result[-1] == tokenizer.eot_id:
result = result[:-1]
result_text.append(tokenizer.decode(result).strip())
return result_text
def slice_image(self, image):
return slice_image(
image,
self.config.slice_config.max_slice_nums,
self.config.slice_config.scale_resolution,
self.config.slice_config.patch_size,
)
def get_slice_image_placeholder(self, image, tokenizer):
image_placeholder = (
tokenizer.im_start
+ tokenizer.unk_token * self.config.query_num
+ tokenizer.im_end
)
slice_images = []
source_image, patches, best_grid = slice_image(
image,
self.config.slice_config.max_slice_nums,
self.config.slice_config.scale_resolution,
self.config.slice_config.patch_size,
)
slice_images.append(source_image)
final_placeholder = image_placeholder
if len(patches) > 0:
for i in range(len(patches)):
for j in range(len(patches[0])):
slice_images.append(patches[i][j])
final_placeholder += get_grid_placeholder(
tokenizer, best_grid, self.config.query_num
)
return slice_images, final_placeholder
def reshape_by_patch(self, image_tensor):
"""
:param image_tensor: shape [3, H, W]
:param patch_size:
:return: [3, patch_size, HW/patch_size]
"""
patch_size = self.config.patch_size
patches = torch.nn.functional.unfold(
image_tensor,
(patch_size, patch_size),
stride=(patch_size, patch_size)
)
patches = patches.reshape(image_tensor.size(0), patch_size, patch_size, -1)
patches = patches.permute(0, 1, 3, 2).reshape(image_tensor.size(0), patch_size, -1)
return patches
def generate(
self,
input_id_list=None,
img_list=None,
tgt_sizes=None,
tokenizer=None,
max_inp_length: Optional[int] = None,
vision_hidden_states=None,
return_vision_hidden_states=False,
stream=False,
**kwargs
):
assert input_id_list is not None
bs = len(input_id_list)
if img_list == None:
img_list = [[] for i in range(bs)]
assert bs == len(img_list)
model_inputs = self._process_list(tokenizer, input_id_list, max_inp_length)
if vision_hidden_states is None:
pixel_values = []
for i in range(bs):
img_inps = []
for img in img_list[i]:
img_inps.append(img.to(self.device))
if img_inps:
pixel_values.append(img_inps)
else:
pixel_values.append([])
model_inputs["pixel_values"] = pixel_values
model_inputs['tgt_sizes'] = tgt_sizes
else:
model_inputs["vision_hidden_states"] = vision_hidden_states
with torch.inference_mode():
(
model_inputs["inputs_embeds"],
vision_hidden_states,
) = self.get_vllm_embedding(model_inputs)
if stream:
result = self._decode_stream(model_inputs["inputs_embeds"], tokenizer, **kwargs)
else:
result = self._decode(model_inputs["inputs_embeds"], tokenizer, **kwargs)
if return_vision_hidden_states:
return result, vision_hidden_states
return result
def chat(
self,
image,
msgs,
tokenizer,
vision_hidden_states=None,
max_new_tokens=1024,
sampling=True,
max_inp_length=2048,
system_prompt='',
stream=False,
**kwargs
):
if isinstance(msgs, str):
msgs = json.loads(msgs)
copy_msgs = deepcopy(msgs)
assert len(copy_msgs) > 0, 'msgs is empty'
assert sampling or not stream, 'if use stream mode, make sure sampling=True'
if image is not None and isinstance(copy_msgs[0]['content'], str):
copy_msgs[0]['content'] = [image, copy_msgs[0]['content']]
images = []
tgt_sizes = []
for i, msg in enumerate(copy_msgs):
role = msg["role"]
content = msg["content"]
assert role in ["user", "assistant"]
if i == 0:
assert role == "user", "The role of first msg should be user"
if isinstance(content, str):
content = [content]
cur_msgs = []
for c in content:
if isinstance(c, Image.Image):
image = c
if self.config.slice_mode:
slice_images, image_placeholder = self.get_slice_image_placeholder(
image, tokenizer
)
cur_msgs.append(image_placeholder)
