2510 lines
116 KiB
Python
2510 lines
116 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 The OpenBMB Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" PyTorch MiniCPM model."""
|
|
import math
|
|
import re
|
|
import warnings
|
|
from typing import Any, Dict, List, Optional, Tuple, Union
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
import torch.utils.checkpoint
|
|
from torch import nn
|
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
|
from transformers.activations import ACT2FN
|
|
from transformers.cache_utils import Cache, DynamicCache
|
|
from transformers.modeling_attn_mask_utils import (
|
|
AttentionMaskConverter,
|
|
_prepare_4d_attention_mask,
|
|
_prepare_4d_causal_attention_mask,
|
|
_prepare_4d_causal_attention_mask_for_sdpa,
|
|
)
|
|
from transformers.modeling_outputs import (
|
|
BaseModelOutputWithPast,
|
|
CausalLMOutputWithPast,
|
|
SequenceClassifierOutputWithPast,
|
|
)
|
|
from transformers.modeling_utils import PreTrainedModel
|
|
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, is_torch_greater_or_equal_than_1_13
|
|
from transformers.utils import (
|
|
add_start_docstrings,
|
|
add_start_docstrings_to_model_forward,
|
|
is_flash_attn_greater_or_equal_2_10,
|
|
logging,
|
|
replace_return_docstrings,
|
|
)
|
|
from transformers.utils.import_utils import is_torch_fx_available
|
|
|
|
from .configuration_minicpm import MiniCPMConfig
|
|
|
|
try:
|
|
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
|
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
|
from infllm_v2 import (
|
|
infllmv2_attn_stage1,
|
|
infllmv2_attn_varlen_func,
|
|
infllmv2_attn_with_kvcache,
|
|
max_pooling_1d,
|
|
)
|
|
except:
|
|
pass
|
|
|
|
from functools import lru_cache
|
|
|
|
|
|
def compressed_attention(
|
|
q: torch.Tensor,
|
|
k: torch.Tensor,
|
|
v: torch.Tensor,
|
|
kernel_size: int,
|
|
kernel_stride: int,
|
|
block_size: int,
|
|
topk: int,
|
|
cu_seqlens_q: torch.Tensor,
|
|
cu_seqlens_k: torch.Tensor,
|
|
max_seqlen_q: int,
|
|
max_seqlen_k: int,
|
|
sm_scale: float = None,
|
|
init_blocks: int = 1,
|
|
local_blocks: int = 2,
|
|
parallel_topk_compute: Union[str, bool] = 'auto',
|
|
total_seq_lens=-1,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""Attention between query and compressed key and value. Compute attention output and topk block idx used in topk_sparse_attention.
|
|
|
|
Args:
|
|
q (torch.Tensor): shape [total_q_len, num_q_heads, head_dim]
|
|
k (torch.Tensor): shape [total_kv_len, num_kv_heads, head_dim]
|
|
v (torch.Tensor): shape [total_kv_len, num_kv_heads, head_dim]
|
|
kernel_size (int): kernel size in compress_key_value
|
|
kernel_stride (int): stride of compress_key_value
|
|
block_size (int): key value block size for topk sparse attention.
|
|
topk (int): number of blocks for each query.
|
|
cu_seqlens_q (torch.Tensor): shape [batch_size + 1], similar to cu_seqlens_q in flash_attn_func_varlen.
|
|
cu_seqlens_k (torch.Tensor): shape [batch_size + 1], similar to cu_seqlens_k in flash_attn_func_varlen.
|
|
max_seqlen_q (int): max q len of the batch.
|
|
max_seqlen_k (int): max k len of the batch.
|
|
sm_scale (float, optional): softmax scale. Defaults to None, means 1/sqrt(head_dim).
|
|
init_blocks (int, optional): Number of init blocks for each query. Defaults to 1.
|
|
local_blocks (int, optional): Number of local blocks for each query. Defaults to 2.
|
|
parallel_topk_compute (str, optional): Only set it to False when the sequence length is too long. This can avoid a current bug.
|
|
We'll fix this issue later. Defaults to auto, it will be set to False when the sequence length is greater than 32k and True otherwise.
|
|
|
|
Returns:
|
|
Tuple[torch.Tensor, torch.Tensor]: attention output and topk_idx used in topk_sparse_attention
|
|
"""
|
|
with torch.no_grad():
|
|
cache_len = 0
|
|
batch_size = cu_seqlens_q.shape[0] - 1
|
|
if total_seq_lens == -1:
|
|
total_seq_lens = max_seqlen_q
|
|
q_idx = torch.cat(
|
|
[
|
|
torch.arange(cu_seqlens_q[i + 1] - cu_seqlens_q[i], device=q.device) + total_seq_lens - (cu_seqlens_q[i + 1] - cu_seqlens_q[i])
|
|
for i in range(batch_size)
|
|
],
|
|
dim=0,
|
|
)
|
|
q_idx = q_idx // block_size
|
|
|
|
else:
|
|
cache_len = total_seq_lens - max_seqlen_q
|
|
assert batch_size == 1, 'batch_size must be 1 when total_seq_lens is set'
|
|
q_idx = torch.tensor([total_seq_lens - 1], device=q.device, dtype=torch.int32) // block_size
|
|
|
|
score = infllmv2_attn_stage1(
|
|
q.contiguous(),
|
|
k.contiguous(),
|
|
v.contiguous(),
|
|
cu_seqlens_q=cu_seqlens_q,
|
|
cu_seqlens_k=cu_seqlens_k,
|
|
max_seqlen_q=max_seqlen_q,
|
|
max_seqlen_k=max_seqlen_k,
|
|
causal=q_idx.shape[0] > 1)
|
|
score = score[:, :q_idx.shape[0], :]
|
|
|
|
# Replace transform_score with max_pooling_1d
|
|
block_score = max_pooling_1d(
|
|
score.contiguous(),
|
|
cache_len=cache_len,
|
|
local_blocks=local_blocks,
|
|
init_blocks=init_blocks,
|
|
block_size=block_size,
|
|
stride=kernel_stride,
|
|
)
|
|
# get topk
|
|
topk = min(topk, block_score.shape[-1])
|
|
topk_idx = block_score.topk(topk, dim=-1).indices.sort(-1).values
|
|
topk_idx[topk_idx >= q_idx[None, :, None]] = -1
|
|
topk_idx = topk_idx.to(torch.int32)
|
|
|
|
return topk_idx
|
|
|
|
|
|
@lru_cache(maxsize=16)
|
|
def calc_chunks_with_stride(cu_seqlen, chunk_size, kernel_stride):
|
|
"""
|
|
Compute the chunks that require Sparse attention, with stride support.
|
|
|
|
Args:
|
|
cu_seqlen (torch.Tensor): Cumulative sequence lengths for each sample.
|
|
chunk_size (int): Chunk size used for Sparse attention.
|
|
kernel_stride (int): Stride size when sliding over the sequence.
|
|
|
|
Returns:
|
|
filtered_indices (torch.Tensor): Indices used to directly index into the key/value tensors.
|
|
cu_seqlens_compressed (torch.Tensor): Cumulative sequence lengths after compression.
|
|
"""
|
|
# 1. Compute the length of each sequence
|
|
batch_sizes = cu_seqlen[1:] - cu_seqlen[:-1]
|
|
|
|
# 2. Compute the start positions of chunks for each sequence (with stride)
|
|
max_seq_len = torch.max(batch_sizes)
|
|
max_num_chunks_per_seq = (max_seq_len - chunk_size) // kernel_stride + 1
|
|
chunk_start_offsets = torch.arange(0, max_num_chunks_per_seq * kernel_stride, kernel_stride, device=cu_seqlen.device)
|
|
seq_starts = cu_seqlen[:-1]
|
|
chunk_start_in_seq = seq_starts[:, None] + chunk_start_offsets[None, :] # [batch_size, max_num_chunks_per_seq]
|
|
|
|
# 3. Filter out chunks that exceed sequence length or are smaller than the full chunk size
|
|
chunk_end_in_seq = chunk_start_in_seq + chunk_size
|
|
valid_chunk_mask = (chunk_end_in_seq <= (seq_starts[:, None] + batch_sizes[:, None]))
|
|
|
|
# 4. Filter valid chunk start positions using the valid_chunk_mask
|
|
valid_chunk_starts = chunk_start_in_seq[valid_chunk_mask] # [num_valid_chunks]
|
|
del chunk_start_in_seq
|
|
# 5. Generate filtered_indices
|
|
chunk_indices = torch.arange(
|
|
0, chunk_size, device=cu_seqlen.device
|
|
)[None, :] # [1, chunk_size]
|
|
filtered_indices = valid_chunk_starts[:, None] + chunk_indices # [num_valid_chunks, chunk_size]
|
|
filtered_indices = filtered_indices.view(-1) # Flatten to 1D indices
|
|
|
|
# 6. Compute compressed cumulative sequence lengths
|
|
num_filtered_chunks_per_batch = valid_chunk_mask.sum(dim=1) # Number of valid chunks per batch
|
|
cu_seqlens_compressed = torch.zeros(
|
|
len(cu_seqlen), dtype=torch.int32, device=cu_seqlen.device
|
|
)
|
|
cu_seqlens_compressed[1:] = num_filtered_chunks_per_batch.cumsum(dim=0)
|
|
del num_filtered_chunks_per_batch, chunk_start_offsets, seq_starts, chunk_end_in_seq, valid_chunk_mask, chunk_indices
|
|
return filtered_indices, cu_seqlens_compressed
|
|
|
|
|
|
class CompressK(torch.nn.Module):
|
|
def __init__(self, head_num_k, head_dim, kernel_size, kernel_stride=16):
|
|
"""
|
|
Module for compressing key (K) representations.
|
|
|
|
Args:
|
|
head_num_k (int): Number of key attention heads.
|
|
head_dim (int): Dimension of each attention head.
|
|
kernel_size (int): Size of each chunk used for compression.
|
|
kernel_stride (int, optional): Stride used when dividing input into chunks. Default is 16.
|
|
"""
|
|
super().__init__()
|
|
self.kernel_size = kernel_size
|
|
self.head_num_k = head_num_k
|
|
self.head_dim = head_dim
|
|
self.kernel_stride = kernel_stride
|
|
|
|
def forward(self, k: torch.Tensor, cu_seqlens):
|
|
"""
|
|
Forward pass for compressing the key (K) tensor.
|
|
|
|
Args:
|
|
k (torch.Tensor): Input key tensor of shape (total_seq_len, num_heads, head_dim).
|
|
cu_seqlens (torch.Tensor): Cumulative sequence lengths for each sample in the batch, typically used for handling variable-length sequences.
|
|
|
|
Returns:
|
|
compress_k (torch.Tensor): Compressed key tensor.
|
|
cu_seqlens_compressed (torch.Tensor): Updated cumulative sequence lengths after compression.
