forked from ailab/bge-reranker-large
first commit
This commit is contained in:
commit
1afecfd051
|
@ -0,0 +1,37 @@
|
|||
*.7z filter=lfs diff=lfs merge=lfs -text
|
||||
*.arrow filter=lfs diff=lfs merge=lfs -text
|
||||
*.bin filter=lfs diff=lfs merge=lfs -text
|
||||
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
||||
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
||||
*.ftz filter=lfs diff=lfs merge=lfs -text
|
||||
*.gz filter=lfs diff=lfs merge=lfs -text
|
||||
*.h5 filter=lfs diff=lfs merge=lfs -text
|
||||
*.joblib filter=lfs diff=lfs merge=lfs -text
|
||||
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
||||
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
||||
*.model filter=lfs diff=lfs merge=lfs -text
|
||||
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
||||
*.npy filter=lfs diff=lfs merge=lfs -text
|
||||
*.npz filter=lfs diff=lfs merge=lfs -text
|
||||
*.onnx filter=lfs diff=lfs merge=lfs -text
|
||||
*.ot filter=lfs diff=lfs merge=lfs -text
|
||||
*.parquet filter=lfs diff=lfs merge=lfs -text
|
||||
*.pb filter=lfs diff=lfs merge=lfs -text
|
||||
*.pickle filter=lfs diff=lfs merge=lfs -text
|
||||
*.pkl filter=lfs diff=lfs merge=lfs -text
|
||||
*.pt filter=lfs diff=lfs merge=lfs -text
|
||||
*.pth filter=lfs diff=lfs merge=lfs -text
|
||||
*.rar filter=lfs diff=lfs merge=lfs -text
|
||||
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
||||
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
||||
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
||||
*.tar filter=lfs diff=lfs merge=lfs -text
|
||||
*.tflite filter=lfs diff=lfs merge=lfs -text
|
||||
*.tgz filter=lfs diff=lfs merge=lfs -text
|
||||
*.wasm filter=lfs diff=lfs merge=lfs -text
|
||||
*.xz filter=lfs diff=lfs merge=lfs -text
|
||||
*.zip filter=lfs diff=lfs merge=lfs -text
|
||||
*.zst filter=lfs diff=lfs merge=lfs -text
|
||||
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
||||
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
||||
onnx/model.onnx_data filter=lfs diff=lfs merge=lfs -text
|
|
@ -0,0 +1,527 @@
|
|||
---
|
||||
license: mit
|
||||
language:
|
||||
- en
|
||||
- zh
|
||||
tags:
|
||||
- mteb
|
||||
model-index:
|
||||
- name: bge-reranker-base
|
||||
results:
|
||||
- task:
|
||||
type: Reranking
|
||||
dataset:
|
||||
type: C-MTEB/CMedQAv1-reranking
|
||||
name: MTEB CMedQAv1
|
||||
config: default
|
||||
split: test
|
||||
revision: None
|
||||
metrics:
|
||||
- type: map
|
||||
value: 81.27206722525007
|
||||
- type: mrr
|
||||
value: 84.14238095238095
|
||||
- task:
|
||||
type: Reranking
|
||||
dataset:
|
||||
type: C-MTEB/CMedQAv2-reranking
|
||||
name: MTEB CMedQAv2
|
||||
config: default
|
||||
split: test
|
||||
revision: None
|
||||
metrics:
|
||||
- type: map
|
||||
value: 84.10369934291236
|
||||
- type: mrr
|
||||
value: 86.79376984126984
|
||||
- task:
|
||||
type: Reranking
|
||||
dataset:
|
||||
type: C-MTEB/Mmarco-reranking
|
||||
name: MTEB MMarcoReranking
|
||||
config: default
|
||||
split: dev
|
||||
revision: None
|
||||
metrics:
|
||||
- type: map
|
||||
value: 35.4600511272538
|
||||
- type: mrr
|
||||
value: 34.60238095238095
|
||||
- task:
|
||||
type: Reranking
|
||||
dataset:
|
||||
type: C-MTEB/T2Reranking
|
||||
name: MTEB T2Reranking
|
||||
config: default
|
||||
split: dev
|
||||
revision: None
|
||||
metrics:
|
||||
- type: map
|
||||
value: 67.27728847727172
|
||||
- type: mrr
|
||||
value: 77.1315192743764
|
||||
pipeline_tag: feature-extraction
|
||||
---
|
||||
|
||||
**We have updated the [new reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_reranker), supporting larger lengths, more languages, and achieving better performance.**
|
||||
|
||||
<h1 align="center">FlagEmbedding</h1>
|
||||
|
||||
|
||||
<h4 align="center">
|
||||
<p>
|
||||
<a href=#model-list>Model List</a> |
|
||||
<a href=#frequently-asked-questions>FAQ</a> |
|
||||
<a href=#usage>Usage</a> |
|
||||
<a href="#evaluation">Evaluation</a> |
|
||||
