447 lines
14 KiB
Python
447 lines
14 KiB
Python
|
"""
|
||
|
Copied from https://github.com/lm-sys/FastChat.
|
||
|
Later we will contribute our changes into it.
|
||
|
"""
|
||
|
import dataclasses
|
||
|
from enum import auto, IntEnum
|
||
|
from typing import List, Any, Dict
|
||
|
import math
|
||
|
from typing import List, Optional, Tuple, Union
|
||
|
import random
|
||
|
import numpy as np
|
||
|
|
||
|
import torch
|
||
|
import torch.utils.checkpoint
|
||
|
from torch import nn
|
||
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
||
|
|
||
|
from transformers.activations import ACT2FN
|
||
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
|
||
|
from transformers.modeling_utils import PreTrainedModel
|
||
|
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
|
||
|
from transformers import (
|
||
|
LogitsProcessorList,
|
||
|
MinLengthLogitsProcessor,
|
||
|
TopKLogitsWarper,
|
||
|
TemperatureLogitsWarper,
|
||
|
TopPLogitsWarper,
|
||
|
StoppingCriteriaList,
|
||
|
MaxLengthCriteria,
|
||
|
BitsAndBytesConfig,
|
||
|
)
|
||
|
|
||
|
|
||
|
|
||
|
class SeparatorStyle(IntEnum):
|
||
|
"""Separator styles."""
|
||
|
|
||
|
ADD_COLON_SINGLE = auto()
|
||
|
ADD_COLON_TWO = auto()
|
||
|
ADD_COLON_SPACE_SINGLE = auto()
|
||
|
NO_COLON_SINGLE = auto()
|
||
|
NO_COLON_TWO = auto()
|
||
|
ADD_NEW_LINE_SINGLE = auto()
|
||
|
|
||
|
|
||
|
@dataclasses.dataclass
|
||
|
class Conversation:
|
||
|
"""A class that manages prompt templates and keeps all conversation history."""
|
||
|
|
||
|
# The name of this template
|
||
|
name: str
|
||
|
# The template of the system prompt
|
||
|
system_template: str = "{system_message}"
|
||
|
# The system message
|
||
|
system_message: str = ""
|
||
|
# The names of two roles
|
||
|
roles: List[str] = (("USER", "ASSISTANT"),)
|
||
|
# All messages. Each item is (role, message).
|
||
|
messages: List[List[str]] = ()
|
||
|
# The number of few shot examples
|
||
|
offset: int = 0
|
||
|
# The separator style and configurations
|
||
|
sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
|
||
|
sep: str = "\n"
|
||
|
sep2: str = None
|
||
|
# Stop criteria (the default one is EOS token)
|
||
|
stop_str: str = None
|
||
|
# Stops generation if meeting any token in this list
|
||
|
stop_token_ids: List[int] = None
|
||
|
|
||
|
def get_prompt(self) -> str:
|
||
|
"""Get the prompt for generation."""
|
||
|
system_prompt = self.system_template.format(system_message=self.system_message)
|
||
|
if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
|
||
|
ret = system_prompt + self.sep
|
||
|
for role, message in self.messages:
|
||
|
if message:
|
||
|
ret += role + ": " + message + self.sep
|
||
|
else:
|
||
|
ret += role + ":"
|
||
|
return ret
|
||
|
elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
|
||
|
seps = [self.sep, self.sep2]
|
||
|
ret = system_prompt + seps[0]
|
||
|
for i, (role, message) in enumerate(self.messages):
|
||
|
if message:
|
||
|
ret += role + ": " + message + seps[i % 2]
|
||
|
else:
|
||
|
ret += role + ":"
|
||
|
return ret
|
||
|
elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
|
||
|
ret = system_prompt + self.sep
|
||
|
for role, message in self.messages:
|
||
|
if message:
|
||
|
ret += role + ": " + message + self.sep
|
||
|
else:
|
||
|
ret += role + ": " # must be end with a space
|
||
|
return ret
|
||
|
elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
|
||
|
ret = "" if system_prompt == "" else system_prompt + self.sep
|
||
|
for role, message in self.messages:
|
||
|
if message:
|
||
|
ret += role + "\n" + message + self.sep
|
||
|
else:
|
||
|
ret += role + "\n"
|
||
|
return ret
|
||
|
elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
|
||
|
ret = system_prompt
|
||
|
for role, message in self.messages:
|
||
|
if message:
|
||
|
ret += role + message + self.sep
|
||
|
else:
|
||
|
ret += role
|
||
|
return ret
|
||
|
elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
|
||
|
seps = [self.sep, self.sep2]
|
||
|
ret = system_prompt
|
||
|
for i, (role, message) in enumerate(self.messages):
|
||
|
if message:
|
||
|
ret += role + message + seps[i % 2]
|
||
|
else:
|
||
|
ret += role
|
||
|
return ret
|
||
|
|
||
|
def set_system_message(self, system_message: str):
|
||
|
"""Set the system message."""