|
|
|
|
"""
|
|
# Compute chunk-related metadata, with stride support
|
|
filtered_k_indices, cu_seqlens_compressed = calc_chunks_with_stride(
|
|
cu_seqlens, self.kernel_size, self.kernel_stride
|
|
)
|
|
|
|
# Extract filtered key vectors
|
|
filtered_k = k.index_select(0, filtered_k_indices.view(-1))
|
|
|
|
# split
|
|
filtered_k = filtered_k.view(filtered_k.shape[0] // self.kernel_size, self.kernel_size, self.head_num_k, self.head_dim) # [l, block_size,h,d]
|
|
|
|
compressed_k = filtered_k.mean(dim=1)
|
|
return compressed_k, cu_seqlens_compressed
|
|
|
|
|
|
class DynamicCacheQKV(DynamicCache):
|
|
"""
|
|
A cache that grows dynamically as more tokens are generated. This is the default for generative models.
|
|
|
|
It stores the Key and Value states as a list of tensors, one for each layer. The expected shape for each tensor is
|
|
`[batch_size, num_heads, seq_len, head_dim]`.
|
|
|
|
Example:
|
|
```python
|
|
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache
|
|
|
|
>>> model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
|
|
|
|
>>> inputs = tokenizer(text="My name is Qwen2", return_tensors="pt")
|
|
|
|
>>> # Prepare a cache class and pass it to model's forward
|
|
>>> past_key_values = DynamicCache()
|
|
>>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
|
|
>>> outputs.past_key_values # access cache filled with key/values from generation
|
|
DynamicCache()
|
|
```
|
|
"""
|
|
def __init__(self, num_hidden_layers: Optional[int] = None) -> None:
|
|
super().__init__()
|
|
if num_hidden_layers is None:
|
|
self.key_cache: List[torch.Tensor] = []
|
|
self.value_cache: List[torch.Tensor] = []
|
|
self.compress_k_cache: List[torch.Tensor] = []
|
|
self.no_compress_k_cache: List[torch.Tensor] = []
|
|
self.cached_compressed_cu_seqlens: List[torch.Tensor] = []
|
|
self.no_rope_key_cache: List[torch.Tensor] = []
|
|
else:
|
|
self.key_cache: List[torch.Tensor] = [[] for _ in range(num_hidden_layers)]
|
|
self.value_cache: List[torch.Tensor] = [[] for _ in range(num_hidden_layers)]
|
|
self.compress_k_cache: List[torch.Tensor] = [[] for _ in range(num_hidden_layers)]
|
|
self.no_compress_k_cache: List[torch.Tensor] = [[] for _ in range(num_hidden_layers)]
|
|
self.cached_compressed_cu_seqlens: List[torch.Tensor] = [[] for _ in range(num_hidden_layers)]
|
|
self.no_rope_key_cache: List[torch.Tensor] = [[] for _ in range(num_hidden_layers)]
|
|
self._seen_tokens = 0 # Used in `generate` to keep tally of how many tokens the cache has seen
|
|
|
|
def __getitem__(self, layer_idx: int) -> List[Tuple[torch.Tensor]]:
|
|
"""
|
|
Support for backwards-compatible `past_key_value` indexing, e.g. `past_key_value[0][0].shape[2]` to get the
|
|
sequence length.
|
|
"""
|
|
if layer_idx < len(self):
|
|
return (self.key_cache[layer_idx], self.value_cache[layer_idx])
|
|
else:
|
|
raise KeyError(f'Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}')
|
|
|
|
def __iter__(self):
|
|
"""
|
|
Support for backwards-compatible `past_key_value` iteration, e.g. `for x in past_key_value:` to iterate over
|
|
keys and values
|
|
"""
|
|
for layer_idx in range(len(self)):
|
|
yield (self.key_cache[layer_idx], self.value_cache[layer_idx])
|
|
|
|
def __len__(self):
|
|
"""
|
|
Support for backwards-compatible `past_key_value` length, e.g. `len(past_key_value)`. This value corresponds
|
|
to the number of layers in the model.
|
|
"""
|
|
return len(self.key_cache)
|
|
|
|
def update(
|
|
self,
|
|
key_states: torch.Tensor,
|
|
value_states: torch.Tensor,
|
|
layer_idx: int,
|
|
cache_kwargs: Optional[Dict[str, Any]] = None
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""
|
|
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
|
|
|
|
Parameters:
|
|
key_states (`torch.Tensor`):
|
|
The new key states to cache.
|
|
value_states (`torch.Tensor`):
|
|
The new value states to cache.
|
|
layer_idx (`int`):
|
|
The index of the layer to cache the states for.
|
|
cache_kwargs (`Dict[str, Any]`, `optional`):
|
|
Additional arguments for the cache subclass. No additional arguments are used in `DynamicCache`.
|
|
|
|
Return:
|
|
A tuple containing the updated key and value states.
|
|
"""
|
|
# Update the number of seen tokens
|
|
if layer_idx == 0:
|
|
self._seen_tokens += key_states.shape[-2]
|
|
|
|
# Update the cache
|
|
if len(self.key_cache) <= layer_idx:
|
|
self.key_cache.append(key_states)
|
|
self.value_cache.append(value_states)
|
|
|
|
# content on layer cache can be a tensor and checking not tensor causes errors
|
|
# so we explicitly check for the empty list
|
|
elif self.key_cache[layer_idx] == []:
|
|
self.key_cache[layer_idx] = key_states
|
|
self.value_cache[layer_idx] = value_states
|
|
|
|
else:
|
|
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
|
|
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)
|
|
return self.key_cache[layer_idx], self.value_cache[layer_idx]
|
|
|
|
def update_no_rope_key(
|
|
self,
|
|
key_states: torch.Tensor,
|
|
layer_idx: int,
|
|
cache_kwargs: Optional[Dict[str, Any]] = None):
|
|
|
|
# Update the cache
|
|
if len(self.no_rope_key_cache) <= layer_idx:
|
|
self.no_rope_key_cache.append(key_states)
|
|
|
|
# content on layer cache can be a tensor and checking not tensor causes errors
|
|
# so we explicitly check for the empty list
|
|
elif self.no_rope_key_cache[layer_idx] == []:
|
|
self.no_rope_key_cache[layer_idx] = key_states
|
|
else:
|
|
self.no_rope_key_cache[layer_idx] = torch.cat([self.no_rope_key_cache[layer_idx], key_states], dim=1)
|
|
return self.no_rope_key_cache[layer_idx]
|
|
|
|
def update_compress_k(
|
|
self,
|
|
key_states: torch.Tensor,
|
|
layer_idx: int,
|
|
cache_kwargs: Optional[Dict[str, Any]] = None
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""
|
|
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
|
|
|
|
Parameters:
|
|
key_states (`torch.Tensor`):
|
|
The new key states to cache.
|
|
value_states (`torch.Tensor`):
|
|
The new value states to cache.
|
|
layer_idx (`int`):
|
|
The index of the layer to cache the states for.
|
|
cache_kwargs (`Dict[str, Any]`, `optional`):
|
|
Additional arguments for the cache subclass. No additional arguments are used in `DynamicCache`.
|
|
|
|
Return:
|
|
A tuple containing the updated key and value states.
|
|
"""
|
|
|
|
# Update the cache
|
|
if len(self.compress_k_cache) <= layer_idx:
|
|
self.compress_k_cache.append(key_states)
|
|
|
|
# content on layer cache can be a tensor and checking not tensor causes errors
|
|
# so we explicitly check for the empty list
|
|
elif self.compress_k_cache[layer_idx] == []:
|
|
self.compress_k_cache[layer_idx] = key_states
|
|
else:
|
|
self.compress_k_cache[layer_idx] = torch.cat([self.compress_k_cache[layer_idx], key_states], dim=0)
|
|
return self.compress_k_cache[layer_idx]
|
|
|
|
def update_no_compress_k(
|
|
self,
|
|
key_states: torch.Tensor,
|
|
layer_idx: int,
|
|
kernel_size: int = 32,
|
|
kernel_stride: int = 16,
|
|
cache_kwargs: Optional[Dict[str, Any]] = None
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""
|
|
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
|
|
|
|
Parameters:
|
|
key_states (`torch.Tensor`):
|
|
The new key states to cache.
|
|
value_states (`torch.Tensor`):
|
|
The new value states to cache.
|
|
layer_idx (`int`):
|
|
The index of the layer to cache the states for.
|
|
cache_kwargs (`Dict[str, Any]`, `optional`):
|
|
Additional arguments for the cache subclass. No additional arguments are used in `DynamicCache`.
|
|
|
|
Return:
|
|
A tuple containing the updated key and value states.
|
|
"""
|
|
# Update the cache
|
|
if len(self.no_compress_k_cache) <= layer_idx:
|
|
self.no_compress_k_cache.append(key_states)
|
|
|
|
# content on layer cache can be a tensor and checking not tensor causes errors
|
|
# so we explicitly check for the empty list
|
|
elif self.no_compress_k_cache[layer_idx] == []:
|
|
self.no_compress_k_cache[layer_idx] = key_states
|
|
else:
|
|
self.no_compress_k_cache[layer_idx] = torch.cat([self.no_compress_k_cache[layer_idx], key_states], dim=0)
|
|
|
|
current_len = self.no_compress_k_cache[layer_idx].shape[0]
|
|
|
|
if current_len >= kernel_size:
|
|
k_chunk = self.no_compress_k_cache[layer_idx][:kernel_size]
|
|
self.no_compress_k_cache[layer_idx] = self.no_compress_k_cache[layer_idx][kernel_stride:]
|
|
return k_chunk
|
|
else:
|
|
return None
|
|
|
|
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
|
|
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
|
|
# TODO: deprecate this function in favor of `cache_position`
|
|
if len(self.key_cache) <= layer_idx or (len(self.key_cache) > layer_idx and self.key_cache[layer_idx] == []):
|
|
return 0
|
|
return self.key_cache[layer_idx].shape[-2]
|
|
|
|
def get_max_length(self) -> Optional[int]:
|
|
"""Returns the maximum sequence length of the cached states. DynamicCache does not have a maximum length."""
|
|
return None
|
|
|
|
def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]:
|
|
"""Converts the `DynamicCache` instance into the its equivalent in the legacy cache format. Used for
|
|
backward compatibility."""
|
|
legacy_cache = ()
|
|
for layer_idx in range(len(self)):
|
|
legacy_cache += ((self.key_cache[layer_idx], self.value_cache[layer_idx]),)
|
|
return legacy_cache
|
|
|
|
# @classmethod
|
|
# def from_legacy_cache(
|
|
# cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, num_hidden_layers: int = None
|
|
# ) -> "DynamicCacheQKV":
|
|
# """Converts a cache in the legacy cache format into an equivalent `DynamicCache`. Used for
|
|
# backward compatibility."""
|
|
# cache = cls(num_hidden_layers)
|
|
# if past_key_values is not None:
|
|
# for layer_idx in range(len(past_key_values)):
|
|
# key_states, value_states, query_status = past_key_values[layer_idx]
|
|
# cache.update(key_states, value_states, query_status,layer_idx)
|
|
# return cache
|
|
|
|
def crop(self, max_length: int):
|
|
"""Crop the past key values up to a new `max_length` in terms of tokens. `max_length` can also be
|
|
negative to remove `max_length` tokens. This is used in assisted decoding and contrastive search."""
