forked from ailab/resnet-dogcat
更新 README.md
This commit is contained in:
parent
e29c2e2804
commit
c94d26d618
139
README.md
139
README.md
|
@ -21,144 +21,7 @@ The model is trained on a dataset of cat and dog images. The training process in
|
|||
|
||||
Here is a simplified version of the training code:
|
||||
|
||||
```python
|
||||
import os
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
from torch.utils.data import DataLoader, Dataset
|
||||
from torchvision import models, transforms
|
||||
from PIL import Image
|
||||
from safetensors.torch import save_file
|
||||
|
||||
class CatDogDataset(Dataset):
|
||||
def __init__(self, root_dir, transform=None):
|
||||
self.root_dir = root_dir
|
||||
self.transform = transform
|
||||
self.image_paths = []
|
||||
self.labels = []
|
||||
|
||||
for filename in os.listdir(root_dir):
|
||||
if 'cat' in filename:
|
||||
self.image_paths.append(os.path.join(root_dir, filename))
|
||||
self.labels.append(0) # cat
|
||||
elif 'dog' in filename:
|
||||
self.image_paths.append(os.path.join(root_dir, filename))
|
||||
self.labels.append(1) # dog
|
||||
|
||||
def __len__(self):
|
||||
return len(self.image_paths)
|
||||
|
||||
def __getitem__(self, idx):
|
||||
img_path = self.image_paths[idx]
|
||||
image = Image.open(img_path).convert('RGB')
|
||||
label = self.labels[idx]
|
||||
|
||||
if self.transform:
|
||||
image = self.transform(image)
|
||||
|
||||
return image, label
|
||||
|
||||
# Data preprocessing
|
||||
data_transforms = {
|
||||
'train': transforms.Compose([
|
||||
transforms.RandomResizedCrop(224),
|
||||
transforms.RandomHorizontalFlip(),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
||||
]),
|
||||
'val': transforms.Compose([
|
||||
transforms.Resize(256),
|
||||
transforms.CenterCrop(224),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
||||
]),
|
||||
}
|
||||
|
||||
data_dir = 'dog-cat'
|
||||
image_datasets = {x: CatDogDataset(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']}
|
||||
dataloaders = {x: DataLoader(image_datasets[x], batch_size=32, shuffle=True, num_workers=4) for x in ['train', 'val']}
|
||||
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
|
||||
class_names = ['cat', 'dog']
|
||||
|
||||
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
# Load and modify ResNet-50
|
||||
model_ft = models.resnet50(weights=models.ResNet50_Weights.DEFAULT)
|
||||
num_ftrs = model_ft.fc.in_features
|
||||
model_ft.fc = nn.Linear(num_ftrs, len(class_names))
|
||||
|
||||
model_ft = model_ft.to(device)
|
||||
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
|
||||
# Optimizer
|
||||
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)
|
||||
|
||||
# Learning rate scheduler
|
||||
exp_lr_scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
|
||||
|
||||
# Training function
|
||||
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
|
||||
best_model_wts = model.state_dict()
|
||||
best_acc = 0.0
|
||||
|
||||
for epoch in range(num_epochs):
|
||||
print(f'Epoch {epoch}/{num_epochs - 1}')
|
||||
print('-' * 10)
|
||||
|
||||
for phase in ['train', 'val']:
|
||||
if phase == 'train':
|
||||
model.train()
|
||||
else:
|
||||
model.eval()
|
||||
|
||||
running_loss = 0.0
|
||||
running_corrects = 0
|
||||
|
||||
for inputs, labels in dataloaders[phase]:
|
||||
inputs = inputs.to(device)
|
||||
labels = labels.to(device)
|
||||
|
||||
optimizer.zero_grad()
|
||||
|
||||
with torch.set_grad_enabled(phase == 'train'):
|
||||
outputs = model(inputs)
|
||||
_, preds = torch.max(outputs, 1)
|
||||
loss = criterion(outputs, labels)
|
||||
|
||||
if phase == 'train':
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
running_loss += loss.item() * inputs.size(0)
|
||||
running_corrects += torch.sum(preds == labels.data)
|
||||
|
||||
if phase == 'train':
|
||||
scheduler.step()
|
||||
|
||||
epoch_loss = running_loss / dataset_sizes[phase]
|
||||
epoch_acc = running_corrects.double() / dataset_sizes[phase]
|
||||
|
||||
print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')
|
||||
|
||||
if phase == 'val' and epoch_acc > best_acc:
|
||||
best_acc = epoch_acc
|
||||
best_model_wts = model.state_dict()
|
||||
|
||||
print()
|
||||
|
||||
print(f'Best val Acc: {best_acc:4f}')
|
||||
model.load_state_dict(best_model_wts)
|
||||
return model
|
||||
|
||||
# Train and evaluate the model
|
||||
model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=25)
|
||||
|
||||
# Save the model
|
||||
torch.save(model_ft.state_dict(), 'model_cat_dog_classifier.pt')
|
||||
save_file(model_ft.state_dict(), 'model_cat_dog_classifier.safetensors')
|
||||
```
|
||||
[train.py](./train.py)
|
||||
|
||||
## Inference
|
||||
|
||||
|
|
Loading…
Reference in New Issue