68 lines
2.1 KiB
Markdown
68 lines
2.1 KiB
Markdown
---
|
|
frameworks:
|
|
- Pytorch
|
|
license: Apache License 2.0
|
|
tasks:
|
|
- document-understanding
|
|
---
|
|
|
|
# mPLUG-DocOwl2
|
|
|
|
## Introduction
|
|
mPLUG-DocOwl2 is a state-of-the-art Multimodal LLM for OCR-free Multi-page Document Understanding.
|
|
|
|
Through a compressing module named High-resolution DocCompressor, each page is encoded with just 324 tokens.
|
|
|
|
|
|
Github: [mPLUG-DocOwl](https://github.com/X-PLUG/mPLUG-DocOwl)
|
|
|
|
SDK下载
|
|
```bash
|
|
#安装ModelScope
|
|
pip install modelscope
|
|
```
|
|
```python
|
|
#SDK模型下载
|
|
from modelscope import snapshot_download
|
|
model_dir = snapshot_download('iic/DocOwl2')
|
|
```
|
|
Git下载
|
|
```
|
|
#Git模型下载
|
|
git clone https://www.modelscope.cn/iic/DocOwl2.git
|
|
```
|
|
|
|
|
|
|
|
## Quickstart
|
|
|
|
|
|
```python
|
|
import torch
|
|
import os
|
|
from modelscope import AutoTokenizer, AutoModel
|
|
from icecream import ic
|
|
import time
|
|
class DocOwlInfer():
|
|
def __init__(self, ckpt_path):
|
|
self.tokenizer = AutoTokenizer.from_pretrained(ckpt_path, use_fast=False)
|
|
self.model = AutoModel.from_pretrained(ckpt_path, trust_remote_code=True, low_cpu_mem_usage=True, torch_dtype=torch.float16, device_map='auto')
|
|
self.model.init_processor(tokenizer=self.tokenizer, basic_image_size=504, crop_anchors='grid_12')
|
|
|
|
def inference(self, images, query):
|
|
messages = [{'role': 'USER', 'content': '<|image|>'*len(images)+query}]
|
|
answer = self.model.chat(messages=messages, images=images, tokenizer=self.tokenizer)
|
|
return answer
|
|
docowl = DocOwlInfer(ckpt_path='$your_model_local_dir')
|
|
images = [
|
|
'$your_model_local_dir'+'/examples/docowl2_page0.png',
|
|
'$your_model_local_dir'+'/examples/docowl2_page1.png',
|
|
'$your_model_local_dir'+'/examples/docowl2_page2.png',
|
|
'$your_model_local_dir'+'/examples/docowl2_page3.png',
|
|
'$your_model_local_dir'+'/examples/docowl2_page4.png',
|
|
'$your_model_local_dir'+'/examples/docowl2_page5.png',
|
|
]
|
|
answer = docowl.inference(images, query='what is this paper about? provide detailed information.')
|
|
answer = docowl.inference(images, query='what is the third page about? provide detailed information.')
|
|
```
|