pipeline_tag
tagslanguageslicense
image-to-text
image-captioning
en
bsd-3-clause
# BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation 在 COCO 数据集上进行预训练的图像描述模型卡 - 基础架构(具有 ViT 大型骨干网络)。 | [![BLIP.gif](https://cdn-uploads.huggingface.co/production/uploads/1670928184033-62441d1d9fdefb55a0b7d12c.gif)](https://cdn-uploads.huggingface.co/production/uploads/1670928184033-62441d1d9fdefb55a0b7d12c.gif) | | :----------------------------------------------------------: | | **从BLIP官方仓库中提取数据 ** | ## 摘要 作者在 [论文](https://arxiv.org/abs/2201.12086)的摘要中写道: 视觉-语言预训练(VLP)提高了许多视觉-语言任务的性能上取得了进展。然而,大多数现有的预训练模型仅在理解任务或生成任务中表现出色。此外,通过使用从网络收集的包含噪声的图像-文本对来扩展数据集,在很大程度上实现了性能的提高,这是一个次优的监督来源。在本文中,我们提出了 BLIP,一种新的 VLP 框架,它可以灵活地应用于视觉-语言理解和生成任务。BLIP 通过自展标注(bootstrapping the captions),可以有效地利用带有噪声的 web 数据,其中标注器(captioner)生成标注,过滤器(filter)去除有噪声的标注。该研究在视觉 - 语言任务上取得了 SOTA 性能,例如在图像 - 文本检索任务上, recall@1 提高 2.7%;在图像标注任务上,CIDEr 提高 2.8%、VQA 提高 +1.6%。当将 BLIP 以零样本的方式直接迁移到视频 - 语言任务时,BLIP 也表现出很强的泛化能力。代码、模型和数据集已发布。 ## 用途 您可以使用此模型进行有条件和无条件的图像描述生成。 ### 使用 Pytorch 模型 #### 在 CPU 上运行模型 ```python import requests from PIL import Image from transformers import BlipProcessor, BlipForConditionalGeneration processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large") img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB') # conditional image captioning text = "a photography of" inputs = processor(raw_image, text, return_tensors="pt") out = model.generate(**inputs) print(processor.decode(out[0], skip_special_tokens=True)) # unconditional image captioning inputs = processor(raw_image, return_tensors="pt") out = model.generate(**inputs) print(processor.decode(out[0], skip_special_tokens=True)) ``` #### 在 GPU 上运行模型 ##### 全精度 ```python import requests from PIL import Image from transformers import BlipProcessor, BlipForConditionalGeneration processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large").to("cuda") img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB') # conditional image captioning text = "a photography of" inputs = processor(raw_image, text, return_tensors="pt").to("cuda") out = model.generate(**inputs) print(processor.decode(out[0], skip_special_tokens=True)) # unconditional image captioning inputs = processor(raw_image, return_tensors="pt").to("cuda") out = model.generate(**inputs) print(processor.decode(out[0], skip_special_tokens=True)) ``` ##### 半精度 (`float16`) ```python import torch import requests from PIL import Image from transformers import BlipProcessor, BlipForConditionalGeneration processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large", torch_dtype=torch.float16).to("cuda") img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB') # conditional image captioning text = "a photography of" inputs = processor(raw_image, text, return_tensors="pt").to("cuda", torch.float16) out = model.generate(**inputs) print(processor.decode(out[0], skip_special_tokens=True)) # >>> a photography of a woman and her dog # unconditional image captioning inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16) out = model.generate(**inputs) print(processor.decode(out[0], skip_special_tokens=True)) >>> a woman sitting on the beach with her dog ``` ## BibTex条目和引用信息 ```text @misc{https://doi.org/10.48550/arxiv.2201.12086, doi = {10.48550/ARXIV.2201.12086}, url = {https://arxiv.org/abs/2201.12086}, author = {Li, Junnan and Li, Dongxu and Xiong, Caiming and Hoi, Steven}, keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```