|
|
# In case it is negative
|
|
if max_length < 0:
|
|
max_length = self.get_seq_length() - abs(max_length)
|
|
|
|
if self.get_seq_length() <= max_length:
|
|
return
|
|
|
|
self._seen_tokens = max_length
|
|
for idx in range(len(self.key_cache)):
|
|
if self.key_cache[idx] != []:
|
|
self.key_cache[idx] = self.key_cache[idx][..., :max_length, :]
|
|
self.value_cache[idx] = self.value_cache[idx][..., :max_length, :]
|
|
|
|
def batch_split(self, full_batch_size: int, split_size: int, num_hidden_layers: int) -> List['DynamicCacheQKV']:
|
|
"""Split the current instance into a list of `DynamicCache` by the batch size. This will be used by
|
|
`_split_model_inputs()` in `generation.utils`"""
|
|
out = []
|
|
for i in range(0, full_batch_size, split_size):
|
|
current_split = DynamicCacheQKV(num_hidden_layers)
|
|
current_split._seen_tokens = self._seen_tokens
|
|
current_split.key_cache = [tensor[i: i + split_size] for tensor in self.key_cache]
|
|
current_split.value_cache = [tensor[i: i + split_size] for tensor in self.value_cache]
|
|
out.append(current_split)
|
|
return out
|
|
|
|
@classmethod
|
|
def from_batch_splits(cls, splits: List['DynamicCacheQKV'], num_hidden_layers: int) -> 'DynamicCacheQKV':
|
|
"""This is the opposite of the above `batch_split()` method. This will be used by `stack_model_outputs` in
|
|
`generation.utils`"""
|
|
cache = cls(num_hidden_layers)
|
|
for idx in range(len(splits[0])):
|
|
key_cache = [current.key_cache[idx] for current in splits if current.key_cache[idx] != []]
|
|
value_cache = [current.key_cache[idx] for current in splits if current.key_cache[idx] != []]
|
|
query_cache = [current.key_cache[idx] for current in splits if current.key_cache[idx] != []]
|
|
if key_cache != []:
|
|
layer_keys = torch.cat(key_cache, dim=0)
|
|
layer_values = torch.cat(value_cache, dim=0)
|
|
layer_query = torch.cat(query_cache, dim=0)
|
|
cache.update(layer_keys, layer_values, idx, query_states=layer_query)
|
|
return cache
|
|
|
|
def batch_repeat_interleave(self, repeats: int):
|
|
"""Repeat the cache `repeats` times in the batch dimension. Used in contrastive search."""
|
|
for layer_idx in range(len(self)):
|
|
self.key_cache[layer_idx] = self.key_cache[layer_idx].repeat_interleave(repeats, dim=0)
|
|
self.value_cache[layer_idx] = self.value_cache[layer_idx].repeat_interleave(repeats, dim=0)
|
|
|
|
def batch_select_indices(self, indices: torch.Tensor):
|
|
"""Only keep the `indices` in the batch dimension of the cache. Used in contrastive search."""
|
|
for layer_idx in range(len(self)):
|
|
self.key_cache[layer_idx] = self.key_cache[layer_idx][indices, ...]
|
|
self.value_cache[layer_idx] = self.value_cache[layer_idx][indices, ...]
|
|
|
|
|
|
# This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
|
|
# It means that the function will not be traced through and simply appear as a node in the graph.
|
|
if is_torch_fx_available():
|
|
if not is_torch_greater_or_equal_than_1_13:
|
|
import torch.fx
|
|
|
|
_prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
_CONFIG_FOR_DOC = 'MiniCPMConfig'
|
|
|
|
|
|
def _get_unpad_data(attention_mask):
|
|
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
|
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
|
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
|
return (
|
|
indices,
|
|
cu_seqlens,
|
|
max_seqlen_in_batch,
|
|
)
|
|
|
|
|
|
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
|
warnings.warn(
|
|
'Calling `transformers.models.minicpm.modeling_minicpm._prepare_4d_attention_mask` is deprecated and will be removed in v4.37. Use `transformers.modeling_attn_mask_utils._prepare_4d_attention_mask'
|
|
)
|
|
return _prepare_4d_attention_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
|
|
|
|
|
|
def _make_causal_mask(
|
|
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
|
):
|
|
warnings.warn(
|
|
'Calling `transformers.models.minicpm.modeling_minicpm._make_causal_mask` is deprecated and will be removed in v4.37. Use `transformers.models.minicpm.modeling_minicpm.AttentionMaskConverter._make_causal_mask'
|
|
)
|
|
return AttentionMaskConverter._make_causal_mask(
|
|
input_ids_shape=input_ids_shape, dtype=dtype, device=device, past_key_values_length=past_key_values_length
|
|
)
|
|
|
|
|
|
# @torch.jit.script # type: ignore
|
|
def rms_layernorm(hidden: torch.Tensor, weight: torch.Tensor, eps: float):
|
|
old_dtype = hidden.dtype
|
|
variance = hidden.to(torch.float32).pow(2).mean(dim=-1, keepdim=True)
|
|
hidden = (hidden * torch.rsqrt(variance + eps)).to(old_dtype)
|
|
return hidden * weight
|
|
|
|
|
|
class MiniCPMRMSNorm(nn.Module):
|
|
def __init__(self, hidden_size, eps=1e-6):
|
|
"""
|
|
MiniCPMRMSNorm is equivalent to T5LayerNorm
|
|
"""
|
|
super().__init__()
|
|
self.weight = nn.Parameter(torch.ones(hidden_size))
|
|
self.variance_epsilon = eps
|
|
|
|
def forward(self, hidden_states):
|
|
return rms_layernorm(hidden_states, self.weight, self.variance_epsilon)
|
|
|
|
|
|
ALL_LAYERNORM_LAYERS.append(MiniCPMRMSNorm)
|
|
|
|
|
|
class MiniCPMRotaryEmbedding(nn.Module):
|
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
|
super().__init__()
|
|
|
|
self.dim = dim
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.base = base
|
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
|
self.register_buffer('inv_freq', inv_freq, persistent=False)
|
|
|
|
# Build here to make `torch.jit.trace` work.
|
|
self._set_cos_sin_cache(
|
|
# seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
|
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.float32
|
|
)
|
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
|
self.max_seq_len_cached = seq_len
|
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
|
freqs = torch.outer(t, self.inv_freq)
|
|
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
|
emb = torch.cat((freqs, freqs), dim=-1)
|
|
|
|
self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
|
|
self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
|
|
|
|
def forward(self, x, seq_len=None):
|
|
# x: [bs, num_attention_heads, seq_len, head_size]
|
|
if seq_len > self.max_seq_len_cached:
|
|
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
|
|
|
return (
|
|
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
|
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
|
)
|
|
|
|
|
|
class MiniCPMLongRoPE(MiniCPMRotaryEmbedding):
|
|
"""MiniCPMRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
|
|
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, short_factor=None, long_factor=None, original_max_position_embeddings=None):
|
|
self.short_factor = short_factor
|
|
self.long_factor = long_factor
|
|
self.original_max_position_embeddings = original_max_position_embeddings
|
|
scale = (max_position_embeddings / self.original_max_position_embeddings)
|
|
self.scaling_factor = math.sqrt(1 + math.log(scale) / math.log(self.original_max_position_embeddings))
|
|
super().__init__(dim, max_position_embeddings, base, device)
|
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
|
self.max_seq_len_cached = seq_len
|
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
|
if seq_len > self.original_max_position_embeddings:
|
|
ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=device)
|
|
else:
|
|
ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=device)
|
|
|
|
freqs = torch.mul(
|
|
torch.outer(t, 1.0 / ext_factors).to(device=device),
|
|
self.inv_freq.to(device=device).to(dtype)
|
|
)
|
|
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
|
emb = torch.cat((freqs, freqs), dim=-1)
|
|
self.register_buffer('cos_cached', emb.cos().to(dtype) * self.scaling_factor, persistent=False)
|
|
self.register_buffer('sin_cached', emb.sin().to(dtype) * self.scaling_factor, persistent=False)
|
|
|
|
|
|
class MiniCPMLinearScalingRotaryEmbedding(MiniCPMRotaryEmbedding):
|
|
"""MiniCPMRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
|
|
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
|
self.scaling_factor = scaling_factor
|
|
super().__init__(dim, max_position_embeddings, base, device)
|
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
|
self.max_seq_len_cached = seq_len
|
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
|
t = t / self.scaling_factor
|
|
|
|
freqs = torch.outer(t, self.inv_freq)
|
|
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
|
emb = torch.cat((freqs, freqs), dim=-1)
|
|
self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
|
|
self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
|
|
|
|
|
|
class MiniCPMDynamicNTKScalingRotaryEmbedding(MiniCPMRotaryEmbedding):
|
|
"""MiniCPMRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
|
|
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
|
self.scaling_factor = scaling_factor
|
|
super().__init__(dim, max_position_embeddings, base, device)
|
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
|
self.max_seq_len_cached = seq_len
|
|
|
|
if seq_len > self.max_position_embeddings:
|
|
base = self.base * (
|
|
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
|
) ** (self.dim / (self.dim - 2))
|
|
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
|
self.register_buffer('inv_freq', inv_freq, persistent=False)
|
|
|
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
|
|
|
freqs = torch.outer(t, self.inv_freq)
|
|
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
|
emb = torch.cat((freqs, freqs), dim=-1)
|
|
|
|
self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
|
|
self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
|
|
|
|
|
|
def rotate_half(x):
|
|
"""Rotates half the hidden dims of the input."""
|
|
x1 = x[..., : x.shape[-1] // 2]
|
|
x2 = x[..., x.shape[-1] // 2:]
|
|
return torch.cat((-x2, x1), dim=-1)
|
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
|
"""Applies Rotary Position Embedding to the query and key tensors.
|
|
|
|
Args:
|
|
q (`torch.Tensor`): The query tensor.
|
|
k (`torch.Tensor`): The key tensor.
|
|
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
|
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
|
position_ids (`torch.Tensor`):
|
|
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
|
used to pass offsetted position ids when working with a KV-cache.