|
||
|
self.system_message = system_message
|
||
|
|
||
|
def append_message(self, role: str, message: str):
|
||
|
"""Append a new message."""
|
||
|
self.messages.append([role, message])
|
||
|
|
||
|
def update_last_message(self, message: str):
|
||
|
"""Update the last output.
|
||
|
|
||
|
The last message is typically set to be None when constructing the prompt,
|
||
|
so we need to update it in-place after getting the response from a model.
|
||
|
"""
|
||
|
self.messages[-1][1] = message
|
||
|
|
||
|
def copy(self):
|
||
|
return Conversation(
|
||
|
name=self.name,
|
||
|
system_template=self.system_template,
|
||
|
system_message=self.system_message,
|
||
|
roles=self.roles,
|
||
|
messages=[[x, y] for x, y in self.messages],
|
||
|
offset=self.offset,
|
||
|
sep_style=self.sep_style,
|
||
|
sep=self.sep,
|
||
|
sep2=self.sep2,
|
||
|
stop_str=self.stop_str,
|
||
|
stop_token_ids=self.stop_token_ids,
|
||
|
)
|
||
|
|
||
|
def dict(self):
|
||
|
return {
|
||
|
"template_name": self.name,
|
||
|
"system_message": self.system_message,
|
||
|
"roles": self.roles,
|
||
|
"messages": self.messages,
|
||
|
"offset": self.offset,
|
||
|
}
|
||
|
|
||
|
|
||
|
# A global registry for all conversation templates
|
||
|
conv_templates: Dict[str, Conversation] = {}
|
||
|
|
||
|
|
||
|
def register_conv_template(template: Conversation, override: bool = False):
|
||
|
"""Register a new conversation template."""
|
||
|
if not override:
|
||
|
assert (
|
||
|
template.name not in conv_templates
|
||
|
), f"{template.name} has been registered."
|
||
|
|
||
|
conv_templates[template.name] = template
|
||
|
|
||
|
|
||
|
def get_conv_template(name: str) -> Conversation:
|
||
|
"""Get a conversation template."""
|
||
|
return conv_templates[name].copy()
|
||
|
|
||
|
def get_conversation_template(model_path: str) -> Conversation:
|
||
|
"""Get the default conversation template."""
|
||
|
if "aquila-v1" in model_path:
|
||
|
return get_conv_template("aquila-v1")
|
||
|
elif "aquila-chat" in model_path:
|
||
|
return get_conv_template("aquila-chat")
|
||
|
elif "aquila-legacy" in model_path:
|
||
|
return get_conv_template("aquila-legacy")
|
||
|
else:
|
||
|
return get_conv_template("aquila")
|
||
|
|
||
|
# AquilaChat default template
|
||
|
# source: https://github.com/FlagAI-Open/FlagAI/blob/master/examples/Aquila/Aquila-chat/cyg_conversation.py
|
||
|
register_conv_template(
|
||
|
Conversation(
|
||
|
name="aquila-chat",
|
||
|
system_message="A chat between a curious human and an artificial intelligence assistant. "
|
||
|
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
|
||
|
roles=("Human", "Assistant", "System"),
|
||
|
messages=(),
|
||
|
offset=0,
|
||
|
sep_style=SeparatorStyle.ADD_COLON_SINGLE,
|
||
|
sep="###",
|
||
|
sep2="",
|
||
|
stop_str=["###", "</s>", "[UNK]"],
|
||
|
)
|
||
|
)
|
||
|
|
||
|
register_conv_template(
|
||
|
Conversation(
|
||
|
name="aquila-legacy",
|
||
|
system_message="A chat between a curious human and an artificial intelligence assistant. "
|
||
|
"The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n",
|
||
|
roles=("### Human: ", "### Assistant: ", "System"),
|
||
|
messages=(),
|
||
|
offset=0,
|
||
|
sep_style=SeparatorStyle.NO_COLON_TWO,
|
||
|
sep="\n",
|
||
|
sep2="</s>",
|
||
|
stop_str=["</s>", "[UNK]"],
|
||
|
)
|
||
|
)
|
||
|
|
||
|
register_conv_template(
|
||
|
Conversation(
|
||
|
name="aquila",
|
||
|
system_message="A chat between a curious human and an artificial intelligence assistant. "
|
||
|
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
|
||
|
roles=("Human", "Assistant", "System"),
|
||
|
messages=(),
|
||
|
offset=0,
|
||
|
sep_style=SeparatorStyle.ADD_COLON_TWO,
|
||
|
sep="###",
|
||
|
sep2="</s>",
|
||
|
stop_str=["</s>", "[UNK]"],
|
||
|
)
|
||
|
)
|
||
|
|
||
|
register_conv_template(
|
||
|
Conversation(
|
||
|
name="aquila-v1",
|
||
|
roles=("<|startofpiece|>", "<|endofpiece|>", ""),
|
||
|
messages=(),
|
||
|
offset=0,
|
||
|
sep_style=SeparatorStyle.NO_COLON_TWO,
|
||
|
sep="",
|
||
|
sep2="</s>",
|
||
|
stop_str=["</s>", "<|endoftext|>"],
|
||
|
)
|
||
|
)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
print("aquila template:")
|
||
|
conv = get_conv_template("aquila")
|
||
|
conv.append_message(conv.roles[0], "Hello!")
