1
0
Fork 0
resnet-dogcat/train.py

151 lines
4.7 KiB
Python
Raw Normal View History

2024-05-15 16:34:04 +08:00
import os
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from torchvision import models, transforms
from PIL import Image
from safetensors.torch import save_file
class CatDogDataset(Dataset):
def __init__(self, root_dir, transform=None):
self.root_dir = root_dir
self.transform = transform
self.image_paths = []
self.labels = []
for filename in os.listdir(root_dir):
if 'cat' in filename:
self.image_paths.append(os.path.join(root_dir, filename))
self.labels.append(0) # cat
elif 'dog' in filename:
self.image_paths.append(os.path.join(root_dir, filename))
self.labels.append(1) # dog
def __len__(self):
return len(self.image_paths)
def __getitem__(self, idx):
img_path = self.image_paths[idx]
image = Image.open(img_path).convert('RGB')
label = self.labels[idx]
if self.transform:
image = self.transform(image)
return image, label
# 数据预处理
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
data_dir = 'dog-cat'
image_datasets = {x: CatDogDataset(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']}
dataloaders = {x: DataLoader(image_datasets[x], batch_size=32, shuffle=True, num_workers=4) for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = ['cat', 'dog']
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# 加载预训练的 ResNet-50 模型并进行微调
model_ft = models.resnet50(weights=models.ResNet50_Weights.DEFAULT)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, len(class_names))
model_ft = model_ft.to(device)
criterion = nn.CrossEntropyLoss()
# 优化器
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)
# 学习率调度器
exp_lr_scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
# 训练模型
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
best_model_wts = model.state_dict()
best_acc = 0.0
for epoch in range(num_epochs):
print(f'Epoch {epoch}/{num_epochs - 1}')
print('-' * 10)
# 每个epoch都有训练和验证阶段
for phase in ['train', 'val']:
if phase == 'train':
model.train() # 设置模型为训练模式
else:
model.eval() # 设置模型为评估模式
running_loss = 0.0
running_corrects = 0
# 遍历数据
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
# 清零参数梯度
optimizer.zero_grad()
# 前向传播
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# 只有在训练阶段才反向传播+优化
if phase == 'train':
loss.backward()
optimizer.step()
# 统计
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
if phase == 'train':
scheduler.step()
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')
# 深拷贝模型
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = model.state_dict()
print()
print(f'Best val Acc: {best_acc:4f}')
# 加载最佳模型权重
model.load_state_dict(best_model_wts)
return model
# 训练和评估模型
model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=25)
# 保存模型为 .pt 文件
torch.save(model_ft.state_dict(), 'pytorch_model.bin')
metadata = {"format": "pt"}
# 保存模型为 .safetensors 文件
save_file(model_ft.state_dict(), 'model.safetensors', metadata=metadata)