111 lines
3.5 KiB
Markdown
111 lines
3.5 KiB
Markdown
|
|
---
|
|
license: openrail++
|
|
base_model: stabilityai/stable-diffusion-xl-base-1.0
|
|
tags:
|
|
- stable-diffusion-xl
|
|
- stable-diffusion-xl-diffusers
|
|
- text-to-image
|
|
- diffusers
|
|
- controlnet
|
|
inference: false
|
|
---
|
|
|
|
# SDXL-controlnet: Depth
|
|
|
|
These are controlnet weights trained on stabilityai/stable-diffusion-xl-base-1.0 with depth conditioning. You can find some example images in the following.
|
|
|
|
prompt: spiderman lecture, photorealistic
|
|
![images_0)](./spiderman.png)
|
|
|
|
## Usage
|
|
|
|
Make sure to first install the libraries:
|
|
|
|
```bash
|
|
pip install accelerate transformers safetensors diffusers
|
|
```
|
|
|
|
And then we're ready to go:
|
|
|
|
```python
|
|
import torch
|
|
import numpy as np
|
|
from PIL import Image
|
|
|
|
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
|
|
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
|
|
from diffusers.utils import load_image
|
|
|
|
|
|
depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda")
|
|
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas")
|
|
controlnet = ControlNetModel.from_pretrained(
|
|
"diffusers/controlnet-depth-sdxl-1.0",
|
|
variant="fp16",
|
|
use_safetensors=True,
|
|
torch_dtype=torch.float16,
|
|
)
|
|
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
|
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
|
"stabilityai/stable-diffusion-xl-base-1.0",
|
|
controlnet=controlnet,
|
|
vae=vae,
|
|
variant="fp16",
|
|
use_safetensors=True,
|
|
torch_dtype=torch.float16,
|
|
)
|
|
pipe.enable_model_cpu_offload()
|
|
|
|
def get_depth_map(image):
|
|
image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda")
|
|
with torch.no_grad(), torch.autocast("cuda"):
|
|
depth_map = depth_estimator(image).predicted_depth
|
|
|
|
depth_map = torch.nn.functional.interpolate(
|
|
depth_map.unsqueeze(1),
|
|
size=(1024, 1024),
|
|
mode="bicubic",
|
|
align_corners=False,
|
|
)
|
|
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
|
|
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
|
|
depth_map = (depth_map - depth_min) / (depth_max - depth_min)
|
|
image = torch.cat([depth_map] * 3, dim=1)
|
|
|
|
image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
|
|
image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
|
|
return image
|
|
|
|
|
|
prompt = "stormtrooper lecture, photorealistic"
|
|
image = load_image("https://huggingface.co/lllyasviel/sd-controlnet-depth/resolve/main/images/stormtrooper.png")
|
|
controlnet_conditioning_scale = 0.5 # recommended for good generalization
|
|
|
|
depth_image = get_depth_map(image)
|
|
|
|
images = pipe(
|
|
prompt, image=depth_image, num_inference_steps=30, controlnet_conditioning_scale=controlnet_conditioning_scale,
|
|
).images
|
|
images[0]
|
|
|
|
images[0].save(f"stormtrooper.png")
|
|
```
|
|
|
|
For more details, check out the official documentation of [`StableDiffusionXLControlNetPipeline`](https://huggingface.co/docs/diffusers/main/en/api/pipelines/controlnet_sdxl).
|
|
|
|
### Training
|
|
|
|
Our training script was built on top of the official training script that we provide [here](https://github.com/huggingface/diffusers/blob/main/examples/controlnet/README_sdxl.md).
|
|
|
|
#### Training data and Compute
|
|
The model is trained on 3M image-text pairs from LAION-Aesthetics V2. The model is trained for 700 GPU hours on 80GB A100 GPUs.
|
|
|
|
#### Batch size
|
|
Data parallel with a single GPU batch size of 8 for a total batch size of 256.
|
|
|
|
#### Hyper Parameters
|
|
The constant learning rate of 1e-5.
|
|
|
|
#### Mixed precision
|
|
fp16 |