<a href="#train">Train</a> |
|
||||
<a href="#citation">Citation</a> |
|
||||
<a href="#license">License</a>
|
||||
<p>
|
||||
</h4>
|
||||
|
||||
**More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).**
|
||||
|
||||
|
||||
[English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md)
|
||||
|
||||
|
||||
FlagEmbedding focuses on retrieval-augmented LLMs, consisting of the following projects currently:
|
||||
|
||||
- **Long-Context LLM**: [Activation Beacon](https://github.com/FlagOpen/FlagEmbedding/tree/master/Long_LLM/activation_beacon)
|
||||
- **Fine-tuning of LM** : [LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail)
|
||||
- **Embedding Model**: [Visualized-BGE](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/visual), [BGE-M3](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3), [LLM Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), [BGE Embedding](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/baai_general_embedding)
|
||||
- **Reranker Model**: [llm rerankers](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_reranker), [BGE Reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker)
|
||||
- **Benchmark**: [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB)
|
||||
|
||||
## News
|
||||
- 3/18/2024: Release new [rerankers](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_reranker), built upon powerful M3 and LLM (GEMMA and MiniCPM, not so large actually) backbones, supporitng multi-lingual processing and larger inputs, massive improvements of ranking performances on BEIR, C-MTEB/Retrieval, MIRACL, LlamaIndex Evaluation.
|
||||
- 3/18/2024: Release [Visualized-BGE](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/visual), equipping BGE with visual capabilities. Visualized-BGE can be utilized to generate embeddings for hybrid image-text data.
|
||||
- 1/30/2024: Release **BGE-M3**, a new member to BGE model series! M3 stands for **M**ulti-linguality (100+ languages), **M**ulti-granularities (input length up to 8192), **M**ulti-Functionality (unification of dense, lexical, multi-vec/colbert retrieval).
|
||||
It is the first embedding model which supports all three retrieval methods, achieving new SOTA on multi-lingual (MIRACL) and cross-lingual (MKQA) benchmarks.
|
||||
[Technical Report](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/BGE_M3/BGE_M3.pdf) and [Code](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3). :fire:
|
||||
- 1/9/2024: Release [Activation-Beacon](https://github.com/FlagOpen/FlagEmbedding/tree/master/Long_LLM/activation_beacon), an effective, efficient, compatible, and low-cost (training) method to extend the context length of LLM. [Technical Report](https://arxiv.org/abs/2401.03462) :fire:
|
||||
- 12/24/2023: Release **LLaRA**, a LLaMA-7B based dense retriever, leading to state-of-the-art performances on MS MARCO and BEIR. Model and code will be open-sourced. Please stay tuned. [Technical Report](https://arxiv.org/abs/2312.15503)
|
||||
- 11/23/2023: Release [LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail), a method to maintain general capabilities during fine-tuning by merging multiple language models. [Technical Report](https://arxiv.org/abs/2311.13534) :fire:
|
||||
- 10/12/2023: Release [LLM-Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), a unified embedding model to support diverse retrieval augmentation needs for LLMs. [Technical Report](https://arxiv.org/pdf/2310.07554.pdf)
|
||||
- 09/15/2023: The [technical report](https://arxiv.org/pdf/2309.07597.pdf) of BGE has been released
|
||||
- 09/15/2023: The [massive training data](https://data.baai.ac.cn/details/BAAI-MTP) of BGE has been released
|
||||
- 09/12/2023: New models:
|
||||
- **New reranker model**: release cross-encoder models `BAAI/bge-reranker-base` and `BAAI/bge-reranker-large`, which are more powerful than embedding model. We recommend to use/fine-tune them to re-rank top-k documents returned by embedding models.