|
|
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
|
Returns:
|
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
|
"""
|
|
# cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
|
# sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
|
# q_embed = (q * cos) + (rotate_half(q) * sin)
|
|
# k_embed = (k * cos) + (rotate_half(k) * sin)
|
|
orig_dtype = k.dtype
|
|
cos = cos[position_ids].unsqueeze(unsqueeze_dim) # [bs, 1, seq_len, dim]
|
|
sin = sin[position_ids].unsqueeze(unsqueeze_dim) # [bs, 1, seq_len, dim]
|
|
q_fp32 = q.to(dtype=torch.float32, device=q.device)
|
|
k_fp32 = k.to(dtype=torch.float32, device=k.device)
|
|
q_embed = (q_fp32 * cos) + (rotate_half(q_fp32) * sin)
|
|
k_embed = (k_fp32 * cos) + (rotate_half(k_fp32) * sin)
|
|
return q_embed.to(dtype=orig_dtype), k_embed.to(dtype=orig_dtype)
|
|
|
|
|
|
class MiniCPMMLP(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.config = config
|
|
self.hidden_size = config.hidden_size
|
|
self.intermediate_size = config.intermediate_size
|
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
|
self.act_fn = ACT2FN[config.hidden_act]
|
|
|
|
def forward(self, x):
|
|
if self.config.pretraining_tp > 1:
|
|
slice = self.intermediate_size // self.config.pretraining_tp
|
|
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
|
|
up_proj_slices = self.up_proj.weight.split(slice, dim=0)
|
|
down_proj_slices = self.down_proj.weight.split(slice, dim=1)
|
|
|
|
gate_proj = torch.cat(
|
|
[F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
|
|
)
|
|
up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
|
|
|
|
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
|
|
down_proj = [
|
|
F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
|
|
]
|
|
down_proj = sum(down_proj)
|
|
else:
|
|
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
|
|
|
return down_proj
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
|
"""
|
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
|
"""
|
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
|
if n_rep == 1:
|
|
return hidden_states
|
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
|
|
|
|
|
class MiniCPMAttention(nn.Module):
|
|
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
|
|
|
def __init__(self, config: MiniCPMConfig, layer_idx: Optional[int] = None):
|
|
super().__init__()
|
|
self.config = config
|
|
self.layer_idx = layer_idx
|
|
if layer_idx is None:
|
|
logger.warning_once(
|
|
f'Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will '
|
|
'to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` '
|
|
'when creating this class.'
|
|
)
|
|
|
|
self.attention_dropout = config.attention_dropout
|
|
self.hidden_size = config.hidden_size
|
|
self.num_heads = config.num_attention_heads
|
|
self.head_dim = self.hidden_size // self.num_heads
|
|
self.num_key_value_heads = config.num_key_value_heads
|
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
|
self.max_position_embeddings = config.max_position_embeddings
|
|
self.rope_theta = config.rope_theta
|
|
self.is_causal = True
|
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size:
|
|
raise ValueError(
|
|
f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
|
|
f' and `num_heads`: {self.num_heads}).'
|
|
)
|
|
|
|
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
|
|
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
|
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
|
|
self._init_rope()
|
|
|
|
def _init_rope(self):
|
|
if self.config.rope_scaling is None:
|
|
self.rotary_emb = MiniCPMRotaryEmbedding(
|
|
self.head_dim,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
base=self.rope_theta,
|
|
)
|
|
else:
|
|
scaling_type = self.config.rope_scaling['rope_type']
|
|
scaling_factor = self.config.rope_scaling.get('factor', None)
|
|
if scaling_type == 'linear':
|
|
self.rotary_emb = MiniCPMLinearScalingRotaryEmbedding(
|
|
self.head_dim,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
scaling_factor=scaling_factor,
|
|
base=self.rope_theta,
|
|
)
|
|
elif scaling_type == 'dynamic':
|
|
self.rotary_emb = MiniCPMDynamicNTKScalingRotaryEmbedding(
|
|
self.head_dim,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
scaling_factor=scaling_factor,
|
|
base=self.rope_theta,
|
|
)
|
|
elif scaling_type == 'longrope':
|
|
self.rotary_emb = MiniCPMLongRoPE(
|
|
self.head_dim,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
short_factor=self.config.rope_scaling['short_factor'],
|
|
long_factor=self.config.rope_scaling['long_factor'],
|
|
base=self.rope_theta,
|
|
original_max_position_embeddings=self.config.rope_scaling['original_max_position_embeddings']
|
|
)
|
|
else:
|
|
raise ValueError(f'Unknown RoPE scaling type {scaling_type}')
|
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_value: Optional[Cache] = None,
|
|
output_attentions: bool = False,
|
|
use_cache: bool = False,
|
|
**kwargs,
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
if 'padding_mask' in kwargs:
|
|
warnings.warn(
|
|
'Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`'
|
|
)
|
|
|
|
bsz, q_len, _ = hidden_states.size()
|
|
|
|
if self.config.pretraining_tp > 1:
|
|
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
|
|
query_slices = self.q_proj.weight.split(
|
|
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
|
|
)
|
|
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
|
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
|
|
|
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
|
|
query_states = torch.cat(query_states, dim=-1)
|
|
|
|
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
|
|
key_states = torch.cat(key_states, dim=-1)
|
|
|
|
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
|
|
value_states = torch.cat(value_states, dim=-1)
|
|
|
|
else:
|
|
query_states = self.q_proj(hidden_states)
|
|
key_states = self.k_proj(hidden_states)
|
|
value_states = self.v_proj(hidden_states)
|
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
|
|
kv_seq_len = key_states.shape[-2]
|
|
if past_key_value is not None:
|
|
if self.layer_idx is None:
|
|
raise ValueError(
|
|
f'The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} '
|
|
'for auto-regressive decoding with k/v caching, please make sure to initialize the attention class '
|
|
'with a layer index.'
|
|
)
|
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
|
cos, sin = self.rotary_emb(value_states.to(torch.float32), seq_len=kv_seq_len)
|
|
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
|
|
|
if past_key_value is not None:
|
|
cache_kwargs = {'sin': sin, 'cos': cos} # Specific to RoPE models
|
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
|
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
|
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
|
raise ValueError(
|
|
f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
|
|
f' {attn_weights.size()}'
|
|
)
|
|
|
|
if attention_mask is not None:
|
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
|
raise ValueError(
|
|
f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
|
|
)
|
|
attn_weights = attn_weights + attention_mask
|
|
|
|
# upcast attention to fp32
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
|
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
|
attn_output = torch.matmul(attn_weights, value_states)
|
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
|
raise ValueError(
|
|
f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
|
|
f' {attn_output.size()}'
|
|
)
|
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
|
|
|
if self.config.pretraining_tp > 1:
|
|
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
|
|
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
|
|
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
|
|
else:
|
|
attn_output = self.o_proj(attn_output)
|
|
|
|
if not output_attentions:
|
|
attn_weights = None
|
|
|
|
return attn_output, attn_weights, past_key_value
|
|
|
|
|
|
class MiniCPMFlashAttention2(MiniCPMAttention):
|
|
"""
|
|
MiniCPM flash attention module. This module inherits from `MiniCPMAttention` as the weights of the module stays
|
|
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
|
flash attention and deal with padding tokens in case the input contains any of them.
|
|
"""
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
|
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignment, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
|
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
|
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.LongTensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_value: Optional[Cache] = None,
|
|
output_attentions: bool = False,
|
|
use_cache: bool = False,
|
|
**kwargs,
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
# MiniCPMFlashAttention2 attention does not support output_attentions
|
|
if 'padding_mask' in kwargs:
|
|
warnings.warn(
|
|
'Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`'
|
|
)
|
|
|
|
# overwrite attention_mask with padding_mask
|
|
attention_mask = kwargs.pop('padding_mask')
|
|
|
|
output_attentions = False
|
|
|
|
bsz, q_len, _ = hidden_states.size()
|
|
|
|
query_states = self.q_proj(hidden_states)
|
|
key_states = self.k_proj(hidden_states)
|
|
value_states = self.v_proj(hidden_states)
|
|
|
|
# Flash attention requires the input to have the shape
|
|
# batch_size x seq_length x head_dim x hidden_dim
|
|
# therefore we just need to keep the original shape
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
|
|
kv_seq_len = key_states.shape[-2]
|
|
if past_key_value is not None:
|
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
|
cos, sin = self.rotary_emb(value_states.to(torch.float32), seq_len=kv_seq_len)
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
|
|
|
if past_key_value is not None:
|
|
cache_kwargs = {'sin': sin, 'cos': cos} # Specific to RoPE models
|
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
|
|
|
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
|
# to be able to avoid many of these transpose/reshape/view.
|
|
query_states = query_states.transpose(1, 2)
|
|
key_states = key_states.transpose(1, 2)
|
|
value_states = value_states.transpose(1, 2)
|
|
|
|
dropout_rate = self.attention_dropout if self.training else 0.0
|
|
|
|
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
|
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
|
# cast them back in the correct dtype just to be sure everything works as expected.
|
|
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
|
# in fp32. (MiniCPMRMSNorm handles it correctly)
|
|
|
|
input_dtype = query_states.dtype
|
|
if input_dtype == torch.float32:
|
|
# Handle the case where the model is quantized
|
|
if hasattr(self.config, '_pre_quantization_dtype'):
|
|
target_dtype = self.config._pre_quantization_dtype
|
|
else:
|
|
target_dtype = self.q_proj.weight.dtype
|
|
|
|
logger.warning_once(
|
|
f'The input hidden states seems to be silently casted in float32, this might be related to'
|
|
f' the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in'
|
|
f' {target_dtype}.'
|
|
)
|
|
|
|
query_states = query_states.to(target_dtype)
|
|
key_states = key_states.to(target_dtype)
|
|
value_states = value_states.to(target_dtype)
|
|
|
|
attn_output = self._flash_attention_forward(
|
|
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
|
|
)
|
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
|
attn_output = self.o_proj(attn_output)
|
|
|
|
if not output_attentions:
|
|
attn_weights = None
|
|
|
|
return attn_output, attn_weights, past_key_value
|
|
|
|
def _flash_attention_forward(
|
|
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
|
):
|
|
"""
|
|
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
|
first unpad the input, then computes the attention scores and pad the final attention scores.
|
|
|
|
Args:
|
|
query_states (`torch.Tensor`):
|
|
Input query states to be passed to Flash Attention API
|
|
key_states (`torch.Tensor`):
|
|
Input key states to be passed to Flash Attention API
|
|
value_states (`torch.Tensor`):
|
|
Input value states to be passed to Flash Attention API
|
|
attention_mask (`torch.Tensor`):
|
|
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
|
position of padding tokens and 1 for the position of non-padding tokens.
|
|
dropout (`int`, *optional*):
|
|
Attention dropout
|
|
softmax_scale (`float`, *optional*):
|
|
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
|
"""
|
|
if not self._flash_attn_uses_top_left_mask:
|
|
causal = self.is_causal
|
|
else:
|
|
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in MiniCPMFlashAttention2 __init__.
