From 5c7ba6f291142a664d0d1a4585f0b4c7f861604a Mon Sep 17 00:00:00 2001 From: Charles95 Date: Mon, 21 Oct 2024 03:55:08 +0000 Subject: [PATCH] first commit --- .gitattributes | 35 + README.md | 16 + config.json | 36 + configuration_internlm2.py | 151 ++++ generation_config.json | 7 + model-00001-of-00004.safetensors | 3 + model-00002-of-00004.safetensors | 3 + model-00003-of-00004.safetensors | 3 + model-00004-of-00004.safetensors | 3 + model.safetensors.index.json | 234 +++++ modeling_internlm2.py | 1391 ++++++++++++++++++++++++++++++ special_tokens_map.json | 6 + tokenization_internlm2.py | 236 +++++ tokenization_internlm2_fast.py | 214 +++++ tokenizer.model | 3 + tokenizer_config.json | 90 ++ 16 files changed, 2431 insertions(+) create mode 100644 .gitattributes create mode 100644 README.md create mode 100644 config.json create mode 100644 configuration_internlm2.py create mode 100644 generation_config.json create mode 100644 model-00001-of-00004.safetensors create mode 100644 model-00002-of-00004.safetensors create mode 100644 model-00003-of-00004.safetensors create mode 100644 model-00004-of-00004.safetensors create mode 100644 model.safetensors.index.json create mode 100644 modeling_internlm2.py create mode 100644 special_tokens_map.json create mode 100644 tokenization_internlm2.py create mode 100644 tokenization_internlm2_fast.py create mode 100644 tokenizer.model create mode 100644 tokenizer_config.json diff --git a/.gitattributes b/.gitattributes new file mode 100644 index 0000000..a6344aa --- /dev/null +++ b/.gitattributes @@ -0,0 +1,35 @@ +*.7z filter=lfs diff=lfs merge=lfs -text +*.arrow filter=lfs diff=lfs merge=lfs -text +*.bin filter=lfs diff=lfs merge=lfs -text +*.bz2 filter=lfs diff=lfs merge=lfs -text +*.ckpt filter=lfs diff=lfs merge=lfs -text +*.ftz filter=lfs diff=lfs merge=lfs -text +*.gz filter=lfs diff=lfs merge=lfs -text +*.h5 filter=lfs diff=lfs merge=lfs -text +*.joblib filter=lfs diff=lfs merge=lfs -text +*.lfs.* filter=lfs diff=lfs merge=lfs -text +*.mlmodel filter=lfs diff=lfs merge=lfs -text +*.model filter=lfs diff=lfs merge=lfs -text +*.msgpack filter=lfs diff=lfs merge=lfs -text +*.npy filter=lfs diff=lfs merge=lfs -text +*.npz filter=lfs diff=lfs merge=lfs -text +*.onnx filter=lfs diff=lfs merge=lfs -text +*.ot filter=lfs diff=lfs merge=lfs -text +*.parquet filter=lfs diff=lfs merge=lfs -text +*.pb filter=lfs diff=lfs merge=lfs -text +*.pickle filter=lfs diff=lfs merge=lfs -text +*.pkl filter=lfs diff=lfs merge=lfs -text +*.pt filter=lfs diff=lfs merge=lfs -text +*.pth filter=lfs diff=lfs merge=lfs -text +*.rar filter=lfs diff=lfs merge=lfs -text +*.safetensors filter=lfs diff=lfs merge=lfs -text +saved_model/**/* filter=lfs diff=lfs merge=lfs -text +*.tar.* filter=lfs diff=lfs merge=lfs -text +*.tar filter=lfs diff=lfs merge=lfs -text +*.tflite filter=lfs diff=lfs merge=lfs -text +*.tgz filter=lfs diff=lfs merge=lfs -text +*.wasm filter=lfs diff=lfs merge=lfs -text +*.xz filter=lfs diff=lfs merge=lfs -text +*.zip filter=lfs diff=lfs merge=lfs -text +*.zst filter=lfs diff=lfs merge=lfs -text +*tfevents* filter=lfs diff=lfs merge=lfs -text diff --git a/README.md b/README.md new file mode 100644 index 0000000..63d514e --- /dev/null +++ b/README.md @@ -0,0 +1,16 @@ +--- +license: mit +language: +- en +- zh +--- +## Introduction +The ShieldLM model ([paper link](https://arxiv.org/abs/2402.16444)) initialized from [internlm2-chat-7b](https://huggingface.co/internlm/internlm2-chat-7b). ShieldLM is a bilingual (Chinese and English) safety detector that mainly aims to help to detect safety issues in LLMs' generations. It aligns with general human safety standards, supports fine-grained customizable detection rules, and provides explanations for its decisions. +Refer to our [github repository](https://github.com/thu-coai/ShieldLM) for more detailed information. + +## Usage +Please refer to our [github repository](https://github.com/thu-coai/ShieldLM) for the detailed usage instructions. + +## Performance +ShieldLM demonstrates impressive detection performance across 4 ID and OOD test sets, compared to strong baselines such as GPT-4, Llama Guard and Perspective API. +Refer to [our paper](https://arxiv.org/abs/2402.16444) for more detailed evaluation results. \ No newline at end of file diff --git a/config.json b/config.json new file mode 100644 index 0000000..c425efe --- /dev/null +++ b/config.json @@ -0,0 +1,36 @@ +{ + "_name_or_path": "/data/zhangzhexin/huggingface_pretrained_models/internlm2-chat-7b", + "architectures": [ + "InternLM2ForCausalLM" + ], + "attn_implementation": "eager", + "auto_map": { + "AutoConfig": "configuration_internlm2.InternLM2Config", + "AutoModel": "modeling_internlm2.InternLM2ForCausalLM", + "AutoModelForCausalLM": "modeling_internlm2.InternLM2ForCausalLM" + }, + "bias": false, + "bos_token_id": 1, + "eos_token_id": 2, + "hidden_act": "silu", + "hidden_size": 4096, + "initializer_range": 0.02, + "intermediate_size": 14336, + "max_position_embeddings": 32768, + "model_type": "internlm2", + "num_attention_heads": 32, + "num_hidden_layers": 32, + "num_key_value_heads": 8, + "pad_token_id": 2, + "rms_norm_eps": 1e-05, + "rope_scaling": { + "factor": 2.0, + "type": "dynamic" + }, + "rope_theta": 1000000, + "tie_word_embeddings": false, + "torch_dtype": "float16", + "transformers_version": "4.36.2", + "use_cache": true, + "vocab_size": 92544 +} diff --git a/configuration_internlm2.py b/configuration_internlm2.py new file mode 100644 index 0000000..b011dd3 --- /dev/null +++ b/configuration_internlm2.py @@ -0,0 +1,151 @@ +# coding=utf-8 +# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved. +# +# This code is based on transformers/src/transformers/models/llama/configuration_llama.py +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" InternLM2 model configuration""" + +from transformers.configuration_utils import PretrainedConfig +from transformers.utils import logging + +logger = logging.get_logger(__name__) + +INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {} + + +# Modified from transformers.model.llama.configuration_llama.LlamaConfig +class InternLM2Config(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate + an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a + configuration with the defaults will yield a similar configuration to that of the InternLM2-7B. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 32000): + Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`InternLM2Model`] + hidden_size (`int`, *optional*, defaults to 4096): + Dimension of the hidden representations. + intermediate_size (`int`, *optional*, defaults to 11008): + Dimension of the MLP representations. + num_hidden_layers (`int`, *optional*, defaults to 32): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 32): + Number of attention heads for each attention layer in the Transformer encoder. + num_key_value_heads (`int`, *optional*): + This is the number of key_value heads that should be used to implement Grouped Query Attention. If + `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if + `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When + converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed + by meanpooling all the original heads within that group. For more details checkout [this + paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to + `num_attention_heads`. + hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): + The non-linear activation function (function or string) in the decoder. + max_position_embeddings (`int`, *optional*, defaults to 2048): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + rms_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the rms normalization layers. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). Only + relevant if `config.is_decoder=True`. + tie_word_embeddings(`bool`, *optional*, defaults to `False`): + Whether to tie weight embeddings + Example: + + """ + model_type = "internlm2" + _auto_class = "AutoConfig" + + def __init__( # pylint: disable=W0102 + self, + vocab_size=103168, + hidden_size=4096, + intermediate_size=11008, + num_hidden_layers=32, + num_attention_heads=32, + num_key_value_heads=None, + hidden_act="silu", + max_position_embeddings=2048, + initializer_range=0.02, + rms_norm_eps=1e-6, + use_cache=True, + pad_token_id=0, + bos_token_id=1, + eos_token_id=2, + tie_word_embeddings=False, + bias=True, + rope_theta=10000, + rope_scaling=None, + attn_implementation="eager", + **kwargs, + ): + self.vocab_size = vocab_size + self.max_position_embeddings = max_position_embeddings + self.hidden_size = hidden_size + self.intermediate_size = intermediate_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.bias = bias + + if num_key_value_heads is None: + num_key_value_heads = num_attention_heads + self.num_key_value_heads = num_key_value_heads + + self.hidden_act = hidden_act + self.initializer_range = initializer_range + self.rms_norm_eps = rms_norm_eps + self.use_cache = use_cache + self.rope_theta = rope_theta + self.rope_scaling = rope_scaling + self._rope_scaling_validation() + + self.attn_implementation = attn_implementation + if self.attn_implementation is None: + self.attn_implementation = "eager" + super().__init__( + pad_token_id=pad_token_id, + bos_token_id=bos_token_id, + eos_token_id=eos_token_id, + tie_word_embeddings=tie_word_embeddings, + **kwargs, + ) + + def _rope_scaling_validation(self): + """ + Validate the `rope_scaling` configuration. + """ + if self.rope_scaling is None: + return + + if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2: + raise ValueError( + "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, " + f"got {self.rope_scaling}" + ) + rope_scaling_type = self.rope_scaling.get("type", None) + rope_scaling_factor = self.rope_scaling.get("factor", None) + if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: + raise ValueError( + f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" + ) + if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0: + raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}") diff --git a/generation_config.json b/generation_config.json new file mode 100644 index 0000000..c1785bb --- /dev/null +++ b/generation_config.json @@ -0,0 +1,7 @@ +{ + "_from_model_config": true, + "bos_token_id": 1, + "eos_token_id": 2, + "pad_token_id": 2, + "transformers_version": "4.36.2" +} diff --git a/model-00001-of-00004.safetensors b/model-00001-of-00004.safetensors new file mode 100644 index 0000000..68128c6 --- /dev/null +++ b/model-00001-of-00004.