|
||||
- **update embedding model**: release `bge-*-v1.5` embedding model to alleviate the issue of the similarity distribution, and enhance its retrieval ability without instruction.
|
||||
|
||||
|
||||
<details>
|
||||
<summary>More</summary>
|
||||
<!-- ### More -->
|
||||
|
||||
- 09/07/2023: Update [fine-tune code](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md): Add script to mine hard negatives and support adding instruction during fine-tuning.
|
||||
- 08/09/2023: BGE Models are integrated into **Langchain**, you can use it like [this](#using-langchain); C-MTEB **leaderboard** is [available](https://huggingface.co/spaces/mteb/leaderboard).
|
||||
- 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗**
|
||||
- 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada:
|
||||
- 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset.
|
||||
|
||||
</details>
|
||||
|
||||
|
||||
## Model List
|
||||
|
||||
`bge` is short for `BAAI general embedding`.
|
||||
|
||||
| Model | Language | | Description | query instruction for retrieval [1] |
|
||||
|:-------------------------------|:--------:| :--------:| :--------:|:--------:|
|
||||
| [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) | Multilingual | [Inference](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3#usage) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3) | Multi-Functionality(dense retrieval, sparse retrieval, multi-vector(colbert)), Multi-Linguality, and Multi-Granularity(8192 tokens) | |
|
||||
| [BAAI/llm-embedder](https://huggingface.co/BAAI/llm-embedder) | English | [Inference](./FlagEmbedding/llm_embedder/README.md) [Fine-tune](./FlagEmbedding/llm_embedder/README.md) | a unified embedding model to support diverse retrieval augmentation needs for LLMs | See [README](./FlagEmbedding/llm_embedder/README.md) |
|
||||
| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | |
|
||||
| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | |
|
||||
| [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
|
||||
| [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
|
||||
| [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
|
||||
| [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
|
||||
| [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
|
||||
| [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
|
||||
| [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` |
|
||||
| [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-en` | `Represent this sentence for searching relevant passages: ` |
|
||||
| [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) |a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` |
|
||||
| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` |
|
||||
| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` |
|
||||
| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` |
|
||||
|
||||
|
||||
[1\]: If you need to search the relevant passages to a query, we suggest to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** needs to be added to passages.
|
||||
|
||||
[2\]: Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. To balance the accuracy and time cost, cross-encoder is widely used to re-rank top-k documents retrieved by other simple models.
|
||||
For examples, use bge embedding model to retrieve top 100 relevant documents, and then use bge reranker to re-rank the top 100 document to get the final top-3 results.
|
||||
|
||||
All models have been uploaded to Huggingface Hub, and you can see them at https://huggingface.co/BAAI.
|
||||
If you cannot open the Huggingface Hub, you also can download the models at https://model.baai.ac.cn/models .
|
||||
|
||||
|
||||
## Frequently asked questions
|
||||
|
||||
<details>
|
||||
<summary>1. How to fine-tune bge embedding model?</summary>
|
||||
|
||||
<!-- ### How to fine-tune bge embedding model? -->
|
||||
Following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) to prepare data and fine-tune your model.
|
||||
Some suggestions:
|
||||
- Mine hard negatives following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune#hard-negatives), which can improve the retrieval performance.
|
||||
- If you pre-train bge on your data, the pre-trained model cannot be directly used to calculate similarity, and it must be fine-tuned with contrastive learning before computing similarity.
|
||||
- If the accuracy of the fine-tuned model is still not high, it is recommended to use/fine-tune the cross-encoder model (bge-reranker) to re-rank top-k results.