|
|
causal = self.is_causal and query_length != 1
|
|
# Contains at least one padding token in the sequence
|
|
if attention_mask is not None:
|
|
batch_size = query_states.shape[0]
|
|
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
|
query_states, key_states, value_states, attention_mask, query_length
|
|
)
|
|
|
|
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
|
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
|
attn_output_unpad = flash_attn_varlen_func(
|
|
query_states,
|
|
key_states,
|
|
value_states,
|
|
cu_seqlens_q=cu_seqlens_q,
|
|
cu_seqlens_k=cu_seqlens_k,
|
|
max_seqlen_q=max_seqlen_in_batch_q,
|
|
max_seqlen_k=max_seqlen_in_batch_k,
|
|
dropout_p=dropout,
|
|
softmax_scale=softmax_scale,
|
|
causal=causal,
|
|
)
|
|
|
|
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
|
else:
|
|
attn_output = flash_attn_func(
|
|
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
|
)
|
|
|
|
return attn_output
|
|
|
|
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
|
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
|
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
|
|
|
key_layer = index_first_axis(
|
|
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
|
)
|
|
value_layer = index_first_axis(
|
|
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
|
)
|
|
if query_length == kv_seq_len:
|
|
query_layer = index_first_axis(
|
|
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
|
)
|
|
cu_seqlens_q = cu_seqlens_k
|
|
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
|
indices_q = indices_k
|
|
elif query_length == 1:
|
|
max_seqlen_in_batch_q = 1
|
|
cu_seqlens_q = torch.arange(
|
|
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
|
) # There is a memcpy here, that is very bad.
|
|
indices_q = cu_seqlens_q[:-1]
|
|
query_layer = query_layer.squeeze(1)
|
|
else:
|
|
# The -q_len: slice assumes left padding.
|
|
attention_mask = attention_mask[:, -query_length:]
|
|
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
|
|
|
return (
|
|
query_layer,
|
|
key_layer,
|
|
value_layer,
|
|
indices_q,
|
|
(cu_seqlens_q, cu_seqlens_k),
|
|
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
|
)
|
|
|
|
|
|
class MiniCPMInfLLMv2Attention(MiniCPMAttention):
|
|
"""
|
|
MiniCPM flash attention module. This module inherits from `MiniCPMAttention` as the weights of the module stays
|
|
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
|
flash attention and deal with padding tokens in case the input contains any of them.
|
|
"""
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
assert self.config._attn_implementation == 'flash_attention_2', 'Only flash_attention_2 is supported for sparse attention'
|
|
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
|
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignment, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
|
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
|
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
|
|
|
# -------sparse-------
|
|
self.kernel_size = self.config.sparse_config.get('kernel_size', 32)
|
|
self.kernel_stride = self.config.sparse_config.get('kernel_stride', 16)
|
|
self.init_blocks = self.config.sparse_config.get('init_blocks', 1)
|
|
self.block_size = self.config.sparse_config.get('block_size', 64)
|
|
self.window_size = self.config.sparse_config.get('window_size', 2048)
|
|
self.dense_len = self.config.sparse_config.get('dense_len', 8192)
|
|
|
|
self.local_blocks = self.window_size // self.block_size # local_blocks
|
|
self.topk = self.config.sparse_config.get('topk', 64)
|
|
self.use_nope = self.config.sparse_config.get('use_nope', False)
|
|
self.compress_k = CompressK(self.num_key_value_heads, self.head_dim, kernel_size=self.kernel_size, kernel_stride=self.kernel_stride)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.LongTensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_value: Optional[Cache] = None,
|
|
output_attentions: bool = False,
|
|
use_cache: bool = False,
|
|
**kwargs,
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
# MiniCPMFlashAttention2 attention does not support output_attentions
|
|
if 'padding_mask' in kwargs:
|
|
warnings.warn(
|
|
'Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`'
|
|
)
|
|
|
|
# overwrite attention_mask with padding_mask
|
|
attention_mask = kwargs.pop('padding_mask')
|
|
|
|
output_attentions = False
|
|
|
|
bsz, q_len, _ = hidden_states.size()
|
|
assert bsz == 1, 'Only batch_size=1 is supported at the moment.'
|
|
|
|
query_states = self.q_proj(hidden_states)
|
|
key_states = self.k_proj(hidden_states)
|
|
value_states = self.v_proj(hidden_states)
|
|
|
|
# !save no rope
|
|
if self.use_nope:
|
|
query_states_no_rope = query_states.view(bsz, q_len, self.num_heads, self.head_dim)
|
|
key_states_no_rope = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
|
|
|
|
# Flash attention requires the input to have the shape
|
|
# batch_size x seq_length x head_dim x hidden_dim
|
|
# therefore we just need to keep the original shape
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
|
|
kv_seq_len = key_states.shape[-2]
|
|
if past_key_value is not None:
|
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
|
cos, sin = self.rotary_emb(value_states.to(torch.float32), seq_len=kv_seq_len)
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
|
|
|
if past_key_value is not None:
|
|
cache_kwargs = {'sin': sin, 'cos': cos} # Specific to RoPE models
|
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
|
|
|
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
|
# to be able to avoid many of these transpose/reshape/view.
|
|
query_states = query_states.transpose(1, 2)
|
|
key_states = key_states.transpose(1, 2)
|
|
value_states = value_states.transpose(1, 2)
|
|
if self.use_nope:
|
|
no_rope_param = {
|
|
'key_states_no_rope': key_states_no_rope,
|
|
'query_states_no_rope': query_states_no_rope,
|
|
}
|
|
if kv_seq_len <= self.dense_len:
|
|
past_key_value.update_no_rope_key(key_states_no_rope, self.layer_idx)
|
|
else:
|
|
no_rope_param = None
|
|
|
|
dropout_rate = self.attention_dropout if self.training else 0.0
|
|
|
|
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
|
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
|
# cast them back in the correct dtype just to be sure everything works as expected.
|
|
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
|
# in fp32. (MiniCPMRMSNorm handles it correctly)
|
|
|
|
input_dtype = query_states.dtype
|
|
if input_dtype == torch.float32:
|
|
# Handle the case where the model is quantized
|
|
if hasattr(self.config, '_pre_quantization_dtype'):
|
|
target_dtype = self.config._pre_quantization_dtype
|
|
else:
|
|
target_dtype = self.q_proj.weight.dtype
|
|
|
|
logger.warning_once(
|
|
f'The input hidden states seems to be silently casted in float32, this might be related to'
|
|
f' the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in'
|
|
f' {target_dtype}.'
|
|
)
|
|
|
|
query_states = query_states.to(target_dtype)
|
|
key_states = key_states.to(target_dtype)
|
|
value_states = value_states.to(target_dtype)
|
|
if kv_seq_len < self.dense_len:
|
|
attn_output = self._flash_attention_forward_dense(
|
|
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate)
|
|
elif past_key_value is None or q_len != 1: # prefilling
|
|
attn_output = self._flash_attention_forward(
|
|
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate,
|
|
no_rope_param=no_rope_param, # if past_key_value is not None else None,
|
|
past_key_value=past_key_value)
|
|
else:
|
|
attn_output = self._flash_attention_forward_with_kv_cache(
|
|
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate, no_rope_param=no_rope_param, past_key_value=past_key_value)
|
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
|
attn_output = self.o_proj(attn_output)
|
|
|
|
if not output_attentions:
|
|
attn_weights = None
|
|
|
|
return attn_output, attn_weights, past_key_value
|
|
|
|
def _flash_attention_forward(
|
|
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None, no_rope_param=None, past_key_value=None
|
|
):
|
|
"""
|
|
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
|
first unpad the input, then computes the attention scores and pad the final attention scores.
|
|
|
|
Args:
|
|
query_states (`torch.Tensor`):
|
|
Input query states to be passed to Flash Attention API
|
|
key_states (`torch.Tensor`):
|
|
Input key states to be passed to Flash Attention API
|
|
value_states (`torch.Tensor`):
|
|
Input value states to be passed to Flash Attention API
|
|
attention_mask (`torch.Tensor`):
|
|
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
|
position of padding tokens and 1 for the position of non-padding tokens.
|
|
dropout (`int`, *optional*):
|
|
Attention dropout
|
|
softmax_scale (`float`, *optional*):
|
|
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
|
"""
|
|
if not self._flash_attn_uses_top_left_mask:
|
|
causal = self.is_causal
|
|
else:
|
|
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in MiniCPMFlashAttention2 __init__.
|
|
causal = self.is_causal and query_length != 1
|
|
# Contains at least one padding token in the sequence
|
|
if attention_mask is not None:
|
|
batch_size = query_states.shape[0]
|
|
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
|
query_states, key_states, value_states, attention_mask, query_length
|
|
)
|
|
if no_rope_param is not None:
|
|
# nope unpad
|
|
no_rope_param['query_states_no_rope'] = no_rope_param['query_states_no_rope'].squeeze(0)
|
|
no_rope_param['key_states_no_rope'] = no_rope_param['key_states_no_rope'].squeeze(0)
|
|
|
|
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
|
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
|
attn_output_unpad = self.sparse_forward(
|
|
query_states,
|
|
key_states,
|
|
value_states,
|
|
cu_seqlens_q,
|
|
cu_seqlens_k,
|
|
max_seqlen_in_batch_q,
|
|
max_seqlen_in_batch_k,
|
|
no_rope_param=no_rope_param,
|
|
past_key_value=past_key_value,
|
|
)
|
|
|
|
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
|
else:
|
|
raise ValueError('Need attention mask')
|
|
|
|
return attn_output
|
|
|
|
def _flash_attention_forward_with_kv_cache(
|
|
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None, no_rope_param=None, past_key_value=None
|
|
):
|
|
"""
|
|
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
|
first unpad the input, then computes the attention scores and pad the final attention scores.
|
|
|
|
Args:
|
|
query_states (`torch.Tensor`):
|
|
Input query states to be passed to Flash Attention API
|
|
key_states (`torch.Tensor`):
|
|
Input key states to be passed to Flash Attention API
|
|
value_states (`torch.Tensor`):
|
|
Input value states to be passed to Flash Attention API
|
|
attention_mask (`torch.Tensor`):
|
|
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
|
position of padding tokens and 1 for the position of non-padding tokens.
|
|
dropout (`int`, *optional*):
|
|
Attention dropout
|
|
softmax_scale (`float`, *optional*):
|
|
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
|
"""
|
|
if not self._flash_attn_uses_top_left_mask:
|
|
causal = self.is_causal
|
|
else:
|
|
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in MiniCPMFlashAttention2 __init__.
|
|
causal = self.is_causal and query_length != 1
|
|
# Contains at least one padding token in the sequence
|
|
if attention_mask is not None:
|
|
|
|
batch_size = query_states.shape[0]
|
|
|
|
# query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
|
# query_states, key_states, value_states, attention_mask, query_length=query_length
|
|
# )
|
|
|
|
assert batch_size == 1, 'Only batch_size=1 is supported at the moment.'