for slice_image in slice_images:
slice_image = self.transform(slice_image)
H, W = slice_image.shape[1:]
images.append(self.reshape_by_patch(slice_image))
tgt_sizes.append(torch.Tensor([H // self.config.patch_size, W // self.config.patch_size]).type(torch.int32))
else:
images.append(self.transform(image))
cur_msgs.append(
tokenizer.im_start
+ tokenizer.unk_token * self.config.query_num
+ tokenizer.im_end
)
elif isinstance(c, str):
cur_msgs.append(c)
msg['content'] = '\n'.join(cur_msgs)
if tgt_sizes:
tgt_sizes = torch.vstack(tgt_sizes)
if system_prompt:
sys_msg = {'role': 'system', 'content': system_prompt}
copy_msgs = [sys_msg] + copy_msgs
input_ids = tokenizer.apply_chat_template(copy_msgs, tokenize=True, add_generation_prompt=False)
if sampling:
generation_config = {
"top_p": 0.8,
"top_k": 100,
"temperature": 0.7,
"do_sample": True,
"repetition_penalty": 1.05
}
else:
generation_config = {
"num_beams": 3,
"repetition_penalty": 1.2,
}
generation_config.update(
(k, kwargs[k]) for k in generation_config.keys() & kwargs.keys()
)
with torch.inference_mode():
res, vision_hidden_states = self.generate(
input_id_list=[input_ids],
max_inp_length=max_inp_length,
img_list=[images],
tgt_sizes=[tgt_sizes],
tokenizer=tokenizer,
max_new_tokens=max_new_tokens,
vision_hidden_states=vision_hidden_states,
return_vision_hidden_states=True,
stream=stream,
**generation_config
)
if stream:
def stream_gen():
for text in res:
text = text.replace(tokenizer.eot_token, '').replace(tokenizer.eos_token, '')
yield text
return stream_gen()
else:
answer = res[0]
return answer
class PreTrainedTokenizerFastWrapper(PreTrainedTokenizerFast):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.eot_token = "<|eot_id|>"
self.im_start = "<image>"
self.im_end = "</image>"
self.ref_start = "<ref>"
self.ref_end = "</ref>"
self.box_start = "<box>"
self.box_end = "</box>"
self.quad_start = "<quad>"
self.quad_end = "</quad>"
self.slice_start = "<slice>"
self.slice_end = "</slice>"
@property
def eos_id(self):
return self.eos_token_id
@property
def bos_id(self):
return self.bos_token_id
@property
def unk_id(self):
return self.unk_token_id
@property
def eot_id(self):
return self.convert_tokens_to_ids(self.eot_token)
@property
def im_start_id(self):
return self.convert_tokens_to_ids(self.im_start)
@property
def im_end_id(self):
return self.convert_tokens_to_ids(self.im_end)
@staticmethod
def escape(text: str) -> str:
return text
@staticmethod
def unescape(text: str) -> str:
return text
def pad(orig_items, key, max_length=None, padding_value=0, padding_side="left"):
items = []
if isinstance(orig_items[0][key], list):
assert isinstance(orig_items[0][key][0], torch.Tensor)
for it in orig_items:
for tr in it[key]:
items.append({key: tr})
else:
assert isinstance(orig_items[0][key], torch.Tensor)
items = orig_items
batch_size = len(items)
shape = items[0][key].shape
dim = len(shape)
assert dim <= 3
if max_length is None:
max_length = 0
max_length = max(max_length, max(item[key].shape[-1] for item in items))
min_length = min(item[key].shape[-1] for item in items)
dtype = items[0][key].dtype
if dim == 1:
return torch.cat([item[key] for item in items], dim=0)
elif dim == 2:
if max_length == min_length:
return torch.cat([item[key] for item in items], dim=0)
tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value
else:
tensor = (
torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype)
+ padding_value
)
for i, item in enumerate(items):
if dim == 2:
if padding_side == "left":
tensor[i, -len(item[key][0]) :] = item[key][0].clone()
else:
tensor[i, : len(item[key][0])] = item[key][0].clone()
elif dim == 3:
if padding_side == "left":
tensor[i, -len(item[key][0]) :, :] = item[key][0].clone()
else:
tensor[i, : len(item[key][0]), :] = item[key][0].clone()
return tensor
def slice_image(
image, max_slice_nums=9, scale_resolution=448, patch_size=14, never_split=False
):
original_size = image.size
original_width, original_height = original_size
log_ratio = math.log(original_width / original_height)
ratio = original_width * original_height / (scale_resolution * scale_resolution)
multiple = min(math.ceil(ratio), max_slice_nums)
source_image = None
best_grid = None
patches = []
if multiple <= 1 or never_split:
# dont need to slice, upsample
best_size = find_best_resize(
original_size, scale_resolution, patch_size, allow_upscale=True
)
source_image = image.resize(best_size, Image.Resampling.BICUBIC)
else:
candidate_split_grids_nums = []
for i in [multiple - 1, multiple, multiple + 1]:
if i == 1 or i > max_slice_nums:
continue
candidate_split_grids_nums.append(i)
# source image, down-sampling and ensure divided by patch_size
best_resize = find_best_resize(original_size, scale_resolution, patch_size)
source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC)
candidate_grids = []
# find best grid
for split_grids_nums in candidate_split_grids_nums:
m = 1
while m <= split_grids_nums:
if split_grids_nums % m == 0:
candidate_grids.append([m, split_grids_nums // m])
m += 1
best_grid = [1, 1]
min_error = float("inf")
for grid in candidate_grids:
error = abs(log_ratio - math.log(grid[0] / grid[1]))
if error < min_error:
best_grid = grid
min_error = error
refine_size = get_refine_size(
original_size, best_grid, scale_resolution, patch_size, allow_upscale=True
)
refine_image = image.resize(refine_size, Image.Resampling.BICUBIC)
patches = split_to_patches(refine_image, best_grid)
return source_image, patches, best_grid
def ensure_divide(length, patch_size):
return max(round(length / patch_size) * patch_size, patch_size)
def find_best_resize(original_size, scale_resolution, patch_size, allow_upscale=False):
width, height = original_size
if (width * height > scale_resolution * scale_resolution) or allow_upscale:
r = width / height
height = int(scale_resolution / math.sqrt(r))
width = int(height * r)
best_width = ensure_divide(width, patch_size)
best_height = ensure_divide(height, patch_size)
return (best_width, best_height)
def get_refine_size(
original_size, grid, scale_resolution, patch_size, allow_upscale=False
):
width, height = original_size
grid_x, grid_y = grid
refine_width = ensure_divide(width, grid_x)
refine_height = ensure_divide(height, grid_y)
grid_width = refine_width / grid_x
grid_height = refine_height / grid_y
best_grid_size = find_best_resize(
(grid_width, grid_height),
scale_resolution,
patch_size,
allow_upscale=allow_upscale,
)
refine_size = (best_grid_size[0] * grid_x, best_grid_size[1] * grid_y)
return refine_size
def split_to_patches(image, grid):
patches = []
width, height = image.size
grid_x = int(width / grid[0])
grid_y = int(height / grid[1])
for i in range(0, height, grid_y):
images = []
for j in range(0, width, grid_x):
box = (j, i, j + grid_x, i + grid_y)
patch = image.crop(box)
images.append(patch)
patches.append(images)
return patches
def get_grid_placeholder(tokenizer, grid, query_num):
image_placeholder = (
tokenizer.im_start + tokenizer.unk_token * query_num + tokenizer.im_end
)
cols = grid[0]
rows = grid[1]
slices = []
for i in range(rows):
lines = []
for j in range(cols):
lines.append(image_placeholder)
slices.append("".join(lines))
slice_placeholder = tokenizer.slice_start + "\n".join(slices) + tokenizer.slice_end
return slice_placeholder