|
||||
Hard negatives also are needed to fine-tune reranker. Refer to this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) for the fine-tuning for reranker
|
||||
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>2. The similarity score between two dissimilar sentences is higher than 0.5</summary>
|
||||
|
||||
<!-- ### The similarity score between two dissimilar sentences is higher than 0.5 -->
|
||||
**Suggest to use bge v1.5, which alleviates the issue of the similarity distribution.**
|
||||
|
||||
Since we finetune the models by contrastive learning with a temperature of 0.01,
|
||||
the similarity distribution of the current BGE model is about in the interval \[0.6, 1\].
|
||||
So a similarity score greater than 0.5 does not indicate that the two sentences are similar.
|
||||
|
||||
For downstream tasks, such as passage retrieval or semantic similarity,
|
||||
**what matters is the relative order of the scores, not the absolute value.**
|
||||
If you need to filter similar sentences based on a similarity threshold,
|
||||
please select an appropriate similarity threshold based on the similarity distribution on your data (such as 0.8, 0.85, or even 0.9).
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>3. When does the query instruction need to be used</summary>
|
||||
|
||||
<!-- ### When does the query instruction need to be used -->
|
||||
|
||||
For the `bge-*-v1.5`, we improve its retrieval ability when not using instruction.
|
||||
No instruction only has a slight degradation in retrieval performance compared with using instruction.
|
||||
So you can generate embedding without instruction in all cases for convenience.
|
||||
|
||||
For a retrieval task that uses short queries to find long related documents,
|
||||
it is recommended to add instructions for these short queries.
|
||||
**The best method to decide whether to add instructions for queries is choosing the setting that achieves better performance on your task.**
|
||||
In all cases, the documents/passages do not need to add the instruction.
|
||||
|
||||
</details>
|
||||
|
||||
|
||||
## Usage
|
||||
|
||||
### Usage for Embedding Model
|
||||
|
||||
Here are some examples for using `bge` models with
|
||||
[FlagEmbedding](#using-flagembedding), [Sentence-Transformers](#using-sentence-transformers), [Langchain](#using-langchain), or [Huggingface Transformers](#using-huggingface-transformers).
|
||||
|
||||
#### Using FlagEmbedding
|
||||
```
|
||||
pip install -U FlagEmbedding
|
||||
```
|
||||
If it doesn't work for you, you can see [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding.
|
||||
|
||||
```python
|
||||
from FlagEmbedding import FlagModel
|
||||
sentences_1 = ["样例数据-1", "样例数据-2"]
|
||||
sentences_2 = ["样例数据-3", "样例数据-4"]
|
||||
model = FlagModel('BAAI/bge-large-zh-v1.5',
|
||||
query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
|
||||
use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
|
||||
embeddings_1 = model.encode(sentences_1)
|
||||
embeddings_2 = model.encode(sentences_2)
|
||||
similarity = embeddings_1 @ embeddings_2.T
|
||||
print(similarity)
|
||||
|
||||
# for s2p(short query to long passage) retrieval task, suggest to use encode_queries() which will automatically add the instruction to each query
|
||||
# corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction
|
||||
queries = ['query_1', 'query_2']
|
||||
passages = ["样例文档-1", "样例文档-2"]
|
||||
q_embeddings = model.encode_queries(queries)
|
||||
p_embeddings = model.encode(passages)
|
||||
scores = q_embeddings @ p_embeddings.T
|
||||
```
|
||||
For the value of the argument `query_instruction_for_retrieval`, see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list).
|
||||
|
||||
By default, FlagModel will use all available GPUs when encoding. Please set `os.environ["CUDA_VISIBLE_DEVICES"]` to select specific GPUs.
|
||||
You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make all GPUs unavailable.
|
||||
|
||||
|
||||
#### Using Sentence-Transformers
|
||||
|
||||
You can also use the `bge` models with [sentence-transformers](https://www.SBERT.net):
|
||||
|
||||
```
|
||||
pip install -U sentence-transformers
|
||||
```
|
||||
```python
|
||||
from sentence_transformers import SentenceTransformer
|
||||
sentences_1 = ["样例数据-1", "样例数据-2"]
|
||||
sentences_2 = ["样例数据-3", "样例数据-4"]
|
||||
model = SentenceTransformer('BAAI/bge-large-zh-v1.5')
|
||||
embeddings_1 = model.encode(sentences_1, normalize_embeddings=True)
|
||||
embeddings_2 = model.encode(sentences_2, normalize_embeddings=True)
|
||||
similarity = embeddings_1 @ embeddings_2.T
|
||||
print(similarity)
|
||||
```
|
||||
For s2p(short query to long passage) retrieval task,
|
||||
each short query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)).
