246 lines
8.2 KiB
Python
246 lines
8.2 KiB
Python
from typing import List, Optional, Tuple, Union
|
|
|
|
from .configuration_uform_gen import VLMConfig
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torch.utils.checkpoint import checkpoint
|
|
from torch import nn
|
|
|
|
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
from transformers.modeling_utils import PreTrainedModel
|
|
from transformers.models.auto.modeling_auto import AutoModelForCausalLM, AutoModel
|
|
from transformers import AutoConfig
|
|
from transformers.utils import logging
|
|
|
|
from .vision_encoder import VisionEncoder
|
|
|
|
|
|
class ImageFeaturesPooler(nn.Module):
|
|
def __init__(self, config, text_config):
|
|
super().__init__()
|
|
self.pooler = nn.TransformerDecoderLayer(
|
|
config.image_encoder_hidden_size,
|
|
config.image_pooler_num_attn_heads,
|
|
config.image_pooler_intermediate_size,
|
|
activation=nn.functional.silu,
|
|
batch_first=True,
|
|
norm_first=True,
|
|
)
|
|
self.image_latents = nn.Parameter(
|
|
torch.randn(1, config.num_image_latents, config.image_encoder_hidden_size)
|
|
* config.initializer_range**0.5
|
|
)
|
|
self.projection = nn.Linear(config.image_encoder_hidden_size, text_config.hidden_size)
|
|
|
|
def forward(self, features):
|
|
features = self.pooler(
|
|
self.image_latents.expand(features.size(0), -1, -1), features
|
|
)
|
|
|
|
return self.projection(features)
|
|
|
|
|
|
class VLMPreTrainedModel(PreTrainedModel):
|
|
config_class = VLMConfig
|
|
base_model_prefix = "vlm"
|
|
supports_gradient_checkpointing = True
|
|
_no_split_modules = []
|
|
_skip_keys_device_placement = "past_key_values"
|
|
|
|
def _init_weights(self, module):
|
|
pass
|
|
|
|
def _initialize_weights(self, module):
|
|
pass
|
|
|
|
|
|
class VLMForCausalLM(VLMPreTrainedModel):
|
|
def __init__(self, config: VLMConfig):
|
|
super().__init__(config)
|
|
|
|
self.config = config
|
|
self.text_config = AutoConfig.from_pretrained(
|
|
config.text_decoder_name_or_path,
|
|
trust_remote_code=True
|
|
)
|
|
|
|
self.text_decoder = AutoModelForCausalLM.from_config(
|
|
self.text_config,
|
|
trust_remote_code=True
|
|
)
|
|
|
|
self.image_encoder = VisionEncoder(
|
|
config.image_encoder_hidden_size,
|
|
config.image_encoder_patch_size,
|
|
config.image_encoder_num_layers,
|
|
config.image_encoder_num_heads,
|
|
)
|
|
|
|
self.image_pooler = ImageFeaturesPooler(config, self.text_config)
|
|
|
|
def get_input_embeddings(self):
|
|
return self.text_decoder.get_input_embeddings()
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.text_decoder.set_input_embeddings(value)
|
|
|
|
def get_images_embeddings(self, images):
|
|
features = self.image_encoder(images)
|
|
return self.image_pooler(features)
|
|
|
|
def gather_continuous_embeddings(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
word_embeddings: torch.Tensor,
|
|
image_embeddings: torch.Tensor
|
|
) -> torch.Tensor:
|
|
|
|
start_indices = (input_ids == self.config.image_token_id).nonzero()[:, 1]
|
|
embeddings = []
|
|
for sample_idx, start_idx in enumerate(start_indices.tolist()):
|
|
embeddings.append(
|
|
torch.cat(
|
|
(
|
|
word_embeddings[sample_idx, :start_idx],
|
|
image_embeddings[sample_idx],
|
|
word_embeddings[sample_idx, start_idx + 1 :],
|
|
),
|
|
dim=0,
|
|
)
|
|
)
|
|
|
|
return torch.stack(embeddings, dim=0)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
images: torch.Tensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