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0da12f02086059a1a19988fb87714a9adb9237b09e43260a414e6843a81c27e1 +size 4885470560 diff --git a/model-00002-of-00004.safetensors b/model-00002-of-00004.safetensors new file mode 100644 index 0000000..e5e4022 --- /dev/null +++ b/model-00002-of-00004.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ffbeb8c214fa9363440276a9bc79b541e743c766f0d901ec48e4846df0c62783 +size 4915913344 diff --git a/model-00003-of-00004.safetensors b/model-00003-of-00004.safetensors new file mode 100644 index 0000000..d0ff293 --- /dev/null +++ b/model-00003-of-00004.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6f1ed88bd55ded2e0d9393fdd7de306c8d3bfad5760ceca38dabcd198450be2c +size 4915938224 diff --git a/model-00004-of-00004.safetensors b/model-00004-of-00004.safetensors new file mode 100644 index 0000000..cca3688 --- /dev/null +++ b/model-00004-of-00004.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d2db6a85f122c8449df6b9664fe3bd2cb898ce7a5757a2a9886acad6cfe19875 +size 758120576 diff --git a/model.safetensors.index.json b/model.safetensors.index.json new file mode 100644 index 0000000..9a0cf29 --- /dev/null +++ b/model.safetensors.index.json @@ -0,0 +1,234 @@ +{ + "metadata": { + "total_size": 15475417088 + }, + "weight_map": { + "model.layers.0.attention.wo.weight": "model-00001-of-00004.safetensors", + "model.layers.0.attention.wqkv.weight": "model-00001-of-00004.safetensors", + "model.layers.0.attention_norm.weight": "model-00001-of-00004.safetensors", + "model.layers.0.feed_forward.w1.weight": "model-00001-of-00004.safetensors", + "model.layers.0.feed_forward.w2.weight": "model-00001-of-00004.safetensors", + "model.layers.0.feed_forward.w3.weight": "model-00001-of-00004.safetensors", + "model.layers.0.ffn_norm.weight": "model-00001-of-00004.safetensors", + "model.layers.1.attention.wo.weight": "model-00001-of-00004.safetensors", + "model.layers.1.attention.wqkv.weight": "model-00001-of-00004.safetensors", + "model.layers.1.attention_norm.weight": "model-00001-of-00004.safetensors", + "model.layers.1.feed_forward.w1.weight": "model-00001-of-00004.safetensors", + "model.layers.1.feed_forward.w2.weight": "model-00001-of-00004.safetensors", + "model.layers.1.feed_forward.w3.weight": "model-00001-of-00004.safetensors", + "model.layers.1.ffn_norm.weight": "model-00001-of-00004.safetensors", + "model.layers.10.attention.wo.weight": "model-00002-of-00004.safetensors", + "model.layers.10.attention.wqkv.weight": "model-00002-of-00004.safetensors", + "model.layers.10.attention_norm.weight": "model-00002-of-00004.safetensors", + "model.layers.10.feed_forward.w1.weight": "model-00002-of-00004.safetensors", + "model.layers.10.feed_forward.w2.weight": "model-00002-of-00004.safetensors", + "model.layers.10.feed_forward.w3.weight": "model-00002-of-00004.safetensors", + "model.layers.10.ffn_norm.weight": "model-00002-of-00004.safetensors", + "model.layers.11.attention.wo.weight": "model-00002-of-00004.safetensors", + "model.layers.11.attention.wqkv.weight": "model-00002-of-00004.safetensors", + "model.layers.11.attention_norm.weight": "model-00002-of-00004.safetensors", + "model.layers.11.feed_forward.w1.weight": "model-00002-of-00004.safetensors", + "model.layers.11.feed_forward.w2.weight": "model-00002-of-00004.safetensors", + "model.layers.11.feed_forward.w3.weight": "model-00002-of-00004.safetensors", + "model.layers.11.ffn_norm.weight": "model-00002-of-00004.safetensors", + "model.layers.12.attention.wo.weight": "model-00002-of-00004.safetensors", + "model.layers.12.attention.wqkv.weight": "model-00002-of-00004.safetensors", + "model.layers.12.attention_norm.weight": "model-00002-of-00004.safetensors", + "model.layers.12.feed_forward.w1.weight": "model-00002-of-00004.safetensors", + "model.layers.12.feed_forward.w2.weight": "model-00002-of-00004.safetensors", + "model.layers.12.feed_forward.w3.weight": "model-00002-of-00004.safetensors", + "model.layers.12.ffn_norm.weight": "model-00002-of-00004.safetensors", + "model.layers.13.attention.wo.weight": "model-00002-of-00004.safetensors", + "model.layers.13.attention.wqkv.weight": "model-00002-of-00004.safetensors", + "model.layers.13.attention_norm.weight": "model-00002-of-00004.safetensors", + "model.layers.13.feed_forward.w1.weight": "model-00002-of-00004.safetensors", + "model.layers.13.feed_forward.w2.weight": "model-00002-of-00004.safetensors", + "model.layers.13.feed_forward.w3.weight": "model-00002-of-00004.safetensors", + "model.layers.13.ffn_norm.weight": "model-00002-of-00004.safetensors", + "model.layers.14.attention.wo.weight": "model-00002-of-00004.safetensors", + "model.layers.14.attention.wqkv.weight": "model-00002-of-00004.safetensors", + "model.layers.14.attention_norm.weight": "model-00002-of-00004.safetensors", + "model.layers.14.feed_forward.w1.weight": "model-00002-of-00004.safetensors", + "model.layers.14.feed_forward.w2.weight": "model-00002-of-00004.safetensors", + "model.layers.14.feed_forward.w3.weight": "model-00002-of-00004.safetensors", + "model.layers.14.ffn_norm.weight": "model-00002-of-00004.safetensors", + "model.layers.15.attention.wo.weight": "model-00002-of-00004.safetensors", + "model.layers.15.attention.wqkv.weight": "model-00002-of-00004.safetensors", + "model.layers.15.attention_norm.weight": "model-00002-of-00004.safetensors", + "model.layers.15.feed_forward.w1.weight": "model-00002-of-00004.safetensors", + "model.layers.15.feed_forward.w2.weight": "model-00002-of-00004.safetensors", + "model.layers.15.feed_forward.w3.weight": "model-00002-of-00004.safetensors", + "model.layers.15.ffn_norm.weight": "model-00002-of-00004.safetensors", + "model.layers.16.attention.wo.weight": "model-00002-of-00004.safetensors", + "model.layers.16.attention.wqkv.weight": "model-00002-of-00004.safetensors", + "model.layers.16.attention_norm.weight": "model-00002-of-00004.safetensors", + "model.layers.16.feed_forward.w1.weight": "model-00002-of-00004.safetensors", + "model.layers.16.feed_forward.w2.weight": "model-00002-of-00004.safetensors", + "model.layers.16.feed_forward.w3.weight": "model-00002-of-00004.safetensors", + "model.layers.16.ffn_norm.weight": "model-00002-of-00004.safetensors", + "model.layers.17.attention.wo.weight": "model-00002-of-00004.safetensors", + "model.layers.17.attention.wqkv.weight": "model-00002-of-00004.safetensors", + "model.layers.17.attention_norm.weight": "model-00002-of-00004.safetensors", + "model.layers.17.feed_forward.w1.weight": "model-00002-of-00004.safetensors", + "model.layers.17.feed_forward.w2.weight": "model-00002-of-00004.safetensors", + "model.layers.17.feed_forward.w3.weight": "model-00002-of-00004.safetensors", + "model.layers.17.ffn_norm.weight": "model-00002-of-00004.safetensors", + "model.layers.18.attention.wo.weight": "model-00002-of-00004.safetensors", + "model.layers.18.attention.wqkv.weight": "model-00002-of-00004.safetensors", + "model.layers.18.attention_norm.weight": "model-00002-of-00004.safetensors", + "model.layers.18.feed_forward.w1.weight": "model-00002-of-00004.safetensors", + "model.layers.18.feed_forward.w2.weight": "model-00002-of-00004.safetensors", + "model.layers.18.feed_forward.w3.weight": "model-00002-of-00004.safetensors", + "model.layers.18.ffn_norm.weight": "model-00002-of-00004.safetensors", + "model.layers.19.attention.wo.weight": "model-00002-of-00004.safetensors", + "model.layers.19.attention.wqkv.weight": "model-00002-of-00004.safetensors", + "model.layers.19.attention_norm.weight": "model-00002-of-00004.safetensors", + "model.layers.19.feed_forward.w1.weight": "model-00002-of-00004.safetensors", + "model.layers.19.feed_forward.w2.weight": "model-00002-of-00004.safetensors", + "model.layers.19.feed_forward.w3.weight": "model-00002-of-00004.safetensors", + "model.layers.19.ffn_norm.weight": "model-00002-of-00004.safetensors", + "model.layers.2.attention.wo.weight": "model-00001-of-00004.safetensors", + "model.layers.2.attention.wqkv.weight": "model-00001-of-00004.safetensors", + "model.layers.2.attention_norm.weight": "model-00001-of-00004.safetensors", + "model.layers.2.feed_forward.w1.weight": "model-00001-of-00004.safetensors", + "model.layers.2.feed_forward.w2.weight": "model-00001-of-00004.safetensors", + "model.layers.2.feed_forward.w3.weight": "model-00001-of-00004.safetensors", + "model.layers.2.ffn_norm.weight": "model-00001-of-00004.safetensors", + "model.layers.20.attention.wo.weight": "model-00002-of-00004.safetensors", + "model.layers.20.attention.wqkv.weight": "model-00002-of-00004.safetensors", + "model.layers.20.attention_norm.weight": "model-00003-of-00004.safetensors", + "model.layers.20.feed_forward.w1.weight": "model-00002-of-00004.safetensors", + "model.layers.20.feed_forward.w2.weight": "model-00003-of-00004.safetensors", + "model.layers.20.feed_forward.w3.weight": "model-00002-of-00004.safetensors", + "model.layers.20.ffn_norm.weight": "model-00003-of-00004.safetensors", + "model.layers.21.attention.wo.weight": "model-00003-of-00004.safetensors", + "model.layers.21.attention.wqkv.weight": "model-00003-of-00004.safetensors", + "model.layers.21.attention_norm.weight": "model-00003-of-00004.safetensors", + "model.layers.21.feed_forward.w1.weight": "model-00003-of-00004.safetensors", + "model.layers.21.feed_forward.w2.weight": "model-00003-of-00004.safetensors", + "model.layers.21.feed_forward.w3.weight": "model-00003-of-00004.safetensors", + "model.layers.21.ffn_norm.weight": "