|
||
|
conv.append_message(conv.roles[1], "Hi!")
|
||
|
conv.append_message(conv.roles[0], "How are you?")
|
||
|
conv.append_message(conv.roles[1], None)
|
||
|
print(conv.get_prompt())
|
||
|
|
||
|
print("\n")
|
||
|
|
||
|
print("aquila-chat template:")
|
||
|
conv = get_conv_template("aquila-chat")
|
||
|
conv.append_message(conv.roles[0], "Hello!")
|
||
|
conv.append_message(conv.roles[1], "Hi!")
|
||
|
conv.append_message(conv.roles[0], "How are you?")
|
||
|
conv.append_message(conv.roles[1], None)
|
||
|
print(conv.get_prompt())
|
||
|
|
||
|
print("\n")
|
||
|
|
||
|
print("aquila-v1 template:")
|
||
|
conv = get_conv_template("aquila-v1")
|
||
|
conv.append_message(conv.roles[0], "Hello!")
|
||
|
conv.append_message(conv.roles[1], "Hi!")
|
||
|
conv.append_message(conv.roles[0], "How are you?")
|
||
|
conv.append_message(conv.roles[1], None)
|
||
|
print(conv.get_prompt())
|
||
|
|
||
|
print("\n")
|
||
|
|
||
|
print("aquila-legacy template:")
|
||
|
conv = get_conv_template("aquila-legacy")
|
||
|
conv.append_message(conv.roles[0], "Hello!")
|
||
|
conv.append_message(conv.roles[1], "Hi!")
|
||
|
conv.append_message(conv.roles[0], "How are you?")
|
||
|
conv.append_message(conv.roles[1], None)
|
||
|
print(conv.get_prompt())
|
||
|
|
||
|
print("\n")
|
||
|
|
||
|
def set_random_seed(seed):
|
||
|
"""Set random seed for reproducability."""
|
||
|
if seed is not None and seed > 0:
|
||
|
random.seed(seed)
|
||
|
np.random.seed(seed)
|
||
|
torch.manual_seed(seed)
|
||
|
|
||
|
def covert_prompt_to_input_ids_with_history(text, history, tokenizer, max_token, convo_template="aquila-chat"):
|
||
|
# aquila-chat as default
|
||
|
conv = get_conv_template(convo_template)
|
||
|
|
||
|
conv.append_message(conv.roles[1], None)
|
||
|
conv.append_message(conv.roles[0], text)
|
||
|
|
||
|
example = tokenizer.encode_plus(f"{conv.get_prompt()} ", None, max_length=None)['input_ids']
|
||
|
|
||
|
if history is None or not isinstance(history, list):
|
||
|
history = []
|
||
|
|
||
|
while(len(history) > 0 and (len(example) < max_token)):
|
||
|
tmp = history.pop()
|
||
|
if tmp[0] == 'ASSISTANT':
|
||
|
conv.append_message(conv.roles[1], tmp[1])
|
||
|
else:
|
||
|
conv.append_message(conv.roles[0], tmp[1])
|
||
|
example = tokenizer.encode_plus(f"{conv.get_prompt()} ", None, max_length=None)['input_ids']
|
||
|
|
||
|
if len(example) >= max_token:
|
||
|
conv.messages.pop()
|
||
|
conv.messages = conv.messages[::-1]
|
||
|
print('model in:', conv.get_prompt())
|
||
|
example = tokenizer.encode_plus(f"{conv.get_prompt()} ", None, max_length=None)['input_ids']
|
||
|
|
||
|
return example
|
||
|
|
||
|
def predict(model, text, tokenizer=None,
|
||
|
max_gen_len=200, top_p=0.95,
|
||
|
seed=1234, topk=100,
|
||
|
temperature=0.9,
|
||
|
sft=True, convo_template = "",
|
||
|
device = "cuda",
|
||
|
model_name="AquilaChat2-7B",
|
||
|
history=None,
|
||
|
**kwargs):
|
||
|
|
||
|
vocab = tokenizer.get_vocab()
|
||
|
|
||
|
id2word = {v:k for k, v in vocab.items()}
|
||
|
|
||
|
|
||
|
template_map = {"AquilaChat2-7B": "aquila-v1",
|
||
|