labels: Optional[torch.Tensor] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None
|
|
) -> Union[dict, Tuple, CausalLMOutputWithPast]:
|
|
output_attentions = (
|
|
output_attentions
|
|
if output_attentions is not None
|
|
else self.config.output_attentions
|
|
)
|
|
output_hidden_states = (
|
|
output_hidden_states
|
|
if output_hidden_states is not None
|
|
else self.config.output_hidden_states
|
|
)
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
|
|
return_dict = (
|
|
return_dict if return_dict is not None else self.config.use_return_dict
|
|
)
|
|
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
raise ValueError(
|
|
"You cannot specify both input_ids and inputs_embeds at the same time"
|
|
)
|
|
elif input_ids is None and inputs_embeds is None:
|
|
raise ValueError("You have to specify either input_is or inputs_embeds")
|
|
|
|
if inputs_embeds is None and past_key_values is None:
|
|
inputs_embeds = self.get_input_embeddings()(input_ids)
|
|
|
|
if images is not None:
|
|
image_embeds = self.get_images_embeddings(images)
|
|
inputs_embeds = self.gather_continuous_embeddings(
|
|
input_ids,
|
|
inputs_embeds,
|
|
image_embeds
|
|
)
|
|
|
|
if position_ids is None:
|
|
seq_length = (
|
|
inputs_embeds.shape[1]
|
|
if inputs_embeds is not None
|
|
else input_ids.shape[1]
|
|
)
|
|
past_key_values_length = 0
|
|
|
|
if past_key_values is not None:
|
|
past_key_values_length = past_key_values[0][0].shape[2]
|
|
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
|
position_ids = torch.arange(
|
|
past_key_values_length,
|
|
seq_length + past_key_values_length,
|
|
dtype=torch.long,
|
|
device=device,
|
|
)
|
|
position_ids = position_ids.unsqueeze(0)
|
|
|
|
outputs = self.text_decoder(
|
|
inputs_embeds=inputs_embeds,
|
|
input_ids=input_ids if past_key_values is not None else None,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
use_cache=use_cache,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
return outputs
|
|
|
|
def prepare_inputs_for_generation(
|
|
self,
|
|
input_ids,
|
|
images=None,
|
|
past_key_values=None,
|
|
attention_mask=None,
|
|
inputs_embeds=None,
|
|
**kwargs,
|
|
):
|
|
if past_key_values:
|
|
input_ids = input_ids[:, -1:]
|
|
|
|
position_ids = kwargs.get("position_ids", None)
|
|
if attention_mask is not None and position_ids is None:
|
|
# create position_ids on the fly for batch generation
|
|
position_ids = attention_mask.long().cumsum(-1) - 1
|
|
position_ids.masked_fill_(attention_mask == 0, 1)
|
|
if past_key_values:
|
|
position_ids = position_ids[:, -1].unsqueeze(-1)
|
|
|
|
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
|
if inputs_embeds is not None and past_key_values is None:
|
|
model_inputs = {"inputs_embeds": inputs_embeds}
|
|
n_samples = inputs_embeds.shape[0]
|
|
else:
|
|
model_inputs = {"input_ids": input_ids}
|
|
n_samples = input_ids.shape[0]
|
|
|
|
if images is not None:
|
|
model_inputs["images"] = images
|
|
|
|
model_inputs.update(
|
|
{
|
|
"position_ids": position_ids,
|
|
"past_key_values": past_key_values,
|
|
"use_cache": kwargs.get("use_cache"),
|
|
"attention_mask": attention_mask,
|
|
"images": images if past_key_values is None else None,
|
|
}
|
|
)
|
|
return model_inputs
|
|
|
|
@classmethod
|
|
def from_config(cls, config, **kwargs):
|
|
return cls._from_config(config, **kwargs)
|
|
|
|
|
|
VLMConfig.register_for_auto_class()
|
|
VLMForCausalLM.register_for_auto_class("AutoModel")
|