model-00003-of-00004.safetensors", + "model.layers.22.attention.wo.weight": "model-00003-of-00004.safetensors", + "model.layers.22.attention.wqkv.weight": "model-00003-of-00004.safetensors", + "model.layers.22.attention_norm.weight": "model-00003-of-00004.safetensors", + "model.layers.22.feed_forward.w1.weight": "model-00003-of-00004.safetensors", + "model.layers.22.feed_forward.w2.weight": "model-00003-of-00004.safetensors", + "model.layers.22.feed_forward.w3.weight": "model-00003-of-00004.safetensors", + "model.layers.22.ffn_norm.weight": "model-00003-of-00004.safetensors", + "model.layers.23.attention.wo.weight": "model-00003-of-00004.safetensors", + "model.layers.23.attention.wqkv.weight": "model-00003-of-00004.safetensors", + "model.layers.23.attention_norm.weight": "model-00003-of-00004.safetensors", + "model.layers.23.feed_forward.w1.weight": "model-00003-of-00004.safetensors", + "model.layers.23.feed_forward.w2.weight": "model-00003-of-00004.safetensors", + "model.layers.23.feed_forward.w3.weight": "model-00003-of-00004.safetensors", + "model.layers.23.ffn_norm.weight": "model-00003-of-00004.safetensors", + "model.layers.24.attention.wo.weight": "model-00003-of-00004.safetensors", + "model.layers.24.attention.wqkv.weight": "model-00003-of-00004.safetensors", + "model.layers.24.attention_norm.weight": "model-00003-of-00004.safetensors", + "model.layers.24.feed_forward.w1.weight": "model-00003-of-00004.safetensors", + "model.layers.24.feed_forward.w2.weight": "model-00003-of-00004.safetensors", + "model.layers.24.feed_forward.w3.weight": "model-00003-of-00004.safetensors", + "model.layers.24.ffn_norm.weight": "model-00003-of-00004.safetensors", + "model.layers.25.attention.wo.weight": "model-00003-of-00004.safetensors", + "model.layers.25.attention.wqkv.weight": "model-00003-of-00004.safetensors", + "model.layers.25.attention_norm.weight": "model-00003-of-00004.safetensors", + "model.layers.25.feed_forward.w1.weight": "model-00003-of-00004.safetensors", + "model.layers.25.feed_forward.w2.weight": "model-00003-of-00004.safetensors", + "model.layers.25.feed_forward.w3.weight": "model-00003-of-00004.safetensors", + "model.layers.25.ffn_norm.weight": "model-00003-of-00004.safetensors", + "model.layers.26.attention.wo.weight": "model-00003-of-00004.safetensors", + "model.layers.26.attention.wqkv.weight": "model-00003-of-00004.safetensors", + "model.layers.26.attention_norm.weight": "model-00003-of-00004.safetensors", + "model.layers.26.feed_forward.w1.weight": "model-00003-of-00004.safetensors", + "model.layers.26.feed_forward.w2.weight": "model-00003-of-00004.safetensors", + "model.layers.26.feed_forward.w3.weight": "model-00003-of-00004.safetensors", + "model.layers.26.ffn_norm.weight": "model-00003-of-00004.safetensors", + "model.layers.27.attention.wo.weight": "model-00003-of-00004.safetensors", + "model.layers.27.attention.wqkv.weight": "model-00003-of-00004.safetensors", + "model.layers.27.attention_norm.weight": "model-00003-of-00004.safetensors", + "model.layers.27.feed_forward.w1.weight": "model-00003-of-00004.safetensors", + "model.layers.27.feed_forward.w2.weight": "model-00003-of-00004.safetensors", + "model.layers.27.feed_forward.w3.weight": "model-00003-of-00004.safetensors", + "model.layers.27.ffn_norm.weight": "model-00003-of-00004.safetensors", + "model.layers.28.attention.wo.weight": "model-00003-of-00004.safetensors", + "model.layers.28.attention.wqkv.weight": "model-00003-of-00004.safetensors", + "model.layers.28.attention_norm.weight": "model-00003-of-00004.safetensors", + "model.layers.28.feed_forward.w1.weight": "model-00003-of-00004.safetensors", + "model.layers.28.feed_forward.w2.weight": "model-00003-of-00004.safetensors", + "model.layers.28.feed_forward.w3.weight": "model-00003-of-00004.safetensors", + "model.layers.28.ffn_norm.weight": "model-00003-of-00004.safetensors", + "model.layers.29.attention.wo.weight": "model-00003-of-00004.safetensors", + "model.layers.29.attention.wqkv.weight": "model-00003-of-00004.safetensors", + "model.layers.29.attention_norm.weight": "model-00003-of-00004.safetensors", + "model.layers.29.feed_forward.w1.weight": "model-00003-of-00004.safetensors", + "model.layers.29.feed_forward.w2.weight": "model-00003-of-00004.safetensors", + "model.layers.29.feed_forward.w3.weight": "model-00003-of-00004.safetensors", + "model.layers.29.ffn_norm.weight": "model-00003-of-00004.safetensors", + "model.layers.3.attention.wo.weight": "model-00001-of-00004.safetensors", + "model.layers.3.attention.wqkv.weight": "model-00001-of-00004.safetensors", + "model.layers.3.attention_norm.weight": "model-00001-of-00004.safetensors", + "model.layers.3.feed_forward.w1.weight": "model-00001-of-00004.safetensors", + "model.layers.3.feed_forward.w2.weight": "model-00001-of-00004.safetensors", + "model.layers.3.feed_forward.w3.weight": "model-00001-of-00004.safetensors", + "model.layers.3.ffn_norm.weight": "model-00001-of-00004.safetensors", + "model.layers.30.attention.wo.weight": "model-00003-of-00004.safetensors", + "model.layers.30.attention.wqkv.weight": "model-00003-of-00004.safetensors", + "model.layers.30.attention_norm.weight": "model-00003-of-00004.safetensors", + "model.layers.30.feed_forward.w1.weight": "model-00003-of-00004.safetensors", + "model.layers.30.feed_forward.w2.weight": "model-00003-of-00004.safetensors", + "model.layers.30.feed_forward.w3.weight": "model-00003-of-00004.safetensors", + "model.layers.30.ffn_norm.weight": "model-00003-of-00004.safetensors", + "model.layers.31.attention.wo.weight": "model-00003-of-00004.safetensors", + "model.layers.31.attention.wqkv.weight": "model-00003-of-00004.safetensors", + "model.layers.31.attention_norm.weight": "model-00003-of-00004.safetensors", + "model.layers.31.feed_forward.w1.weight": "model-00003-of-00004.safetensors", + "model.layers.31.feed_forward.w2.weight": "model-00003-of-00004.safetensors", + "model.layers.31.feed_forward.w3.weight": "model-00003-of-00004.safetensors", + "model.layers.31.ffn_norm.weight": "model-00003-of-00004.safetensors", + "model.layers.4.attention.wo.weight": "model-00001-of-00004.safetensors", + "model.layers.4.attention.wqkv.weight": "model-00001-of-00004.safetensors", + "model.layers.4.attention_norm.weight": "model-00001-of-00004.safetensors", + "model.layers.4.feed_forward.w1.weight": "model-00001-of-00004.safetensors", + "model.layers.4.feed_forward.w2.weight": "model-00001-of-00004.safetensors", + "model.layers.4.feed_forward.w3.weight": "model-00001-of-00004.safetensors", + "model.layers.4.ffn_norm.weight": "model-00001-of-00004.safetensors", + "model.layers.5.attention.wo.weight": "model-00001-of-00004.safetensors", + "model.layers.5.attention.wqkv.weight": "model-00001-of-00004.safetensors", + "model.layers.5.attention_norm.weight": "model-00001-of-00004.safetensors", + "model.layers.5.feed_forward.w1.weight": "model-00001-of-00004.safetensors", + "model.layers.5.feed_forward.w2.weight": "model-00001-of-00004.safetensors", + "model.layers.5.feed_forward.w3.weight": "model-00001-of-00004.safetensors", + "model.layers.5.ffn_norm.weight": "model-00001-of-00004.safetensors", + "model.layers.6.attention.wo.weight": "model-00001-of-00004.safetensors", + "model.layers.6.attention.wqkv.weight": "model-00001-of-00004.safetensors", + "model.layers.6.attention_norm.weight": "model-00001-of-00004.safetensors", + "model.layers.6.feed_forward.w1.weight": "model-00001-of-00004.safetensors", + "model.layers.6.feed_forward.w2.weight": "model-00001-of-00004.safetensors", + "model.layers.6.feed_forward.w3.weight": "model-00001-of-00004.safetensors", + "model.layers.6.ffn_norm.weight": "model-00001-of-00004.safetensors", + "model.layers.7.attention.wo.weight": "model-00001-of-00004.safetensors", + "model.layers.7.attention.wqkv.weight": "model-00001-of-00004.safetensors", + "model.layers.7.attention_norm.weight": "model-00001-of-00004.safetensors", + "model.layers.7.feed_forward.w1.weight": "model-00001-of-00004.safetensors", + "model.layers.7.feed_forward.w2.weight": "model-00001-of-00004.safetensors", + "model.layers.7.feed_forward.w3.weight": "model-00001-of-00004.safetensors", + "model.layers.7.ffn_norm.weight": "model-00001-of-00004.safetensors", + "model.layers.8.attention.wo.weight": "model-00001-of-00004.safetensors", + "model.layers.8.attention.wqkv.weight": "model-00001-of-00004.safetensors", + "model.layers.8.attention_norm.weight": "model-00001-of-00004.safetensors", + "model.layers.8.feed_forward.w1.weight": "model-00001-of-00004.safetensors", + "model.layers.8.feed_forward.w2.weight": "model-00001-of-00004.safetensors", + "model.layers.8.feed_forward.w3.weight": "model-00001-of-00004.safetensors", + "model.layers.8.ffn_norm.weight": "model-00001-of-00004.safetensors", + "model.layers.9.attention.wo.weight": "model-00001-of-00004.safetensors", + "model.layers.9.attention.wqkv.weight": "model-00001-of-00004.safetensors", + "model.layers.9.attention_norm.weight": "model-00002-of-00004.safetensors", + "model.layers.9.feed_forward.w1.weight": "model-00001-of-00004.safetensors", + "model.layers.9.feed_forward.w2.weight": "model-00002-of-00004.safetensors", + "model.layers.9.feed_forward.w3.weight": "model-00002-of-00004.safetensors", + "model.layers.9.ffn_norm.weight": "model-00002-of-00004.safetensors", + "model.norm.weight": "model-00003-of-00004.safetensors", + "model.tok_embeddings.weight": "model-00001-of-00004.safetensors", + "output.weight": "model-00004-of-00004.safetensors" + } +} diff --git a/modeling_internlm2.py b/modeling_internlm2.py new file mode 100644 index 0000000..e0fbc30 --- /dev/null +++ b/modeling_internlm2.py @@ -0,0 +1,1391 @@ +# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved. +# +# This code is based on transformers/src/transformers/models/llama/modeling_llama.py +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch InternLM2 model.""" +import math +import queue +import threading +import warnings +from typing import List, Optional, Tuple, Union + +import