163
resampler.py Normal file
View File

@ -0,0 +1,163 @@
from functools import partial
import numpy as np
import torch
from torch import nn
from torch.nn.init import trunc_normal_
def get_2d_sincos_pos_embed(embed_dim, image_size):
"""
image_size: image_size or (image_height, image_width)
return:
pos_embed: [image_height, image_width, embed_dim]
"""
if isinstance(image_size, int):
grid_h_size, grid_w_size = image_size, image_size
else:
grid_h_size, grid_w_size = image_size[0], image_size[1]
grid_h = np.arange(grid_h_size, dtype=np.float32)
grid_w = np.arange(grid_w_size, dtype=np.float32)
grid = np.meshgrid(grid_w, grid_h) # here w goes first
grid = np.stack(grid, axis=0)
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
return pos_embed
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
assert embed_dim % 2 == 0
# use half of dimensions to encode grid_h
emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim // 2, grid[0]) # (H, W, D/2)
emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim // 2, grid[1]) # (H, W, D/2)
emb = np.concatenate([emb_h, emb_w], axis=-1) # (H, W, D)
return emb
def get_1d_sincos_pos_embed_from_grid_new(embed_dim, pos):
"""
embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (H, W)
out: (H, W, D)
"""
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=np.float32)
omega /= embed_dim / 2.
omega = 1. / 10000 ** omega # (D/2,)
out = np.einsum('hw,d->hwd', pos, omega) # (H, W, D/2), outer product
emb_sin = np.sin(out) # (H, W, D/2)
emb_cos = np.cos(out) # (H, W, D/2)
emb = np.concatenate([emb_sin, emb_cos], axis=-1) # (H, W, D)
return emb
class Resampler(nn.Module):
"""
A 2D perceiver-resampler network with one cross attention layers by
given learnable queries and 2d sincos pos_emb
Outputs:
A tensor with the shape of (batch_size, num_queries, embed_dim)
"""
def __init__(
self,
num_queries,
embed_dim,
num_heads,
kv_dim=None,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
adaptive=False,
max_size=(70, 70),
):
super().__init__()
self.num_queries = num_queries
self.embed_dim = embed_dim
self.num_heads = num_heads
self.adaptive = adaptive
self.max_size = max_size
self.query = nn.Parameter(torch.zeros(self.num_queries, embed_dim))
trunc_normal_(self.query, std=.02)
if kv_dim is not None and kv_dim != embed_dim:
self.kv_proj = nn.Linear(kv_dim, embed_dim, bias=False)
else:
self.kv_proj = nn.Identity()
self.attn = nn.MultiheadAttention(embed_dim, num_heads)
self.ln_q = norm_layer(embed_dim)
self.ln_kv = norm_layer(embed_dim)
self.ln_post = norm_layer(embed_dim)
self.proj = nn.Parameter((embed_dim ** -0.5) * torch.randn(embed_dim, embed_dim))
self._set_2d_pos_cache(self.max_size)
self.apply(self._init_weights)
def _set_2d_pos_cache(self, max_size, device='cpu'):
pos_embed = torch.from_numpy(get_2d_sincos_pos_embed(self.embed_dim, max_size)).float().to(device)
self.register_buffer("pos_embed", pos_embed, persistent=False)
def _adjust_pos_cache(self, tgt_sizes, device):
max_h = torch.max(tgt_sizes[:, 0])
max_w = torch.max(tgt_sizes[:, 1])
if max_h > self.max_size[0] or max_w > self.max_size[1]:
self.max_size = [max(max_h, self.max_size[0]), max(max_w, self.max_size[1])]
self._set_2d_pos_cache(self.max_size, device)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward(self, x, tgt_sizes=None):
assert x.shape[0] == tgt_sizes.shape[0]
bs = x.shape[0]
device = x.device
dtype = x.dtype
patch_len = tgt_sizes[:, 0] * tgt_sizes[:, 1]
self._adjust_pos_cache(tgt_sizes, device=device)
max_patch_len = torch.max(patch_len)
key_padding_mask = torch.zeros((bs, max_patch_len), dtype=torch.bool, device=device)
pos_embed = []
for i in range(bs):
tgt_h, tgt_w = tgt_sizes[i]
pos_embed.append(self.pos_embed[:tgt_h, :tgt_w, :].reshape((tgt_h * tgt_w, -1)).to(dtype)) # patches * D
key_padding_mask[i, patch_len[i]:] = True
pos_embed = torch.nn.utils.rnn.pad_sequence(
pos_embed, batch_first=True, padding_value=0.0).permute(1, 0, 2) # BLD => L * B * D
x = self.kv_proj(x) # B * L * D
x = self.ln_kv(x).permute(1, 0, 2) # L * B * D
q = self.ln_q(self.query) # Q * D
out = self.attn(
self._repeat(q, bs), # Q * B * D
x + pos_embed, # L * B * D + L * B * D
x,
key_padding_mask=key_padding_mask)[0]
# out: Q * B * D
x = out.permute(1, 0, 2) # B * Q * D
x = self.ln_post(x)
x = x @ self.proj
return x
def _repeat(self, query, N: int):
return query.unsqueeze(1).repeat(1, N, 1)

24
special_tokens_map.json Normal file
View File

@ -0,0 +1,24 @@
{
"bos_token": {
"content": "<|begin_of_text|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
"eos_token": {
"content": "<|end_of_text|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
"pad_token": "!",
"unk_token": {
"content": "<unk>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
}
}

410504
tokenizer.json Normal file

File diff suppressed because it is too large Load Diff

2072
tokenizer_config.json Normal file

File diff suppressed because it is too large Load Diff