|
||||
But the instruction is not needed for passages.
|
||||
```python
|
||||
from sentence_transformers import SentenceTransformer
|
||||
queries = ['query_1', 'query_2']
|
||||
passages = ["样例文档-1", "样例文档-2"]
|
||||
instruction = "为这个句子生成表示以用于检索相关文章:"
|
||||
|
||||
model = SentenceTransformer('BAAI/bge-large-zh-v1.5')
|
||||
q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True)
|
||||
p_embeddings = model.encode(passages, normalize_embeddings=True)
|
||||
scores = q_embeddings @ p_embeddings.T
|
||||
```
|
||||
|
||||
#### Using Langchain
|
||||
|
||||
You can use `bge` in langchain like this:
|
||||
```python
|
||||
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
||||
model_name = "BAAI/bge-large-en-v1.5"
|
||||
model_kwargs = {'device': 'cuda'}
|
||||
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
|
||||
model = HuggingFaceBgeEmbeddings(
|
||||
model_name=model_name,
|
||||
model_kwargs=model_kwargs,
|
||||
encode_kwargs=encode_kwargs,
|
||||
query_instruction="为这个句子生成表示以用于检索相关文章:"
|
||||
)
|
||||
model.query_instruction = "为这个句子生成表示以用于检索相关文章:"
|
||||
```
|
||||
|
||||
|
||||
#### Using HuggingFace Transformers
|
||||
|
||||
With the transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of the first token (i.e., [CLS]) as the sentence embedding.
|
||||
|
||||
```python
|
||||
from transformers import AutoTokenizer, AutoModel
|
||||
import torch
|
||||
# Sentences we want sentence embeddings for
|
||||
sentences = ["样例数据-1", "样例数据-2"]
|
||||
|
||||
# Load model from HuggingFace Hub
|
||||
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh-v1.5')
|
||||
model = AutoModel.from_pretrained('BAAI/bge-large-zh-v1.5')
|
||||
model.eval()
|
||||
|
||||
# Tokenize sentences
|
||||
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
||||
# for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages)
|
||||
# encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt')
|
||||
|
||||
# Compute token embeddings
|
||||
with torch.no_grad():
|
||||
model_output = model(**encoded_input)
|
||||
# Perform pooling. In this case, cls pooling.
|
||||
sentence_embeddings = model_output[0][:, 0]
|
||||
# normalize embeddings
|
||||
sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
|
||||
print("Sentence embeddings:", sentence_embeddings)
|
||||
```
|
||||
|
||||
### Usage for Reranker
|
||||
|
||||
Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding.
|
||||
You can get a relevance score by inputting query and passage to the reranker.
|
||||
The reranker is optimized based cross-entropy loss, so the relevance score is not bounded to a specific range.