torch +import torch.nn.functional as F +import torch.utils.checkpoint +from einops import rearrange +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss +from transformers.activations import ACT2FN +from transformers.modeling_outputs import ( + BaseModelOutputWithPast, + CausalLMOutputWithPast, + SequenceClassifierOutputWithPast, +) +from transformers.modeling_utils import PreTrainedModel +from transformers.utils import ( + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) + +try: + from transformers.generation.streamers import BaseStreamer +except: # noqa # pylint: disable=bare-except + BaseStreamer = None + +from .configuration_internlm2 import InternLM2Config + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "InternLM2Config" + +flash_attn_func, flash_attn_varlen_func = None, None +pad_input, index_first_axis, unpad_input = None, None, None +def _import_flash_attn(): + global flash_attn_func, flash_attn_varlen_func + global pad_input, index_first_axis, unpad_input + try: + from flash_attn import flash_attn_func as _flash_attn_func, flash_attn_varlen_func as _flash_attn_varlen_func + from flash_attn.bert_padding import pad_input as _pad_input, index_first_axis as _index_first_axis, unpad_input as _unpad_input + flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func + pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input + except ImportError: + raise ImportError("flash_attn is not installed.") + +# Copied from transformers.models.llama.modeling_llama._get_unpad_data +def _get_unpad_data(attention_mask): + seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) + indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() + max_seqlen_in_batch = seqlens_in_batch.max().item() + cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)) + return ( + indices, + cu_seqlens, + max_seqlen_in_batch, + ) + + +# Copied from transformers.models.bart.modeling_bart._make_causal_mask +def _make_causal_mask( + input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 +): + """ + Make causal mask used for bi-directional self-attention. + """ + bsz, tgt_len = input_ids_shape + mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device) + mask_cond = torch.arange(mask.size(-1), device=device) + mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) + mask = mask.to(dtype) + + if past_key_values_length > 0: + mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) + return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) + + +# Copied from transformers.models.bart.modeling_bart._expand_mask +def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): + """ + Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. + """ + bsz, src_len = mask.size() + tgt_len = tgt_len if tgt_len is not None else src_len + + expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) + + inverted_mask = 1.0 - expanded_mask + + return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) + + +# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->InternLM2 +class InternLM2RMSNorm(nn.Module): + def __init__(self, hidden_size, eps=1e-6): + """ + InternLM2RMSNorm is equivalent to T5LayerNorm + """ + super().__init__() + self.weight = nn.Parameter(torch.ones(hidden_size)) + self.variance_epsilon = eps + + def forward(self, hidden_states): + input_dtype = hidden_states.dtype + hidden_states = hidden_states.to(torch.float32) + variance = hidden_states.pow(2).mean(-1, keepdim=True) + hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) + return self.weight * hidden_states.to(input_dtype) + + +# Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->InternLM2 +class InternLM2RotaryEmbedding(nn.Module): + def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): + super().__init__() + + self.dim = dim + self.max_position_embeddings = max_position_embeddings + self.base = base + inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) + self.register_buffer("inv_freq", inv_freq, persistent=False) + + # Build here to make `torch.jit.trace` work. + self._set_cos_sin_cache( + seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() + ) + + def _set_cos_sin_cache(self, seq_len, device, dtype): + self.max_seq_len_cached = seq_len + t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) + + freqs = torch.einsum("i,j->ij", t, self.inv_freq) + # Different from paper, but it uses a different permutation in order to obtain the same calculation + emb = torch.cat((freqs, freqs), dim=-1) + self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) + self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) + + def forward(self, x, seq_len=None): + # x: [bs, num_attention_heads, seq_len, head_size] + if seq_len > self.max_seq_len_cached: + self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32) + + return ( + self.cos_cached[:seq_len].to(dtype=x.dtype), + self.sin_cached[:seq_len].to(dtype=x.dtype), + ) + + +# Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->InternLM2 +class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding): + """InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" + + def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): + self.scaling_factor = scaling_factor + super().__init__(dim, max_position_embeddings, base, device) + + def _set_cos_sin_cache(self, seq_len, device, dtype): + self.max_seq_len_cached = seq_len + t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) + t = t / self.scaling_factor + + freqs = torch.einsum("i,j->ij", t, self.inv_freq) + # Different from paper, but it uses a different permutation in order to obtain the same calculation + emb = torch.cat((freqs, freqs), dim=-1) + self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) + self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) + + +# Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->InternLM2 +class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding): + """InternLM2RotaryEmbedding extended with Dynamic NTK scaling. + Credits to the Reddit users /u/bloc97 and /u/emozilla. + """ + + def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): + self.scaling_factor = scaling_factor + super().__init__(dim, max_position_embeddings, base, device) + + def _set_cos_sin_cache(self, seq_len, device, dtype): + self.max_seq_len_cached = seq_len + + if seq_len > self.max_position_embeddings: + base = self.base * ( + (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1) + ) ** (self.dim / (self.dim - 2)) + inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) + self.register_buffer("inv_freq", inv_freq, persistent=False) + + t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) + + freqs = torch.einsum("i,j->ij", t, self.inv_freq) + # Different from paper, but it uses a different permutation in order to obtain the same calculation + emb = torch.cat((freqs, freqs), dim=-1) + self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) + self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) + + +# Copied from transformers.model.llama.modeling_llama.rotate_half +def rotate_half(x): + """Rotates half the hidden dims of the input.""" + x1 = x[..., : x.shape[-1] // 2] + x2 = x[..., x.shape[-1] // 2 :] + return torch.cat((-x2, x1), dim=-1) + + +# Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb +def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): + """Applies Rotary Position Embedding to the query and key tensors.""" + cos = cos[position_ids].unsqueeze(unsqueeze_dim) + sin = sin[position_ids].unsqueeze(unsqueeze_dim) + q_embed = (q * cos) + (rotate_half(q) * sin) + k_embed = (k * cos) + (rotate_half(k) * sin) + return q_embed, k_embed + + +class InternLM2MLP(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.hidden_size = config.hidden_size + self.intermediate_size = config.intermediate_size + self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) + self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) + self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) + self.act_fn = ACT2FN[config.hidden_act] + + def forward(self, x): + down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x)) + + return down_proj + + +# Copied from transformers.model.llama.modeling_llama.repeat_kv +def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: + """ + This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, + num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) + """ + batch, num_key_value_heads, slen, head_dim = hidden_states.shape + if n_rep == 1: + return hidden_states + hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) + return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) + + +# Modified from transformers.model.llama.modeling_llama.LlamaAttention +class InternLM2Attention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__(self, config: InternLM2Config): + super().__init__() + self.config = config + self.hidden_size = config.hidden_size + self.num_heads = config.num_attention_heads + self.head_dim = self.hidden_size // self.num_heads + self.num_key_value_heads = config.num_key_value_heads + self.num_key_value_groups = self.num_heads // self.num_key_value_heads + self.max_position_embeddings = config.max_position_embeddings + self.is_causal = True + + if (self.head_dim * self.num_heads) != self.hidden_size: + raise ValueError( + f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" + f" and `num_heads`: {self.num_heads})." + ) + + self.wqkv = nn.Linear( + self.hidden_size, + (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim, + bias=config.bias, + ) + + self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias) + self._init_rope() + + def _init_rope(self): + if self.config.rope_scaling is None: + self.rotary_emb = InternLM2RotaryEmbedding( + self.head_dim, + max_position_embeddings=self.max_position_embeddings, + base=self.config.rope_theta, + ) + else: + scaling_type = self.config.rope_scaling["type"] + scaling_factor = self.config.rope_scaling["factor"] + if scaling_type == "dynamic": + self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding( + self.head_dim, + max_position_embeddings=self.max_position_embeddings, + base=self.config.rope_theta, + scaling_factor=scaling_factor, + ) + elif scaling_type == "linear": + self.rotary_emb = InternLM2LinearScalingRotaryEmbedding( + self.head_dim, + max_position_embeddings=self.max_position_embeddings, + base=self.config.rope_theta, + scaling_factor=scaling_factor, + ) + else: + raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.") + return self.rotary_emb + + def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: bool = False, + use_cache: bool = False, + **kwargs, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + if "padding_mask" in kwargs: + warnings.warn( + "Passing `padding_mask` is deprecated and will be removed in v4.37. " + "Please make sure use `attention_mask` instead.