|
|
# prepare past kv ,new kv
|
|
new_q = query_states
|
|
|
|
new_k = key_states[:, -1:, :, :].contiguous()
|
|
new_v = value_states[:, -1:, :, :].contiguous()
|
|
|
|
past_k = key_states[:, :-1, :, :].contiguous()
|
|
past_v = value_states[:, :-1, :, :].contiguous()
|
|
if no_rope_param is not None:
|
|
# nope unpad
|
|
no_rope_param['query_states_no_rope'] = no_rope_param['query_states_no_rope'].squeeze(0)
|
|
no_rope_param['key_states_no_rope'] = no_rope_param['key_states_no_rope'].squeeze(0)
|
|
|
|
attn_output = self.sparse_forward_with_kv_cache(
|
|
past_k=past_k, past_v=past_v, new_k=new_k, new_v=new_v, new_q=new_q, batch_size=batch_size, no_rope_param=no_rope_param, past_key_value=past_key_value)
|
|
|
|
# attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
|
else:
|
|
raise ValueError('need attention mask')
|
|
|
|
return attn_output
|
|
|
|
def sparse_forward(self,
|
|
query_layer,
|
|
key_layer,
|
|
value_layer,
|
|
cu_seqlens_q,
|
|
cu_seqlens_k,
|
|
max_seqlen_in_batch_q,
|
|
max_seqlen_in_batch_k,
|
|
no_rope_param=None,
|
|
past_key_value=None):
|
|
stage1_k = key_layer if no_rope_param is None else no_rope_param['key_states_no_rope']
|
|
compressed_k, compressed_cu_seqlens = self.compress_k(stage1_k, cu_seqlens_k)
|
|
compressed_v = compressed_k.clone()
|
|
if past_key_value is not None:
|
|
# Compute the start indices of keys (k) that were not compressed, Only batch_size=1 is supported at the moment.
|
|
no_compress_k_start = compressed_k.shape[0] * self.kernel_stride
|
|
past_key_value.update_compress_k(
|
|
compressed_k, self.layer_idx
|
|
)
|
|
past_key_value.update_no_compress_k(
|
|
key_layer[no_compress_k_start:], self.layer_idx, no_compress_k_start)
|
|
past_key_value.cached_compressed_cu_seqlens.append(compressed_cu_seqlens)
|
|
compressed_seqlens = compressed_cu_seqlens[1:] - compressed_cu_seqlens[:-1]
|
|
topk_idx = compressed_attention(
|
|
query_layer if no_rope_param is None else no_rope_param['query_states_no_rope'],
|
|
compressed_k,
|
|
compressed_v,
|
|
self.kernel_size,
|
|
self.kernel_stride,
|
|
self.block_size,
|
|
self.topk,
|
|
cu_seqlens_q,
|
|
compressed_cu_seqlens,
|
|
max_seqlen_in_batch_q,
|
|
compressed_seqlens.max().item(),
|
|
None,
|
|
init_blocks=self.init_blocks,
|
|
local_blocks=self.local_blocks,
|
|
)
|
|
|
|
topk_attn_output = infllmv2_attn_varlen_func(
|
|
query_layer,
|
|
key_layer,
|
|
value_layer,
|
|
cu_seqlens_q,
|
|
cu_seqlens_k,
|
|
max_seqlen_in_batch_q,
|
|
max_seqlen_in_batch_k,
|
|
dropout_p=0.0,
|
|
deterministic=False,
|
|
softmax_scale=None,
|
|
causal=True,
|
|
return_attn_probs=False,
|
|
block_window_size=self.window_size // self.block_size,
|
|
topk_idx=topk_idx
|
|
)
|
|
|
|
return topk_attn_output
|
|
|
|
def sparse_forward_with_kv_cache(self, past_k=None, past_v=None, new_k=None, new_v=None, new_q=None, batch_size=None, no_rope_param=None, past_key_value=None):
|
|
|
|
# stage1_k = new_k.squeeze(0) if no_rope_param is None else no_rope_param['key_states_no_rope']
|
|
if past_k.shape[1] + new_k.shape[1] == self.dense_len and (past_key_value.compress_k_cache == [] or len(past_key_value.compress_k_cache) < self.layer_idx + 1 or past_key_value.compress_k_cache[self.layer_idx] == []):
|
|
if no_rope_param is not None:
|
|
stage1_k = past_key_value.no_rope_key_cache[self.layer_idx].squeeze(0).contiguous() # just batch_size ==1
|
|
else:
|
|
stage1_k = torch.cat([past_k, new_k], dim=1).contiguous().squeeze(0).contiguous() # just batch_size ==1
|
|
compressed_k, compressed_cu_seqlens = self.compress_k(stage1_k, torch.tensor([0, stage1_k.shape[0]], device=stage1_k.device, dtype=torch.int32)) # just batch_size ==1
|
|
|
|
# Compute the start indices of keys (k) that were not compressed, Only batch_size=1 is supported at the moment.
|
|
no_compress_k_start = compressed_k.shape[0] * self.kernel_stride
|
|
past_key_value.update_compress_k(
|
|
compressed_k, self.layer_idx
|
|
)
|
|
past_key_value.update_no_compress_k(
|
|
stage1_k[no_compress_k_start:], self.layer_idx, no_compress_k_start)
|
|
past_key_value.cached_compressed_cu_seqlens.append(compressed_cu_seqlens)
|
|
|
|
else:
|
|
stage1_k = new_k.squeeze(0) if no_rope_param is None else no_rope_param['key_states_no_rope']
|
|
no_compress_k = past_key_value.update_no_compress_k(
|
|
stage1_k, self.layer_idx, kernel_stride=self.kernel_stride, kernel_size=self.kernel_size)
|
|
if no_compress_k is not None:
|
|
compressed_k = no_compress_k.mean(dim=0, keepdim=True) # [1, n_heads_k, head_dim]
|
|
|
|
compressed_k = past_key_value.update_compress_k(
|
|
compressed_k, self.layer_idx) # [seqlen, nheads_k, head_dim]
|
|
|
|
past_key_value.cached_compressed_cu_seqlens[self.layer_idx][-1] += 1 # !Increment the last entry in sequence lengths by 1; currently supports only batch_size = 1
|
|
compressed_cu_seqlens = past_key_value.cached_compressed_cu_seqlens[self.layer_idx]
|
|
else:
|
|
compressed_k = past_key_value.compress_k_cache[self.layer_idx] # [seqlen, nheads_k, head_dim]
|
|
compressed_cu_seqlens = past_key_value.cached_compressed_cu_seqlens[self.layer_idx]
|
|
|
|
compressed_v = compressed_k.clone()
|
|
|
|
compressed_seqlens = compressed_cu_seqlens[1:] - compressed_cu_seqlens[:-1]
|
|
torch.cuda.synchronize()
|
|
# Manually verify that the lengths match
|
|
assert compressed_k.shape[0] == compressed_seqlens.sum().item(), 'The length of compressed_k does not match the sum of compressed_seqlens'
|
|
topk_idx = compressed_attention(
|
|
new_q.squeeze(0).contiguous() if no_rope_param is None else no_rope_param['query_states_no_rope'],
|
|
compressed_k,
|
|
compressed_v,
|
|
self.kernel_size,
|
|
self.kernel_stride,
|
|
self.block_size,
|
|
self.topk,
|
|
torch.tensor([0, 1], device=compressed_k.device, dtype=torch.int32),
|
|
compressed_cu_seqlens,
|
|
1,
|
|
compressed_seqlens.max().item(),
|
|
None,
|
|
init_blocks=self.init_blocks,
|
|
local_blocks=self.local_blocks,
|
|
total_seq_lens=past_k.shape[1] + 1, # !Only batch_size=1 is supported at the moment.
|
|
)
|
|
|
|
repeat_times = 1
|
|
if repeat_times > 1:
|
|
new_q = new_q.repeat_interleave(repeat_times, dim=-2)
|
|
else:
|
|
new_q = new_q
|
|
|
|
cache_batch_idx = torch.arange(batch_size, device=new_q.device, dtype=torch.int32)
|
|
|
|
seqlen_k = past_k.shape[1] + new_k.shape[1] # !Only batch_size=1 is supported at the moment.
|
|
seqlens_k = torch.full((batch_size,), seqlen_k - 1, dtype=torch.int32, device=new_q.device)
|
|
|
|
past_k = torch.cat([past_k, torch.zeros_like(new_k, dtype=new_k.dtype)], dim=1).contiguous() # Append one zero vector to avoid potential out-of-bounds access
|
|
past_v = torch.cat([past_v, torch.zeros_like(new_v, dtype=new_v.dtype)], dim=1).contiguous() # Append one zero vector to avoid potential out-of-bounds access
|
|
topk_attn_output = infllmv2_attn_with_kvcache(
|
|
q=new_q,
|
|
k_cache=past_k,
|
|
v_cache=past_v,
|
|
topk_idx=topk_idx,
|
|
block_window_size=self.window_size // self.block_size,
|
|
k=new_k, # [batch_size, 1, nheads_k, d]
|
|
v=new_v, # [batch_size, 1, nheads_k, d]
|
|
cache_seqlens=seqlens_k, # current_seqlens_k-1
|
|
rotary_cos=None, # No rotary embeddings
|
|
rotary_sin=None, # No rotary embeddings
|
|
cache_batch_idx=cache_batch_idx,
|
|
causal=False, # Renaming to match function signature
|
|
)
|
|
return topk_attn_output
|
|
|
|
def _flash_attention_forward_dense(
|
|
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
|
):
|
|
"""
|
|
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
|
first unpad the input, then computes the attention scores and pad the final attention scores.
|
|
|
|
Args:
|
|
query_states (`torch.Tensor`):
|
|
Input query states to be passed to Flash Attention API
|
|
key_states (`torch.Tensor`):
|
|
Input key states to be passed to Flash Attention API
|
|
value_states (`torch.Tensor`):
|
|
Input value states to be passed to Flash Attention API
|
|
attention_mask (`torch.Tensor`):
|
|
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
|
position of padding tokens and 1 for the position of non-padding tokens.
|
|
dropout (`int`, *optional*):
|
|
Attention dropout
|
|
softmax_scale (`float`, *optional*):
|
|
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
|
"""
|
|
if not self._flash_attn_uses_top_left_mask:
|
|
causal = self.is_causal
|
|
else:
|
|
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in MiniCPMFlashAttention2 __init__.
|
|
causal = self.is_causal and query_length != 1
|
|
# Contains at least one padding token in the sequence
|
|
if attention_mask is not None:
|
|
batch_size = query_states.shape[0]
|
|
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
|
query_states, key_states, value_states, attention_mask, query_length
|
|
)
|
|
|
|
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
|
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
|
attn_output_unpad = flash_attn_varlen_func(
|
|
query_states,
|
|
key_states,
|
|
value_states,
|
|
cu_seqlens_q=cu_seqlens_q,
|
|
cu_seqlens_k=cu_seqlens_k,
|
|
max_seqlen_q=max_seqlen_in_batch_q,
|
|
max_seqlen_k=max_seqlen_in_batch_k,
|
|
dropout_p=dropout,
|
|
softmax_scale=softmax_scale,
|
|
causal=causal,
|
|
)
|
|
|
|
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
|
else:
|
|
attn_output = flash_attn_func(
|
|
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
|
)
|
|
|
|
return attn_output
|
|
|
|
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
|
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
|
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
|
|
|
key_layer = index_first_axis(
|
|
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
|
)
|
|
value_layer = index_first_axis(
|
|
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
|
)
|
|
if query_length == kv_seq_len:
|
|
query_layer = index_first_axis(
|
|
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
|
)
|
|
cu_seqlens_q = cu_seqlens_k
|
|
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
|
indices_q = indices_k
|
|
elif query_length == 1:
|
|
max_seqlen_in_batch_q = 1
|
|
cu_seqlens_q = torch.arange(
|
|
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
|
) # There is a memcpy here, that is very bad.