|
||||
|
||||
|
||||
#### Using FlagEmbedding
|
||||
```
|
||||
pip install -U FlagEmbedding
|
||||
```
|
||||
|
||||
Get relevance scores (higher scores indicate more relevance):
|
||||
```python
|
||||
from FlagEmbedding import FlagReranker
|
||||
reranker = FlagReranker('BAAI/bge-reranker-large', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
|
||||
|
||||
score = reranker.compute_score(['query', 'passage'])
|
||||
print(score)
|
||||
|
||||
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
|
||||
print(scores)
|
||||
```
|
||||
|
||||
|
||||
#### Using Huggingface transformers
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-large')
|
||||
model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-large')
|
||||
model.eval()
|
||||
|
||||
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
|
||||
with torch.no_grad():
|
||||
inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512)
|
||||
scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
|
||||
print(scores)
|
||||
```
|
||||
|
||||
#### Usage reranker with the ONNX files
|
||||
|
||||
```python
|
||||
from optimum.onnxruntime import ORTModelForSequenceClassification # type: ignore
|
||||
|
||||
import torch
|
||||
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-large')
|
||||
model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-base')
|
||||
model_ort = ORTModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-base', file_name="onnx/model.onnx")
|
||||
|
||||
# Sentences we want sentence embeddings for
|
||||
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
|
||||
|
||||
# Tokenize sentences
|
||||
encoded_input = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt')
|
||||
|
||||
scores_ort = model_ort(**encoded_input, return_dict=True).logits.view(-1, ).float()
|
||||
# Compute token embeddings
|
||||
with torch.inference_mode():
|
||||
scores = model_ort(**encoded_input, return_dict=True).logits.view(-1, ).float()
|
||||
|
||||
# scores and scores_ort are identical
|
||||
```
|
||||
#### Usage reranker with infinity
|
||||
|
||||
Its also possible to deploy the onnx/torch files with the [infinity_emb](https://github.com/michaelfeil/infinity) pip package.
|
||||
```python
|
||||
import asyncio
|
||||
from infinity_emb import AsyncEmbeddingEngine, EngineArgs
|
||||
|
||||
query='what is a panda?'
|
||||
docs = ['The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear', "Paris is in France."]
|
||||
|
||||
engine = AsyncEmbeddingEngine.from_args(
|
||||
EngineArgs(model_name_or_path = "BAAI/bge-reranker-base", device="cpu", engine="torch" # or engine="optimum" for onnx
|
||||
))
|
||||
|
||||
async def main():
|
||||
async with engine:
|
||||
ranking, usage = await engine.rerank(query=query, docs=docs)
|
||||
print(list(zip(ranking, docs)))
|
||||
asyncio.run(main())
|
||||
```
|
||||
|
||||
## Evaluation
|
||||
|
||||
`baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!**
|
||||
For more details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md).
|
||||
|
||||
- **MTEB**:
|
||||
|
||||
| Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) |
|
||||
|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
|
||||
| [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | **64.23** | **54.29** | 46.08 | 87.12 | 60.03 | 83.11 | 31.61 | 75.97 |
|
||||
| [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | 63.55 | 53.25 | 45.77 | 86.55 | 58.86 | 82.4 | 31.07 | 75.53 |
|
||||
| [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | 384 | 512 | 62.17 |51.68 | 43.82 | 84.92 | 58.36 | 81.59 | 30.12 | 74.14 |
|
||||
| [bge-large-en](https://huggingface.co/BAAI/bge-large-en) | 1024 | 512 | 63.98 | 53.9 | 46.98 | 85.8 | 59.48 | 81.56 | 32.06 | 76.21 |
|
||||
| [bge-base-en](https://huggingface.co/BAAI/bge-base-en) | 768 | 512 | 63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 |
|
||||
| [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 |
|
||||
| [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 |
|
||||
| [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 |
|
||||
| [bge-small-en](https://huggingface.co/BAAI/bge-small-en) | 384 | 512 | 62.11 | 51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 |
|
||||
| [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 |
|
||||
| [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 |
|
||||
| [gte-small](https://huggingface.co/thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 |
|
||||
| [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | 1536 | 8192 | 60.99 | 49.25 | 45.9 | 84.89 | 56.32 | 80.97 | 30.8 | 70.93 |
|
||||
| [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 384 | 512 | 59.93 | 49.04 | 39.92 | 84.67 | 54.32 | 80.39 | 31.16 | 72.94 |
|
||||
| [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 |
|
||||
| [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 |
|
||||
| [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 |
|
||||
|
||||
|
||||
|
||||
- **C-MTEB**:
|
||||
We create the benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks.
|
||||
Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction.
