resnet-dogcat/README.md

6.7 KiB

Cat-Dog Classification Model

Introduction

This repository contains a Cat-Dog classification model based on the ResNet-50 architecture. The model is trained to distinguish between images of cats and dogs.

ResNet Model

ResNet-50 is a deep convolutional neural network with 50 layers. It is designed to overcome the vanishing gradient problem, which is common in very deep networks, by using skip connections or residuals. This allows the network to be significantly deeper while still being easy to optimize.

Training

The model is trained on a dataset of cat and dog images. The training process involves the following steps:

  1. Data Preprocessing: Images are resized, cropped, and normalized.
  2. Model Initialization: A pre-trained ResNet-50 model is loaded and the final fully connected layer is adjusted to output two classes (cat and dog).
  3. Training Loop: The model is trained using a standard training loop with stochastic gradient descent (SGD) and a learning rate scheduler.
  4. Model Evaluation: The best model is selected based on validation accuracy and saved for inference.

Training Code

Here is a simplified version of the training code:

import os
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from torchvision import models, transforms
from PIL import Image
from safetensors.torch import save_file

class CatDogDataset(Dataset):
    def __init__(self, root_dir, transform=None):
        self.root_dir = root_dir
        self.transform = transform
        self.image_paths = []
        self.labels = []

        for filename in os.listdir(root_dir):
            if 'cat' in filename:
                self.image_paths.append(os.path.join(root_dir, filename))
                self.labels.append(0)  # cat
            elif 'dog' in filename:
                self.image_paths.append(os.path.join(root_dir, filename))
                self.labels.append(1)  # dog

    def __len__(self):
        return len(self.image_paths)

    def __getitem__(self, idx):
        img_path = self.image_paths[idx]
        image = Image.open(img_path).convert('RGB')
        label = self.labels[idx]

        if self.transform:
            image = self.transform(image)

        return image, label

# Data preprocessing
data_transforms = {
    'train': transforms.Compose([
        transforms.RandomResizedCrop(224),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
    'val': transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
}

data_dir = 'dog-cat'
image_datasets = {x: CatDogDataset(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']}
dataloaders = {x: DataLoader(image_datasets[x], batch_size=32, shuffle=True, num_workers=4) for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = ['cat', 'dog']

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Load and modify ResNet-50
model_ft = models.resnet50(weights=models.ResNet50_Weights.DEFAULT)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, len(class_names))

model_ft = model_ft.to(device)

criterion = nn.CrossEntropyLoss()

# Optimizer
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)

# Learning rate scheduler
exp_lr_scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)

# Training function
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
    best_model_wts = model.state_dict()
    best_acc = 0.0

    for epoch in range(num_epochs):
        print(f'Epoch {epoch}/{num_epochs - 1}')
        print('-' * 10)

        for phase in ['train', 'val']:
            if phase == 'train':
                model.train()
            else:
                model.eval()

            running_loss = 0.0
            running_corrects = 0

            for inputs, labels in dataloaders[phase]:
                inputs = inputs.to(device)
                labels = labels.to(device)

                optimizer.zero_grad()

                with torch.set_grad_enabled(phase == 'train'):
                    outputs = model(inputs)
                    _, preds = torch.max(outputs, 1)
                    loss = criterion(outputs, labels)

                    if phase == 'train':
                        loss.backward()
                        optimizer.step()

                running_loss += loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds == labels.data)

            if phase == 'train':
                scheduler.step()

            epoch_loss = running_loss / dataset_sizes[phase]
            epoch_acc = running_corrects.double() / dataset_sizes[phase]

            print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')

            if phase == 'val' and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_wts = model.state_dict()

        print()

    print(f'Best val Acc: {best_acc:4f}')
    model.load_state_dict(best_model_wts)
    return model

# Train and evaluate the model
model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=25)

# Save the model
torch.save(model_ft.state_dict(), 'model_cat_dog_classifier.pt')
save_file(model_ft.state_dict(), 'model_cat_dog_classifier.safetensors')

Inference

To perform inference, you can use the following code. The inference is based on the transformer model with model ID ailb/resnet-dogcat.

Inference Code

You need set env HF_ENDPOINT=http://10.0.101.71

from transformers import AutoImageProcessor, ResNetForImageClassification
from PIL import Image
import requests
import torch

# Load model 
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
processor = AutoImageProcessor.from_pretrained("ailab/resnet-dogcat")
model = ResNetForImageClassification.from_pretrained("ailab/resnet-dogcat")

inputs = processor(image, return_tensors="pt")

with torch.no_grad():
    logits = model(**inputs).logits

# model predicts one of the 1000 ImageNet classes
predicted_label = logits.argmax(-1).item()
print(model.config.id2label[predicted_label])

Conclusion

This repository provides a comprehensive solution for training and performing inference on a Cat-Dog classification task using a ResNet-50 model. The training script demonstrates how to preprocess data, train the model, and save the trained model. The inference script shows how to use the trained model to classify new images.