`" + ) + + bsz, q_len, _ = hidden_states.size() + + qkv_states = self.wqkv(hidden_states) + + qkv_states = rearrange( + qkv_states, + "b q (h gs d) -> b q h gs d", + gs=2 + self.num_key_value_groups, + d=self.head_dim, + ) + + query_states = qkv_states[..., : self.num_key_value_groups, :] + query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d") + key_states = qkv_states[..., -2, :] + value_states = qkv_states[..., -1, :] + + query_states = query_states.transpose(1, 2) + key_states = key_states.transpose(1, 2) + value_states = value_states.transpose(1, 2) + + kv_seq_len = key_states.shape[-2] + if past_key_value is not None: + kv_seq_len += past_key_value[0].shape[-2] + cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) + query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) + + if past_key_value is not None: + # reuse k, v, self_attention + key_states = torch.cat([past_key_value[0], key_states], dim=2) + value_states = torch.cat([past_key_value[1], value_states], dim=2) + + past_key_value = (key_states, value_states) if use_cache else None + + key_states = repeat_kv(key_states, self.num_key_value_groups) + value_states = repeat_kv(value_states, self.num_key_value_groups) + + attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) + + if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): + raise ValueError( + f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" + f" {attn_weights.size()}" + ) + + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" + ) + attn_weights = attn_weights + attention_mask + + # upcast attention to fp32 + attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) + attn_output = torch.matmul(attn_weights, value_states) + + if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.transpose(1, 2).contiguous() + attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) + + attn_output = self.wo(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights, past_key_value + + +# Modified from transformers.model.llama.modeling_llama.InternLM2FlashAttention2 +class InternLM2FlashAttention2(InternLM2Attention): + """ + InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays + untouched. The only required change would be on the forward pass where it needs to correctly call the public API of + flash attention and deal with padding tokens in case the input contains any of them. + """ + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: bool = False, + use_cache: bool = False, + **kwargs, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + # InternLM2FlashAttention2 attention does not support output_attentions + if "padding_mask" in kwargs: + warnings.warn( + "Passing `padding_mask` is deprecated and will be removed in v4.37. " + "Please make sure use `attention_mask` instead.`" + ) + + # overwrite attention_mask with padding_mask + attention_mask = kwargs.pop("padding_mask") + + output_attentions = False + + bsz, q_len, _ = hidden_states.size() + + qkv_states = self.wqkv(hidden_states) + + qkv_states = rearrange( + qkv_states, + "b q (h gs d) -> b q h gs d", + gs=2 + self.num_key_value_groups, + d=self.head_dim, + ) + + query_states = qkv_states[..., : self.num_key_value_groups, :] + query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d") + key_states = qkv_states[..., -2, :] + value_states = qkv_states[..., -1, :] + + query_states = query_states.transpose(1, 2) + key_states = key_states.transpose(1, 2) + value_states = value_states.transpose(1, 2) + + kv_seq_len = key_states.shape[-2] + if past_key_value is not None: + kv_seq_len += past_key_value[0].shape[-2] + + cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) + + query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) + + if past_key_value is not None: + # reuse k, v, self_attention + key_states = torch.cat([past_key_value[0], key_states], dim=2) + value_states = torch.cat([past_key_value[1], value_states], dim=2) + + past_key_value = (key_states, value_states) if use_cache else None + + query_states = query_states.transpose(1, 2) + key_states = key_states.transpose(1, 2) + value_states = value_states.transpose(1, 2) + + attn_output = self._flash_attention_forward( + query_states, key_states, value_states, attention_mask, q_len + ) + attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() + attn_output = self.wo(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights, past_key_value + + def _flash_attention_forward( + self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None + ): + """ + Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token + first unpad the input, then computes the attention scores and pad the final attention scores. + + Args: + query_states (`torch.Tensor`): + Input query states to be passed to Flash Attention API + key_states (`torch.Tensor`): + Input key states to be passed to Flash Attention API + value_states (`torch.Tensor`): + Input value states to be passed to Flash Attention API + attention_mask (`torch.Tensor`): + The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the + position of padding tokens and 1 for the position of non-padding tokens. + dropout (`int`, *optional*): + Attention dropout + softmax_scale (`float`, *optional*): + The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) + """ + # Contains at least one padding token in the sequence + causal = self.is_causal and query_length != 1 + if attention_mask is not None: + batch_size = query_states.shape[0] + query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input( + query_states, key_states, value_states, attention_mask, query_length + ) + + cu_seqlens_q, cu_seqlens_k = cu_seq_lens + max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens + + attn_output_unpad = flash_attn_varlen_func( + query_states, + key_states, + value_states, + cu_seqlens_q=cu_seqlens_q, + cu_seqlens_k=cu_seqlens_k, + max_seqlen_q=max_seqlen_in_batch_q, + max_seqlen_k=max_seqlen_in_batch_k, + dropout_p=dropout, + softmax_scale=softmax_scale, + causal=causal, + ) + + attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) + else: + attn_output = flash_attn_func( + query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal + ) + + return attn_output + + def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): + indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) + batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape + + key_layer = index_first_axis( + key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k + ) + value_layer = index_first_axis( + value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k + ) + + if query_length == kv_seq_len: + query_layer = index_first_axis( + query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k + ) + cu_seqlens_q = cu_seqlens_k + max_seqlen_in_batch_q = max_seqlen_in_batch_k + indices_q = indices_k + elif query_length == 1: + max_seqlen_in_batch_q = 1 + cu_seqlens_q = torch.arange( + batch_size + 1, dtype=torch.int32, device=query_layer.device + ) # There is a memcpy here, that is very bad. + indices_q = cu_seqlens_q[:-1] + query_layer = query_layer.squeeze(1) + else: + # The -q_len: slice assumes left padding. + attention_mask = attention_mask[:, -query_length:] + query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) + + return ( + query_layer, + key_layer, + value_layer, + indices_q.to(torch.int64), + (cu_seqlens_q, cu_seqlens_k), + (max_seqlen_in_batch_q, max_seqlen_in_batch_k), + ) + +INTERNLM2_ATTENTION_CLASSES = { + "eager": InternLM2Attention, + "flash_attention_2": InternLM2FlashAttention2, +} + +# Modified from transformers.model.llama.modeling_llama.LlamaDecoderLayer +class InternLM2DecoderLayer(nn.Module): + def __init__(self, config: InternLM2Config): + super().__init__() + self.hidden_size = config.hidden_size + + self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config) + + self.feed_forward = InternLM2MLP(config) + self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) + self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: Optional[bool] = False, + use_cache: Optional[bool] = False, + **kwargs, + ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`, *optional*): + attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, + query_sequence_length, key_sequence_length)` if default attention is used. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding + (see `past_key_values`). + past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states + """ + if "padding_mask" in kwargs: + warnings.warn( + "Passing `padding_mask` is deprecated and will be removed in v4.37. " + "Please make sure use `attention_mask` instead.