"AquilaChat2-34B": "aquila-legacy",
|
||
|
"AquilaChat2-7B-16K": "aquila",
|
||
|
"AquilaChat2-34B-16K": "aquila"}
|
||
|
if not convo_template:
|
||
|
convo_template=template_map.get(model_name, "aquila-chat")
|
||
|
|
||
|
set_random_seed(seed)
|
||
|
if temperature == 0:
|
||
|
topk = 1
|
||
|
temperature = 1.0
|
||
|
if sft:
|
||
|
tokens = covert_prompt_to_input_ids_with_history(text, history=history, tokenizer=tokenizer, max_token=2048, convo_template=convo_template)
|
||
|
tokens = torch.tensor(tokens)[None,].to(device)
|
||
|
else :
|
||
|
tokens = tokenizer.encode_plus(text)["input_ids"]
|
||
|
print(tokenizer.decode(tokens))
|
||
|
tokens = torch.tensor(tokens)[None,].to(device)
|
||
|
input_length = len(tokens[0])
|
||
|
with torch.no_grad():
|
||
|
|
||
|
# instantiate logits processors
|
||
|
logits_processor = LogitsProcessorList(
|
||
|
[
|
||
|
MinLengthLogitsProcessor(1, eos_token_id=100007),
|
||
|
]
|
||
|
)
|
||
|
# instantiate logits processors
|
||
|
logits_warper = LogitsProcessorList(
|
||
|
[
|
||
|
TopPLogitsWarper(top_p),
|
||
|
TopKLogitsWarper(topk),
|
||
|
TemperatureLogitsWarper(temperature),
|
||
|
|
||
|
]
|
||
|
)
|
||
|
|
||
|
stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=input_length + max_gen_len)])
|
||
|
out = model.sample(
|
||
|
tokens,
|
||
|
logits_processor=logits_processor,
|
||
|
logits_warper=logits_warper,
|
||
|
stopping_criteria=stopping_criteria,
|
||
|
return_dict_in_generate=True,
|
||
|
output_scores=True,
|
||
|
)
|
||
|
|
||
|
|
||
|
# print(out)
|
||
|
out_ids = out["sequences"][0][input_length:].cpu().numpy()
|
||
|
|
||
|
out_scores = out["scores"]
|
||
|
|
||
|
out_scores = torch.cat(out_scores, dim=0)
|
||
|
out_scores = torch.nn.functional.softmax(out_scores, dim=-1).cpu().numpy()
|
||
|
|
||
|
probs = []
|
||
|
for i in range(len(out_ids)):
|
||
|
probs.append(float(out_scores[i][out_ids[i]]))
|
||
|
|
||
|
# print(f"probs is {probs}")
|
||
|
|
||
|
convert_tokens = []
|
||
|
for t in out_ids:
|
||
|
if t == 100006:
|
||
|
convert_tokens.append("[CLS]")
|
||
|
else :
|
||
|
convert_tokens.append(id2word.get(t, "[unkonwn_token]"))
|
||
|
|
||
|
out_text = tokenizer.decode(out_ids.tolist())
|
||
|
|
||
|
|
||
|
out = out_text
|
||
|
|
||
|
if "[UNK]" in out:
|
||
|
special_index = out.index("[UNK]")
|
||
|
out = out[:special_index]
|
||
|
token_length = len(tokenizer.encode_plus(out)["input_ids"])
|
||
|
convert_tokens = convert_tokens[:token_length]
|
||
|
probs = probs[:token_length]
|
||
|
|
||
|
if "</s>" in out:
|
||
|
special_index = out.index("</s>")
|
||
|
out = out[: special_index]
|
||
|
token_length = len(tokenizer.encode_plus(out)["input_ids"])
|
||
|
convert_tokens = convert_tokens[:token_length]
|
||
|
probs = probs[:token_length]
|
||
|
|
||
|
if len(out) > 0 and out[0] == " ":
|
||
|
out = out[1:]
|
||
|
|
||
|
convert_tokens = convert_tokens[1:]
|
||
|
probs = probs[1:]
|
||
|
|
||
|
if isinstance(history, list):
|
||
|
# Update history
|
||
|
history.insert(0, ('ASSISTANT', out))
|
||
|
history.insert(0, ('USER', text))
|
||
|
|
||
|
return out
|