1.4 KiB
1.4 KiB
license | tags | datasets | inference | ||||
---|---|---|---|---|---|---|---|
agpl-3.0 |
|
|
false |
Model Description
YOLOv10: Real-Time End-to-End Object Detection
Installation
pip install git+https://github.com/THU-MIG/yolov10.git
Training and validation
from ultralytics import YOLOv10
model = YOLOv10.from_pretrained('jameslahm/yolov10s')
# Training
model.train(...)
# after training, one can push to the hub
model.push_to_hub("your-hf-username/yolov10-finetuned")
# Validation
model.val(...)
Inference
Here's an end-to-end example showcasing inference on a cats image:
from ultralytics import YOLOv10
model = YOLOv10.from_pretrained('jameslahm/yolov10s')
source = 'http://images.cocodataset.org/val2017/000000039769.jpg'
model.predict(source=source, save=True)
which shows:
BibTeX Entry and Citation Info
@article{wang2024yolov10,
title={YOLOv10: Real-Time End-to-End Object Detection},
author={Wang, Ao and Chen, Hui and Liu, Lihao and Chen, Kai and Lin, Zijia and Han, Jungong and Ding, Guiguang},
journal={arXiv preprint arXiv:2405.14458},
year={2024}
}