`" + ) + + residual = hidden_states + + hidden_states = self.attention_norm(hidden_states) + + # Self Attention + hidden_states, self_attn_weights, present_key_value = self.attention( + hidden_states=hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + **kwargs, + ) + hidden_states = residual + hidden_states + + # Fully Connected + residual = hidden_states + hidden_states = self.ffn_norm(hidden_states) + hidden_states = self.feed_forward(hidden_states) + hidden_states = residual + hidden_states + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights,) + + if use_cache: + outputs += (present_key_value,) + + return outputs + + +InternLM2_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`InternLM2Config`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + + +# Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2 +@add_start_docstrings( + "The bare InternLM2 Model outputting raw hidden-states without any specific head on top.", + InternLM2_START_DOCSTRING, +) +class InternLM2PreTrainedModel(PreTrainedModel): + config_class = InternLM2Config + base_model_prefix = "model" + supports_gradient_checkpointing = True + _no_split_modules = ["InternLM2DecoderLayer"] + _skip_keys_device_placement = "past_key_values" + + def _init_weights(self, module): + std = self.config.initializer_range + if isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + +InternLM2_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + If `past_key_values` is used, optionally only the last `input_ids` have to be input (see + `past_key_values`). + + If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] + and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more + information on the default strategy. + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.n_positions - 1]`. + + [What are position IDs?](../glossary#position-ids) + past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or + when `config.use_cache=True`): + Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape + `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape + `(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`. + + Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention + blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. + + If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't + have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` + of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +# Modified from transformers.model.llama.modeling_llama.LlamaModel +@add_start_docstrings( + "The bare InternLM2 Model outputting raw hidden-states without any specific head on top.", + InternLM2_START_DOCSTRING, +) +class InternLM2Model(InternLM2PreTrainedModel): + """ + Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`] + + Args: + config: InternLM2Config + """ + + _auto_class = "AutoModel" + + def __init__(self, config: InternLM2Config): + super().__init__(config) + self.padding_idx = config.pad_token_id + self.vocab_size = config.vocab_size + self.config = config + + self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) + + self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)]) + self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) + + self.gradient_checkpointing = False + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.tok_embeddings + + def set_input_embeddings(self, value): + self.tok_embeddings = value + + def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): + # create causal mask + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + combined_attention_mask = None + if input_shape[-1] > 1: + combined_attention_mask = _make_causal_mask( + input_shape, + inputs_embeds.dtype, + device=inputs_embeds.device, + past_key_values_length=past_key_values_length, + ) + + if attention_mask is not None: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to( + inputs_embeds.device + ) + combined_attention_mask = ( + expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask + ) + + return combined_attention_mask + + @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPast]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if self.config.attn_implementation == "flash_attention_2": + _import_flash_attn() + + # retrieve input_ids and inputs_embeds + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + batch_size, seq_length = input_ids.shape[:2] + elif inputs_embeds is not None: + batch_size, seq_length = inputs_embeds.shape[:2] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + seq_length_with_past = seq_length + past_key_values_length = 0 + if past_key_values is not None: + past_key_values_length = past_key_values[0][0].shape[2] + seq_length_with_past = seq_length_with_past + past_key_values_length + + if position_ids is None: + device = input_ids.device if input_ids is not None else inputs_embeds.device + position_ids = torch.arange( + past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device + ) + position_ids = position_ids.unsqueeze(0) + + if inputs_embeds is None: + inputs_embeds = self.tok_embeddings(input_ids) + + if self.config.attn_implementation == "flash_attention_2": + # 2d mask is passed through the layers + attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None + else: + if attention_mask is None: + attention_mask = torch.ones( + (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device + ) + attention_mask = self._prepare_decoder_attention_mask( + attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length + ) + + # embed positions + hidden_states = inputs_embeds + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + next_decoder_cache = () if use_cache else None + + for idx, decoder_layer in enumerate(self.layers): + if output_hidden_states: + all_hidden_states += (hidden_states,) + + past_key_value = past_key_values[idx] if past_key_values is not None else None + + if self.gradient_checkpointing and self.training: + + def create_custom_forward(module): + def custom_forward(*inputs): + # None for past_key_value + return module(*inputs, output_attentions, None) + + return custom_forward + + layer_outputs = torch.utils.checkpoint.checkpoint( + create_custom_forward(decoder_layer), + hidden_states, + attention_mask, + position_ids, + None, + ) + else: + layer_outputs = decoder_layer( + hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + ) + + hidden_states = layer_outputs[0] + + if use_cache: + next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) + + if output_attentions: + all_self_attns += (layer_outputs[1],) + + hidden_states = self.norm(hidden_states) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + next_cache = next_decoder_cache if use_cache else None + if not return_dict: + return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) + return BaseModelOutputWithPast( + last_hidden_state=hidden_states, + past_key_values=next_cache, + hidden_states=all_hidden_states, + attentions=all_self_attns, + ) + + +# Modified from transformers.model.llama.modeling_llama.LlamaForCausalLM +class InternLM2ForCausalLM(InternLM2PreTrainedModel): + _auto_class = "AutoModelForCausalLM" + + _tied_weights_keys = ["output.weight"] + + def __init__(self, config): + super().__init__(config) + self.model = InternLM2Model(config) + self.vocab_size = config.vocab_size + self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.tok_embeddings + + def set_input_embeddings(self, value): + self.model.tok_embeddings = value + + def get_output_embeddings(self): + return self.output + + def set_output_embeddings(self, new_embeddings): + self.output = new_embeddings + + def set_decoder(self, decoder): + self.model = decoder + + def get_decoder(self): + return self.model + + @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, CausalLMOutputWithPast]: + r""" + Args: + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, InternLM2ForCausalLM + + >>> model = InternLM2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) + >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) + + >>> prompt = "Hey, are you conscious? Can you talk to me?" + >>> inputs = tokenizer(prompt, return_tensors="pt") + + >>> # Generate + >>> generate_ids = model.generate(inputs.input_ids, max_length=30) + >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] + "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." + ```""" + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + outputs = self.model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + logits = self.output(hidden_states) + logits = logits.float() + + loss = None + if labels is not None: + # Shift so that tokens < n predict n + shift_logits = logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + # Flatten the tokens + loss_fct = CrossEntropyLoss() + shift_logits = shift_logits.view(-1, self.config.vocab_size) + shift_labels = shift_labels.view(-1) + # Enable model parallelism + shift_labels = shift_labels.to(shift_logits.device) + loss = loss_fct(shift_logits, shift_labels) + + if not return_dict: + output = (logits,) + outputs[1:] + return (loss,) + output if loss is not None else output + + return CausalLMOutputWithPast( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def prepare_inputs_for_generation( + self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs + ): + if past_key_values is not None: + past_length = past_key_values[0][0].shape[2] + + # Some generation methods already pass only the last input ID + if input_ids.shape[1] > past_length: + remove_prefix_length = past_length + else: + # Default to old behavior: keep only final ID + remove_prefix_length = input_ids.shape[1] - 1 + + input_ids = input_ids[:, remove_prefix_length:] + + position_ids = kwargs.get("position_ids", None) + if attention_mask is not None and position_ids is None: + # create position_ids on the fly for batch generation + position_ids = attention_mask.long().cumsum(-1) - 1 + position_ids.masked_fill_(attention_mask == 0, 1) + if past_key_values: + position_ids = position_ids[:, -input_ids.shape[1] :] + + # if `inputs_embeds` are passed, we only want to use them in the 1st generation step + if inputs_embeds is not None and past_key_values is None: + model_inputs = {"inputs_embeds": inputs_embeds} + else: + model_inputs = {"input_ids": input_ids} + + model_inputs.update( + { + "position_ids": position_ids, + "past_key_values": past_key_values, + "use_cache": kwargs.get("use_cache"), + "attention_mask": attention_mask, + } + ) + return model_inputs + + @staticmethod + def _reorder_cache(past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), + ) + return reordered_past + + def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = [], meta_instruction=""): + if tokenizer.add_bos_token: + prompt = "" + else: + prompt = tokenizer.bos_token + if meta_instruction: + prompt += f"""<|im_start|>system\n{meta_instruction}<|im_end|>\n""" + for record in history: + prompt += f"""<|im_start|>user\n{record[0]}<|im_end|>\n<|im_start|>assistant\n{record[1]}<|im_end|>\n""" + prompt += f"""<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n""" + return tokenizer([prompt], return_tensors="pt") + + @torch.no_grad() + def chat( + self, + tokenizer, + query: str, + history: List[Tuple[str, str]] = [], + streamer: Optional[BaseStreamer] = None, + max_new_tokens: int = 1024, + do_sample: bool = True, + temperature: float = 0.8, + top_p: float = 0.8, + meta_instruction: str = "You are an AI assistant whose name is InternLM (书生·浦语).