|
||||
|
||||
| Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering |
|
||||
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
|
||||
| [**BAAI/bge-large-zh-v1.5**](https://huggingface.co/BAAI/bge-large-zh-v1.5) | 1024 | **64.53** | 70.46 | 56.25 | 81.6 | 69.13 | 65.84 | 48.99 |
|
||||
| [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | 768 | 63.13 | 69.49 | 53.72 | 79.75 | 68.07 | 65.39 | 47.53 |
|
||||
| [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | 512 | 57.82 | 61.77 | 49.11 | 70.41 | 63.96 | 60.92 | 44.18 |
|
||||
| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | 1024 | 64.20 | 71.53 | 54.98 | 78.94 | 68.32 | 65.11 | 48.39 |
|
||||
| [bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | 1024 | 63.53 | 70.55 | 53 | 76.77 | 68.58 | 64.91 | 50.01 |
|
||||
| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | 768 | 62.96 | 69.53 | 54.12 | 77.5 | 67.07 | 64.91 | 47.63 |
|
||||
| [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 1024 | 58.79 | 63.66 | 48.44 | 69.89 | 67.34 | 56.00 | 48.23 |
|
||||
| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 | 63.07 | 49.45 | 70.35 | 63.64 | 61.48 | 45.09 |
|
||||
| [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 | 56.91 | 50.47 | 63.99 | 67.52 | 59.34 | 47.68 |
|
||||
| [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 | 57.05 | 54.75 | 50.42 | 64.3 | 68.2 | 59.66 | 48.88 |
|
||||
| [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 768 | 55.48 | 61.63 | 46.49 | 67.07 | 65.35 | 54.35 | 40.68 |
|
||||
| [multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) | 384 | 55.38 | 59.95 | 45.27 | 66.45 | 65.85 | 53.86 | 45.26 |
|
||||
| [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 43.35 | 69.56 | 64.31 | 54.28 | 45.68 |
|
||||
| [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 42.78 | 66.62 | 61 | 49.25 | 44.39 |
|
||||
| [text2vec-base](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 43.41 | 67.41 | 62.19 | 49.45 | 37.66 |
|
||||
| [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 44.97 | 70.86 | 60.66 | 49.16 | 30.02 |
|
||||
|
||||
|
||||
- **Reranking**:
|
||||
See [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/) for evaluation script.
|
||||
|
||||
| Model | T2Reranking | T2RerankingZh2En\* | T2RerankingEn2Zh\* | MMarcoReranking | CMedQAv1 | CMedQAv2 | Avg |
|
||||
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
|
||||
| text2vec-base-multilingual | 64.66 | 62.94 | 62.51 | 14.37 | 48.46 | 48.6 | 50.26 |
|
||||
| multilingual-e5-small | 65.62 | 60.94 | 56.41 | 29.91 | 67.26 | 66.54 | 57.78 |
|
||||
| multilingual-e5-large | 64.55 | 61.61 | 54.28 | 28.6 | 67.42 | 67.92 | 57.4 |
|
||||
| multilingual-e5-base | 64.21 | 62.13 | 54.68 | 29.5 | 66.23 | 66.98 | 57.29 |
|
||||
| m3e-base | 66.03 | 62.74 | 56.07 | 17.51 | 77.05 | 76.76 | 59.36 |
|
||||
| m3e-large | 66.13 | 62.72 | 56.1 | 16.46 | 77.76 | 78.27 | 59.57 |
|
||||
| bge-base-zh-v1.5 | 66.49 | 63.25 | 57.02 | 29.74 | 80.47 | 84.88 | 63.64 |
|
||||
| bge-large-zh-v1.5 | 65.74 | 63.39 | 57.03 | 28.74 | 83.45 | 85.44 | 63.97 |
|
||||
| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | 67.28 | 63.95 | 60.45 | 35.46 | 81.26 | 84.1 | 65.42 |
|
||||
| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | 67.6 | 64.03 | 61.44 | 37.16 | 82.15 | 84.18 | 66.09 |
|
||||
|
||||
\* : T2RerankingZh2En and T2RerankingEn2Zh are cross-language retrieval tasks
|
||||
|
||||
## Train
|
||||
|
||||
### BAAI Embedding
|
||||
|
||||
We pre-train the models using [retromae](https://github.com/staoxiao/RetroMAE) and train them on large-scale pairs data using contrastive learning.