|
|
indices_q = cu_seqlens_q[:-1]
|
|
query_layer = query_layer.squeeze(1)
|
|
else:
|
|
# The -q_len: slice assumes left padding.
|
|
attention_mask = attention_mask[:, -query_length:]
|
|
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
|
|
|
return (
|
|
query_layer,
|
|
key_layer,
|
|
value_layer,
|
|
indices_q,
|
|
(cu_seqlens_q, cu_seqlens_k),
|
|
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
|
)
|
|
|
|
|
|
class MiniCPMSdpaAttention(MiniCPMAttention):
|
|
"""
|
|
MiniCPM attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
|
`MiniCPMAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
|
SDPA API.
|
|
"""
|
|
|
|
# Adapted from MiniCPMAttention.forward
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_value: Optional[Cache] = None,
|
|
output_attentions: bool = False,
|
|
use_cache: bool = False,
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
if output_attentions:
|
|
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
|
logger.warning_once(
|
|
'MiniCPMModel is using MiniCPMSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, '
|
|
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
|
)
|
|
return super().forward(
|
|
hidden_states=hidden_states,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_value=past_key_value,
|
|
output_attentions=output_attentions,
|
|
use_cache=use_cache,
|
|
)
|
|
|
|
bsz, q_len, _ = hidden_states.size()
|
|
|
|
query_states = self.q_proj(hidden_states)
|
|
key_states = self.k_proj(hidden_states)
|
|
value_states = self.v_proj(hidden_states)
|
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
|
|
kv_seq_len = key_states.shape[-2]
|
|
if past_key_value is not None:
|
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
|
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
|
|
|
if past_key_value is not None:
|
|
cache_kwargs = {'sin': sin, 'cos': cos} # Specific to RoPE models
|
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
|
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
|
|
|
if attention_mask is not None:
|
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
|
raise ValueError(
|
|
f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
|
|
)
|
|
|
|
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
|
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
|
if query_states.device.type == 'cuda' and attention_mask is not None:
|
|
query_states = query_states.contiguous()
|
|
key_states = key_states.contiguous()
|
|
value_states = value_states.contiguous()
|
|
|
|
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
|
query_states,
|
|
key_states,
|
|
value_states,
|
|
attn_mask=attention_mask,
|
|
dropout_p=self.attention_dropout if self.training else 0.0,
|
|
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
|
is_causal=self.is_causal and attention_mask is None and q_len > 1,
|
|
)
|
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
|
|
|
attn_output = self.o_proj(attn_output)
|
|
|
|
return attn_output, None, past_key_value
|
|
|
|
|
|
MINICPM_ATTENTION_CLASSES = {
|
|
'eager': MiniCPMAttention,
|
|
'flash_attention_2': MiniCPMFlashAttention2,
|
|
'sdpa': MiniCPMSdpaAttention,
|
|
}
|
|
|
|
|
|
class MiniCPMDecoderLayer(nn.Module):
|
|
def __init__(self, config: MiniCPMConfig, layer_idx: int):
|
|
super().__init__()
|
|
self.hidden_size = config.hidden_size
|
|
if config.sparse_config is not None and torch.cuda.is_available():
|
|
raise NotImplementedError("MiniCPM4-0.5B does not support sparse attention yet.")
|
|
else:
|
|
self.self_attn = MINICPM_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
|
|
|
|
self.mlp = MiniCPMMLP(config)
|
|
self.input_layernorm = MiniCPMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.post_attention_layernorm = MiniCPMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
|
self.scale_depth = config.scale_depth
|
|
self.num_hidden_layers = config.num_hidden_layers
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
|
output_attentions: Optional[bool] = False,
|
|
use_cache: Optional[bool] = False,
|
|
**kwargs,
|
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
|
"""
|
|
Args:
|
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
|
attention_mask (`torch.FloatTensor`, *optional*):
|
|
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
|
query_sequence_length, key_sequence_length)` if default attention is used.
|
|
output_attentions (`bool`, *optional*):
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
|
returned tensors for more detail.
|
|
use_cache (`bool`, *optional*):
|
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
|
(see `past_key_values`).
|
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
|
"""
|
|
if 'padding_mask' in kwargs:
|
|
warnings.warn(
|
|
'Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`'
|
|
)
|
|
|
|
residual = hidden_states
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
# Self Attention
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
|
hidden_states=hidden_states,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_value=past_key_value,
|
|
output_attentions=output_attentions,
|
|
use_cache=use_cache,
|
|
**kwargs,
|
|
)
|
|
|
|
hidden_states = residual + hidden_states * (self.scale_depth / math.sqrt(self.num_hidden_layers))
|
|
|
|
# Fully Connected
|
|
residual = hidden_states
|
|
hidden_states = self.post_attention_layernorm(hidden_states)
|
|
|
|
hidden_states = self.mlp(hidden_states)
|
|
hidden_states = residual + hidden_states * (self.scale_depth / math.sqrt(self.num_hidden_layers))
|
|
|
|
outputs = (hidden_states,)
|
|
|
|
if output_attentions:
|
|
outputs += (self_attn_weights,)
|
|
|
|
if use_cache:
|
|
outputs += (present_key_value,)
|
|
|
|
return outputs
|
|
|
|
|
|
MINICPM_START_DOCSTRING = r"""
|
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
|
etc.)
|
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
|
and behavior.
|
|
|
|
Parameters:
|
|
config ([`MiniCPMConfig`]):
|
|
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
|
load the weights associated with the model, only the configuration. Check out the
|
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
|
"""
|
|
|
|
|
|
@add_start_docstrings(
|
|
'The bare MiniCPM Model outputting raw hidden-states without any specific head on top.',
|
|
MINICPM_START_DOCSTRING,
|
|
)
|
|
class MiniCPMPreTrainedModel(PreTrainedModel):
|
|
config_class = MiniCPMConfig
|
|
base_model_prefix = 'model'
|
|
supports_gradient_checkpointing = True
|
|
_no_split_modules = ['MiniCPMDecoderLayer']
|
|
_skip_keys_device_placement = 'past_key_values'
|
|
_supports_flash_attn_2 = True
|
|
_supports_sdpa = True
|
|
_supports_cache_class = True
|
|
|
|
def _init_weights(self, module):
|
|
std = self.config.initializer_range
|
|
if isinstance(module, nn.Linear):
|
|
module.weight.data.normal_(mean=0.0, std=std)
|
|
if module.bias is not None:
|
|
module.bias.data.zero_()
|
|
elif isinstance(module, nn.Embedding):
|
|
module.weight.data.normal_(mean=0.0, std=std)
|
|
if module.padding_idx is not None:
|
|
module.weight.data[module.padding_idx].zero_()
|
|
|
|
|
|
MINICPM_INPUTS_DOCSTRING = r"""
|
|
Args:
|
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
|
it.
|
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
|
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
|
[What are input IDs?](../glossary#input-ids)
|
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
|
|
[What are attention masks?](../glossary#attention-mask)
|
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
|
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
|
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
|
`past_key_values`).
|
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
|
information on the default strategy.
|
|
|
|
- 1 indicates the head is **not masked**,
|
|
- 0 indicates the head is **masked**.
|
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
|
config.n_positions - 1]`.
|
|
|
|
[What are position IDs?](../glossary#position-ids)
|
|
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
|
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
|
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
|
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
|
|
|
Two formats are allowed:
|
|
- a [`~cache_utils.Cache`] instance;
|
|
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
|
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
|
cache format.
|
|
|
|
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
|
legacy cache format will be returned.
|
|
|
|
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
|
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
|
of shape `(batch_size, sequence_length)`.
|
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
|
model's internal embedding lookup matrix.
|
|
use_cache (`bool`, *optional*):
|
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
|
`past_key_values`).
|
|
output_attentions (`bool`, *optional*):
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
|
tensors for more detail.
|
|
output_hidden_states (`bool`, *optional*):
|
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
|
more detail.
|
|
return_dict (`bool`, *optional*):
|
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
|
"""
|
|
|
|
|
|
@add_start_docstrings(
|
|
'The bare MiniCPM Model outputting raw hidden-states without any specific head on top.',
|
|
MINICPM_START_DOCSTRING,
|
|
)
|
|
class MiniCPMModel(MiniCPMPreTrainedModel):
|
|
"""
|
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MiniCPMDecoderLayer`]
|
|
|
|
Args:
|
|
config: MiniCPMConfig
|
|
"""
|
|
|
|
def __init__(self, config: MiniCPMConfig):
|
|
super().__init__(config)
|
|
self.padding_idx = config.pad_token_id
|
|
self.vocab_size = config.vocab_size
|
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
|
self.layers = nn.ModuleList(
|
|
[MiniCPMDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
|
)
|
|
self._use_sdpa = config._attn_implementation == 'sdpa'
|
|
self._use_flash_attention_2 = config._attn_implementation == 'flash_attention_2'
|
|
|
|
self.norm = MiniCPMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
|
self.gradient_checkpointing = False
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.embed_tokens
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.embed_tokens = value
|
|
|
|
@add_start_docstrings_to_model_forward(MINICPM_INPUTS_DOCSTRING)
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, BaseModelOutputWithPast]:
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
# retrieve input_ids and inputs_embeds
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
|
|
elif input_ids is not None:
|
|
batch_size, seq_length = input_ids.shape[:2]
|
|
elif inputs_embeds is not None:
|
|
batch_size, seq_length = inputs_embeds.shape[:2]
|
|
else:
|
|
raise ValueError('You have to specify either input_ids or inputs_embeds')
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
if use_cache:
|
|
logger.warning_once(
|
|
'`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
|
|
)
|
|
use_cache = False
|
|
|
|
past_key_values_length = 0
|
|
|
|
if use_cache:
|
|
use_legacy_cache = not isinstance(past_key_values, Cache)
|
|
if use_legacy_cache:
|
|
raise ValueError(
|
|
'You must use the new past_key_values format, such as the Cache class, instead of the old tuple format.'
|
|
)
|
|
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
|
|
|
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
|
if self.config.sparse_config is not None and torch.cuda.is_available() and past_key_values_length == 0:
|
|
past_key_values = DynamicCacheQKV()
|
|
|
|
if position_ids is None:
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
|
position_ids = torch.arange(
|
|
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
|
)
|
|
position_ids = position_ids.unsqueeze(0)
|
|
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.embed_tokens(input_ids) * self.config.scale_emb
|
|
|
|
if self._use_flash_attention_2:
|
|
# 2d mask is passed through the layers
|
|
# attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
|
if attention_mask is None:
|
|
raise ValueError(
|
|
f'need attention_mask for flash attention, but got {attention_mask}.'