\n" + "- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n" + "- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.", + **kwargs, + ): + inputs = self.build_inputs(tokenizer, query, history, meta_instruction) + inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)} + # also add end-of-assistant token in eos token id to avoid unnecessary generation + eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(["<|im_end|>"])[0]] + outputs = self.generate( + **inputs, + streamer=streamer, + max_new_tokens=max_new_tokens, + do_sample=do_sample, + temperature=temperature, + top_p=top_p, + eos_token_id=eos_token_id, + **kwargs, + ) + outputs = outputs[0].cpu().tolist()[len(inputs["input_ids"][0]) :] + response = tokenizer.decode(outputs, skip_special_tokens=True) + response = response.split("<|im_end|>")[0] + history = history + [(query, response)] + return response, history + + @torch.no_grad() + def stream_chat( + self, + tokenizer, + query: str, + history: List[Tuple[str, str]] = [], + max_new_tokens: int = 1024, + do_sample: bool = True, + temperature: float = 0.8, + top_p: float = 0.8, + **kwargs, + ): + """ + Return a generator in format: (response, history) + Eg. + ('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')]) + ('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')]) + """ + if BaseStreamer is None: + raise ModuleNotFoundError( + "The version of `transformers` is too low. Please make sure " + "that you have installed `transformers>=4.28.0`." + ) + + response_queue = queue.Queue(maxsize=20) + + class ChatStreamer(BaseStreamer): + def __init__(self, tokenizer) -> None: + super().__init__() + self.tokenizer = tokenizer + self.queue = response_queue + self.query = query + self.history = history + self.response = "" + self.cache = [] + self.received_inputs = False + self.queue.put((self.response, history + [(self.query, self.response)])) + + def put(self, value): + if len(value.shape) > 1 and value.shape[0] > 1: + raise ValueError("ChatStreamer only supports batch size 1") + elif len(value.shape) > 1: + value = value[0] + + if not self.received_inputs: + # The first received value is input_ids, ignore here + self.received_inputs = True + return + + self.cache.extend(value.tolist()) + token = self.tokenizer.decode(self.cache, skip_special_tokens=True) + if token.strip() != "<|im_end|>": + self.response = self.response + token + history = self.history + [(self.query, self.response)] + self.queue.put((self.response, history)) + self.cache = [] + else: + self.end() + + def end(self): + self.queue.put(None) + + def stream_producer(): + return self.chat( + tokenizer=tokenizer, + query=query, + streamer=ChatStreamer(tokenizer=tokenizer), + history=history, + max_new_tokens=max_new_tokens, + do_sample=do_sample, + temperature=temperature, + top_p=top_p, + **kwargs, + ) + + def consumer(): + producer = threading.Thread(target=stream_producer) + producer.start() + while True: + res = response_queue.get() + if res is None: + return + yield res + + return consumer() + + +# Copied from transformers.model.llama.modeling_llama.LlamaForSequenceClassification with Llama->InternLM2 +@add_start_docstrings( + """ + The InternLM2 Model transformer with a sequence classification head on top (linear layer). + + [`InternLM2ForSequenceClassification`] uses the last token in order to do the classification, + as other causal models (e.g. GPT-2) do. + + Since it does classification on the last token, it requires to know the position of the last token. If a + `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If + no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the + padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in + each row of the batch). + """, + InternLM2_START_DOCSTRING, +) +class InternLM2ForSequenceClassification(InternLM2PreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + self.model = InternLM2Model(config) + self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.tok_embeddings + + def set_input_embeddings(self, value): + self.model.tok_embeddings = value + + @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, SequenceClassifierOutputWithPast]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + transformer_outputs = self.model( + input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = transformer_outputs[0] + logits = self.score(hidden_states) + + if input_ids is not None: + batch_size = input_ids.shape[0] + else: + batch_size = inputs_embeds.shape[0] + + if self.config.pad_token_id is None and batch_size != 1: + raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") + if self.config.pad_token_id is None: + sequence_lengths = -1 + else: + if input_ids is not None: + sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to( + logits.device + ) + else: + sequence_lengths = -1 + + pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] + + loss = None + if labels is not None: + labels = labels.to(logits.device) + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(pooled_logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(pooled_logits, labels) + if not return_dict: + output = (pooled_logits,) + transformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutputWithPast( + loss=loss, + logits=pooled_logits, + past_key_values=transformer_outputs.past_key_values, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) diff --git a/special_tokens_map.json b/special_tokens_map.json new file mode 100644 index 0000000..9bfed75 --- /dev/null +++ b/special_tokens_map.json @@ -0,0 +1,6 @@ +{ + "bos_token": "", + "eos_token": "", + "pad_token": "", + "unk_token": "" +} diff --git a/tokenization_internlm2.py b/tokenization_internlm2.py new file mode 100644 index 0000000..ff53eba --- /dev/null +++ b/tokenization_internlm2.py @@ -0,0 +1,236 @@ +# coding=utf-8 +# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved. +# +# This code is based on transformers/src/transformers/models/llama/tokenization_llama.py +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +"""Tokenization classes for InternLM.""" +import os +from shutil import copyfile +from typing import Any, Dict, List, Optional, Tuple + +import sentencepiece as spm +from transformers.tokenization_utils import PreTrainedTokenizer +from transformers.utils import logging + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"} + +PRETRAINED_VOCAB_FILES_MAP = {} + + +# Modified from transformers.model.llama.tokenization_llama.LlamaTokenizer +class InternLM2Tokenizer(PreTrainedTokenizer): + """ + Construct a InternLM2 tokenizer. Based on byte-level Byte-Pair-Encoding. + + Args: + vocab_file (`str`): + Path to the vocabulary file. + """ + + vocab_files_names = VOCAB_FILES_NAMES + pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP + model_input_names = ["input_ids", "attention_mask"] + _auto_class = "AutoTokenizer" + + def __init__( + self, + vocab_file, + unk_token="", + bos_token="", + eos_token="", + pad_token="", + sp_model_kwargs: Optional[Dict[str, Any]] = None, + add_bos_token=True, + add_eos_token=False, + decode_with_prefix_space=False, + clean_up_tokenization_spaces=False, + **kwargs, + ): + self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs + self.vocab_file = vocab_file + self.add_bos_token = add_bos_token + self.add_eos_token = add_eos_token + self.decode_with_prefix_space = decode_with_prefix_space + self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) + self.sp_model.Load(vocab_file) + self._no_prefix_space_tokens = None + super().__init__( + bos_token=bos_token, + eos_token=eos_token, + unk_token=unk_token, + pad_token=pad_token, + clean_up_tokenization_spaces=clean_up_tokenization_spaces, + **kwargs, + ) + + @property + def no_prefix_space_tokens(self): + if self._no_prefix_space_tokens is None: + vocab = self.convert_ids_to_tokens(list(range(self.vocab_size))) + self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith("▁")} + return self._no_prefix_space_tokens + + @property + def vocab_size(self): + """Returns vocab size""" + return self.sp_model.get_piece_size() + + @property + def bos_token_id(self) -> Optional[int]: + return self.sp_model.bos_id() + + @property + def eos_token_id(self) -> Optional[int]: + return self.sp_model.eos_id() + + def get_vocab(self): + """Returns vocab as a dict""" + vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} + vocab.update(self.added_tokens_encoder) + return vocab + + def _tokenize(self, text): + """Returns a tokenized string.""" + return self.sp_model.encode(text, out_type=str) + + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + return self.sp_model.piece_to_id(token) + + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + token = self.sp_model.IdToPiece(index) + return token + + def _maybe_add_prefix_space(self, tokens, decoded): + if tokens and tokens[0] not in self.no_prefix_space_tokens: + return " " + decoded + else: + return decoded + + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (string) in a single string.""" + current_sub_tokens = [] + out_string = "" + prev_is_special = False + for token in tokens: + # make sure that special tokens are not decoded using sentencepiece model + if token in self.all_special_tokens: + if not prev_is_special: + out_string += " " + out_string += self.sp_model.decode(current_sub_tokens) + token + prev_is_special = True + current_sub_tokens = [] + else: + current_sub_tokens.append(token) + prev_is_special = False + out_string += self.sp_model.decode(current_sub_tokens) + out_string = self.clean_up_tokenization(out_string) + out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string) + return out_string[1:] + + def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]: + """ + Save the vocabulary and special tokens file to a directory. + + Args: + save_directory (`str`): + The directory in which to save the vocabulary. + + Returns: + `Tuple(str)`: Paths to the files saved. + """ + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + out_vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + + if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): + copyfile(self.vocab_file, out_vocab_file) + elif not os.path.isfile(self.vocab_file): + with open(out_vocab_file, "wb") as fi: + content_spiece_model = self.sp_model.serialized_model_proto() + fi.write(content_spiece_model) + + return (out_vocab_file,) + + def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): + if self.add_bos_token: + bos_token_ids = [self.bos_token_id] + else: + bos_token_ids = [] + + output = bos_token_ids + token_ids_0 + + if token_ids_1 is not None: + output = output + token_ids_1 + + if self.add_eos_token: + output = output + [self.eos_token_id] + + return output + + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + """ + Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding + special tokens using the tokenizer `prepare_for_model` method. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + already_has_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not the token list is already formatted with special tokens for the model. + + Returns: + `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. + """ + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + + if token_ids_1 is None: + return [1] + ([0] * len(token_ids_0)) + [1] + return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make + use of token type ids, therefore a list of zeros is returned. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of zeros. + """ + eos = [self.eos_token_id] + + if token_ids_1 is None: + return len(token_ids_0 + eos) * [0] + return len(token_ids_0 + eos + token_ids_1 + eos) * [0] diff --git a/tokenization_internlm2_fast.py b/tokenization_internlm2_fast.py new file mode 100644 index 0000000..1506e11 --- /dev/null +++ b/tokenization_internlm2_fast.py @@ -0,0 +1,214 @@ +# coding=utf-8 +# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved. +# +# This code is based on transformers/src/transformers/models/llama/tokenization_llama_fast.py +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +"""Tokenization Fast class for InternLM.""" +import os +from shutil import copyfile +from typing import Any, Dict, Optional, Tuple + +from tokenizers import processors, decoders, Tokenizer, normalizers +from tokenizers.models import BPE + +from transformers.tokenization_utils_fast import PreTrainedTokenizerFast +from transformers.utils import logging + +from transformers.convert_slow_tokenizer import ( + SLOW_TO_FAST_CONVERTERS, + SpmConverter, + SentencePieceExtractor, +) + +from .tokenization_internlm2 import InternLM2Tokenizer + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"} + +# Modified from transformers.convert_slow_tokenizer.LlamaConverter +class InternLM2Converter(SpmConverter): + handle_byte_fallback = True + + def vocab(self, proto): + vocab = [ + ("", 0.0), + ("", 0.0), + ("", 0.0), + ] + vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]] + return vocab + + def unk_id(self, proto): + unk_id = 0 + return unk_id + + def decoder(self, replacement, add_prefix_space): + return decoders.Sequence( + [ + decoders.Replace("▁", " "), + decoders.ByteFallback(), + decoders.Fuse(), + decoders.Strip(content=" ", left=1), + ] + ) + + def tokenizer(self, proto): + model_type = proto.trainer_spec.model_type + vocab_scores = self.vocab(proto) + # special tokens + added_tokens = self.original_tokenizer.added_tokens_decoder + for i in range(len(vocab_scores)): + piece, score = vocab_scores[i] + if i in added_tokens: + vocab_scores[i] = (added_tokens[i].content, score) + if model_type == 1: + raise RuntimeError("InternLM2 is supposed to be a BPE model!") + + elif model_type == 2: + _, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract(vocab_scores) + bpe_vocab = {word: i for i, (word, _score) in enumerate(vocab_scores)} + tokenizer = Tokenizer( + BPE(bpe_vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True, byte_fallback=True) + ) + tokenizer.add_special_tokens( + [ added_token for index, added_token in added_tokens.items()] + ) + else: + raise Exception( + "You're trying to run a `Unigram` model but you're file was trained with a different algorithm" + ) + + return tokenizer + + def normalizer(self, proto): + normalizers_list = [] + if proto.normalizer_spec.add_dummy_prefix: + normalizers_list.append(normalizers.Prepend(prepend="▁")) + normalizers_list.append(normalizers.Replace(pattern=" ", content="▁")) + return normalizers.Sequence(normalizers_list) + + def pre_tokenizer(self, replacement, add_prefix_space): + return None + +SLOW_TO_FAST_CONVERTERS["InternLM2Tokenizer"] = InternLM2Converter + + +# Modified from transformers.model.llama.tokenization_llama_fast.LlamaTokenizerFast -> InternLM2TokenizerFast +class InternLM2TokenizerFast(PreTrainedTokenizerFast): + vocab_files_names = VOCAB_FILES_NAMES + slow_tokenizer_class = InternLM2Tokenizer + padding_side = "left" + model_input_names = ["input_ids", "attention_mask"] + _auto_class = "AutoTokenizer" + + def __init__( + self, + vocab_file, + unk_token="", + bos_token="", + eos_token="", + pad_token="", + sp_model_kwargs: Optional[Dict[str, Any]] = None, + add_bos_token=True, + add_eos_token=False, + decode_with_prefix_space=False, + clean_up_tokenization_spaces=False, + **kwargs, + ): + super().__init__( + vocab_file=vocab_file, + unk_token=unk_token, + bos_token=bos_token, + eos_token=eos_token, + pad_token=pad_token, + sp_model_kwargs=sp_model_kwargs, + add_bos_token=add_bos_token, + add_eos_token=add_eos_token, + decode_with_prefix_space=decode_with_prefix_space, + clean_up_tokenization_spaces=clean_up_tokenization_spaces, + **kwargs, + ) + self._add_bos_token = add_bos_token + self._add_eos_token = add_eos_token + self.update_post_processor() + self.vocab_file = vocab_file + + @property + def can_save_slow_tokenizer(self) -> bool: + return os.path.isfile(self.vocab_file) if self.vocab_file else False + + def update_post_processor(self): + """ + Updates the underlying post processor with the current `bos_token` and `eos_token`. + """ + bos = self.bos_token + bos_token_id = self.bos_token_id + if bos is None and self.add_bos_token: + raise ValueError("add_bos_token = True but bos_token = None") + + eos = self.eos_token + eos_token_id = self.eos_token_id + if eos is None and self.add_eos_token: + raise ValueError("add_eos_token = True but eos_token = None") + + single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}" + pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}" + + special_tokens = [] + if self.add_bos_token: + special_tokens.append((bos, bos_token_id)) + if self.add_eos_token: + special_tokens.append((eos, eos_token_id)) + self._tokenizer.post_processor = processors.TemplateProcessing( + single=single, pair=pair, special_tokens=special_tokens + ) + + @property + def add_eos_token(self): + return self._add_eos_token + + @property + def add_bos_token(self): + return self._add_bos_token + + @add_eos_token.setter + def add_eos_token(self, value): + self._add_eos_token = value + self.update_post_processor() + + @add_bos_token.setter + def add_bos_token(self, value): + self._add_bos_token = value + self.update_post_processor() + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not self.can_save_slow_tokenizer: + raise ValueError( + "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " + "tokenizer." + ) + + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + out_vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + + if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): + copyfile(self.vocab_file, out_vocab_file) + + return (out_vocab_file,) diff --git a/tokenizer.model b/tokenizer.model new file mode 100644 index 0000000..6600712 --- /dev/null +++ b/tokenizer.model @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f868398fc4e05ee1e8aeba95ddf18ddcc45b8bce55d5093bead5bbf80429b48b +size 1477754 diff --git a/tokenizer_config.json b/tokenizer_config.json new file mode 100644 index 0000000..50ba041 --- /dev/null +++ b/tokenizer_config.json @@ -0,0 +1,90 @@ +{ + "auto_map": { + "AutoTokenizer": [ + "tokenization_internlm2.InternLM2Tokenizer", + "tokenization_internlm2_fast.InternLM2TokenizerFast" + ] + }, + "bos_token": "", + "clean_up_tokenization_spaces": false, + "eos_token": "", + "model_max_length": 1000000000000000019884624838656, + "pad_token": "", + "tokenizer_class": "InternLM2Tokenizer", + "unk_token": "", + "added_tokens_decoder": { + "0": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "1": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "2": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "92543": { + "content": "<|im_start|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "92542": { + "content": "<|im_end|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "92541": { + "content": "<|action_start|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "92540": { + "content": "<|action_end|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "92539": { + "content": "<|interpreter|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "92538": { + "content": "<|plugin|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + } + }, + "chat_template": "{{ bos_token }}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}" +} \ No newline at end of file