|
||||
**You can fine-tune the embedding model on your data following our [examples](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune).**
|
||||
We also provide a [pre-train example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain).
|
||||
Note that the goal of pre-training is to reconstruct the text, and the pre-trained model cannot be used for similarity calculation directly, it needs to be fine-tuned.
|
||||
More training details for bge see [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md).
|
||||
|
||||
|
||||
|
||||
### BGE Reranker
|
||||
|
||||
Cross-encoder will perform full-attention over the input pair,
|
||||
which is more accurate than embedding model (i.e., bi-encoder) but more time-consuming than embedding model.
|
||||
Therefore, it can be used to re-rank the top-k documents returned by embedding model.
|
||||
We train the cross-encoder on a multilingual pair data,
|
||||
The data format is the same as embedding model, so you can fine-tune it easily following our [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker).
|
||||
More details please refer to [./FlagEmbedding/reranker/README.md](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker)
|
||||
|
||||
|
||||
|
||||
## Citation
|
||||
|
||||
If you find this repository useful, please consider giving a star :star: and citation
|
||||
|
||||
```
|
||||
@misc{bge_embedding,
|
||||
title={C-Pack: Packaged Resources To Advance General Chinese Embedding},
|
||||
author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff},
|
||||
year={2023},
|
||||
eprint={2309.07597},
|
||||
archivePrefix={arXiv},
|
||||
primaryClass={cs.CL}
|
||||
}
|
||||
```
|
||||
|
||||
## License
|
||||
FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
|
|
@ -0,0 +1,34 @@
|
|||
{
|
||||
"_name_or_path": "xlm-roberta-large",
|
||||
"architectures": [
|
||||
"XLMRobertaForSequenceClassification"
|
||||
],
|
||||
"attention_probs_dropout_prob": 0.1,
|
||||
"bos_token_id": 0,
|
||||
"classifier_dropout": null,
|
||||
"eos_token_id": 2,
|
||||
"hidden_act": "gelu",
|
||||
"hidden_dropout_prob": 0.1,
|
||||
"hidden_size": 1024,
|
||||
"id2label": {
|
||||
"0": "LABEL_0"
|
||||
},
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 4096,
|
||||
"label2id": {
|
||||
"LABEL_0": 0
|
||||
},
|
||||
"layer_norm_eps": 1e-05,
|
||||
"max_position_embeddings": 514,
|
||||
"model_type": "xlm-roberta",
|
||||
"num_attention_heads": 16,
|
||||
"num_hidden_layers": 24,
|
||||
"output_past": true,
|
||||
"pad_token_id": 1,
|
||||
"position_embedding_type": "absolute",
|
||||
"torch_dtype": "float32",
|
||||
"transformers_version": "4.30.0",
|
||||
"type_vocab_size": 1,
|
||||
"use_cache": true,
|
||||
"vocab_size": 250002
|
||||
}
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -0,0 +1,15 @@
|
|||
{
|
||||
"bos_token": "<s>",
|
||||
"cls_token": "<s>",
|
||||
"eos_token": "</s>",
|
||||
"mask_token": {
|
||||
"content": "<mask>",
|
||||
"lstrip": true,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
},
|
||||
"pad_token": "<pad>",
|
||||
"sep_token": "</s>",
|
||||
"unk_token": "<unk>"
|
||||
}
|
Binary file not shown.
|
@ -0,0 +1,20 @@
|
|||
{
|
||||
"bos_token": "<s>",
|
||||
"clean_up_tokenization_spaces": true,
|
||||
"cls_token": "<s>",
|
||||
"eos_token": "</s>",
|
||||
"mask_token": {
|
||||
"__type": "AddedToken",
|
||||
"content": "<mask>",
|
||||
"lstrip": true,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
},
|
||||
"model_max_length": 512,
|
||||
"pad_token": "<pad>",
|
||||
"sep_token": "</s>",
|
||||
"sp_model_kwargs": {},
|
||||
"tokenizer_class": "XLMRobertaTokenizer",
|
||||
"unk_token": "<unk>"
|
||||
}
|
Loading…
Reference in New Issue