|
|
)
|
|
elif self._use_sdpa and not output_attentions:
|
|
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
|
# the manual implementation that requires a 4D causal mask in all cases.
|
|
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
|
attention_mask,
|
|
(batch_size, seq_length),
|
|
inputs_embeds,
|
|
past_key_values_length,
|
|
)
|
|
else:
|
|
# 4d mask is passed through the layers
|
|
attention_mask = _prepare_4d_causal_attention_mask(
|
|
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
|
)
|
|
|
|
# embed positions
|
|
hidden_states = inputs_embeds
|
|
|
|
# decoder layers
|
|
all_hidden_states = () if output_hidden_states else None
|
|
all_self_attns = () if output_attentions else None
|
|
next_decoder_cache = None
|
|
|
|
for decoder_layer in self.layers:
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
layer_outputs = self._gradient_checkpointing_func(
|
|
decoder_layer.__call__,
|
|
hidden_states,
|
|
attention_mask,
|
|
position_ids,
|
|
past_key_values,
|
|
output_attentions,
|
|
use_cache,
|
|
)
|
|
else:
|
|
layer_outputs = decoder_layer(
|
|
hidden_states,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_value=past_key_values,
|
|
output_attentions=output_attentions,
|
|
use_cache=use_cache,
|
|
)
|
|
|
|
hidden_states = layer_outputs[0]
|
|
|
|
if use_cache:
|
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
|
|
|
if output_attentions:
|
|
all_self_attns += (layer_outputs[1],)
|
|
|
|
hidden_states = self.norm(hidden_states)
|
|
|
|
# add hidden states from the last decoder layer
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
next_cache = None
|
|
if use_cache:
|
|
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
|
if not return_dict:
|
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
|
return BaseModelOutputWithPast(
|
|
last_hidden_state=hidden_states,
|
|
past_key_values=next_cache,
|
|
hidden_states=all_hidden_states,
|
|
attentions=all_self_attns,
|
|
)
|
|
|
|
|
|
class MiniCPMForCausalLM(MiniCPMPreTrainedModel):
|
|
_tied_weights_keys = ['lm_head.weight']
|
|
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.model = MiniCPMModel(config)
|
|
self.vocab_size = config.vocab_size
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.model.embed_tokens
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.model.embed_tokens = value
|
|
|
|
def get_output_embeddings(self):
|
|
return self.lm_head
|
|
|
|
def set_output_embeddings(self, new_embeddings):
|
|
self.lm_head = new_embeddings
|
|
|
|
def set_decoder(self, decoder):
|
|
self.model = decoder
|
|
|
|
def get_decoder(self):
|
|
return self.model
|
|
|
|
@add_start_docstrings_to_model_forward(MINICPM_INPUTS_DOCSTRING)
|
|
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
**kwargs,
|
|
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
r"""
|
|
Args:
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
|
|
Returns:
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import AutoTokenizer, MiniCPMForCausalLM
|
|
|
|
>>> model = MiniCPMForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
|
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
|
>>> # Generate
|
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
```"""
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
outputs = self.model(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
hidden_states = outputs[0]
|
|
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
|
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
hidden_states = hidden_states[:, slice_indices, :].contiguous()
|
|
if self.config.pretraining_tp > 1:
|
|
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
|
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
|
logits = torch.cat(logits, dim=-1)
|
|
else:
|
|
logits = self.lm_head(hidden_states / (self.config.hidden_size / self.config.dim_model_base))
|
|
logits = logits.float()
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
# Shift so that tokens < n predict n
|
|
shift_logits = logits[..., :-1, :].contiguous()
|
|
shift_labels = labels[..., 1:].contiguous()
|
|
# Flatten the tokens
|
|
loss_fct = CrossEntropyLoss()
|
|
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
|
shift_labels = shift_labels.view(-1)
|
|
# Enable model parallelism
|
|
shift_labels = shift_labels.to(shift_logits.device)
|
|
loss = loss_fct(shift_logits, shift_labels)
|
|
|
|
if not return_dict:
|
|
output = (logits,) + outputs[1:]
|
|
return (loss,) + output if loss is not None else output
|
|
|
|
return CausalLMOutputWithPast(
|
|
loss=loss,
|
|
logits=logits,
|
|
past_key_values=outputs.past_key_values,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
)
|
|
|
|
def prepare_inputs_for_generation(
|
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
|
):
|
|
if past_key_values is not None:
|
|
if isinstance(past_key_values, Cache):
|
|
cache_length = past_key_values.get_seq_length()
|
|
past_length = past_key_values.seen_tokens
|
|
max_cache_length = None # past_key_values.get_max_length()
|
|
else:
|
|
cache_length = past_length = past_key_values[0][0].shape[2]
|
|
max_cache_length = None
|
|
|
|
# Keep only the unprocessed tokens:
|
|
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
|
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
|
# input)
|
|
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
|
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length):]
|
|
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
|
# input_ids based on the past_length.
|
|
elif past_length < input_ids.shape[1]:
|
|
input_ids = input_ids[:, past_length:]
|
|
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
|
|
|
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
|
if (
|
|
max_cache_length is not None
|
|
and attention_mask is not None
|
|
and cache_length + input_ids.shape[1] > max_cache_length
|
|
):
|
|
attention_mask = attention_mask[:, -max_cache_length:]
|
|
|
|
position_ids = kwargs.get('position_ids', None)
|
|
if attention_mask is not None and position_ids is None:
|
|
# create position_ids on the fly for batch generation
|
|
position_ids = attention_mask.long().cumsum(-1) - 1
|
|
position_ids.masked_fill_(attention_mask == 0, 1)
|
|
if past_key_values:
|
|
position_ids = position_ids[:, -input_ids.shape[1]:]
|
|
|
|
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
|
if inputs_embeds is not None and past_key_values is None:
|
|
model_inputs = {'inputs_embeds': inputs_embeds}
|
|
else:
|
|
model_inputs = {'input_ids': input_ids}
|
|
|
|
model_inputs.update(
|
|
{
|
|
'position_ids': position_ids,
|
|
'past_key_values': past_key_values,
|
|
'use_cache': kwargs.get('use_cache'),
|
|
'attention_mask': attention_mask,
|
|
}
|
|
)
|
|
# Forward ALL kwargs that are uninitialized (e.g. `use_cache`).
|
|
for key, value in kwargs.items():
|
|
if key not in model_inputs:
|
|
model_inputs[key] = value
|
|
return model_inputs
|
|
|
|
@staticmethod
|
|
def _reorder_cache(past_key_values, beam_idx):
|
|
reordered_past = ()
|
|
for layer_past in past_key_values:
|
|
reordered_past += (
|
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
|
)
|
|
return reordered_past
|
|
|
|
@torch.inference_mode()
|
|
def chat(self, tokenizer, query: str, history: List[Dict] = None, role: str = 'user',
|
|
max_length: int = 4096, num_beams=1, do_sample=True, top_p=0.8, temperature=0.3, logits_processor=None,
|
|
**kwargs):
|
|
if history is None:
|
|
history = []
|
|
if logits_processor:
|
|
gen_kwargs = {
|
|
'max_length': max_length,
|
|
'num_beams': num_beams,
|
|
'do_sample': do_sample,
|
|
'top_p': top_p,
|
|
'temperature': temperature,
|
|
'logits_processor': logits_processor,
|
|
**kwargs
|
|
}
|
|
else:
|
|
gen_kwargs = {
|
|
'max_length': max_length,
|
|
'num_beams': num_beams,
|
|
'do_sample': do_sample,
|
|
'top_p': top_p,
|
|
'temperature': temperature,
|
|
'logits_processor': logits_processor,
|
|
**kwargs
|
|
}
|
|
|
|
history.append({'role': role, 'content': query})
|
|
history_str = tokenizer.apply_chat_template(history, tokenize=False, add_generation_prompt=False)
|
|
inputs = tokenizer(history_str, return_tensors='pt').to(self.device)
|
|
outputs = self.generate(**inputs, **gen_kwargs)
|
|
outputs = outputs.tolist()[0][len(inputs['input_ids'][0]):-1]
|
|
response = tokenizer.decode(outputs)
|
|
pattern = re.compile(r'.*?(?=<AI>|<用户>)', re.DOTALL)
|
|
matches = pattern.findall(response)
|
|
if len(matches) > 0:
|
|
response = matches[0]
|
|
history.append({'role': 'assistant', 'content': response})
|
|
return response, history
|
|
|
|
|
|
@add_start_docstrings(
|
|
"""
|
|
The MiniCPM Model transformer with a sequence classification head on top (linear layer).
|
|
|
|
[`MiniCPMForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
|
(e.g. GPT-2) do.
|
|
|
|
Since it does classification on the last token, it requires to know the position of the last token. If a
|
|
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
|
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
|
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
|
each row of the batch).
|
|
""",
|
|
MINICPM_START_DOCSTRING,
|
|
)
|
|
class MiniCPMForSequenceClassification(MiniCPMPreTrainedModel):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.num_labels = config.num_labels
|
|
self.model = MiniCPMModel(config)
|
|
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.model.embed_tokens
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.model.embed_tokens = value
|
|
|
|
@add_start_docstrings_to_model_forward(MINICPM_INPUTS_DOCSTRING)
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
|
r"""
|
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
|
"""
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
transformer_outputs = self.model(
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
hidden_states = transformer_outputs[0]
|
|
logits = self.score(hidden_states)
|
|
|
|
if input_ids is not None:
|
|
batch_size = input_ids.shape[0]
|
|
else:
|
|
batch_size = inputs_embeds.shape[0]
|
|
|
|
if self.config.pad_token_id is None and batch_size != 1:
|
|
raise ValueError('Cannot handle batch sizes > 1 if no padding token is defined.')
|
|
if self.config.pad_token_id is None:
|
|
sequence_lengths = -1
|
|
else:
|
|
if input_ids is not None:
|
|
sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
|
|
logits.device
|
|
)
|
|
else:
|
|
sequence_lengths = -1
|
|
|
|
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
labels = labels.to(logits.device)
|
|
if self.config.problem_type is None:
|
|
if self.num_labels == 1:
|
|
self.config.problem_type = 'regression'
|
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
|
self.config.problem_type = 'single_label_classification'
|
|
else:
|
|
self.config.problem_type = 'multi_label_classification'
|
|
|
|
if self.config.problem_type == 'regression':
|
|
loss_fct = MSELoss()
|
|
if self.num_labels == 1:
|
|
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
|
else:
|
|
loss = loss_fct(pooled_logits, labels)
|
|
elif self.config.problem_type == 'single_label_classification':
|
|
loss_fct = CrossEntropyLoss()
|
|
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
|
elif self.config.problem_type == 'multi_label_classification':
|
|
loss_fct = BCEWithLogitsLoss()
|
|
loss = loss_fct(pooled_logits, labels)
|
|
if not return_dict:
|
|
output = (pooled_logits,) + transformer_outputs[1:]
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
return SequenceClassifierOutputWithPast(
|
|
loss=loss,
|
|
logits=pooled_logits,
|
|
past_key_values=transformer_outputs.past_key_values,
|
|
hidden_states=transformer_outputs.hidden_states,
|
|
attentions=transformer_outputs.attentions,
|
|
)
|