first commit
This commit is contained in:
parent
715a1c61d5
commit
3d7978286f
112
README.md
112
README.md
|
@ -1,3 +1,111 @@
|
|||
# GOT-OCR2_0_a13446664330014720201572
|
||||
---
|
||||
pipeline_tag: image-text-to-text
|
||||
library_name: transformers
|
||||
language:
|
||||
- multilingual
|
||||
tags:
|
||||
- got
|
||||
- vision-language
|
||||
- ocr2.0
|
||||
- custom_code
|
||||
license: apache-2.0
|
||||
studios:
|
||||
- stepfun-ai/GOT_official_online_demo
|
||||
---
|
||||
|
||||
General OCR Theory: Towards OCR-2.0 via a Unified End-to-end Model
|
||||
<h1>General OCR Theory: Towards OCR-2.0 via a Unified End-to-end Model
|
||||
</h1>
|
||||
|
||||
[🔋Online Demo](https://modelscope.cn/studios/stepfun-ai/GOT_official_online_demo) | [🌟GitHub](https://github.com/Ucas-HaoranWei/GOT-OCR2.0/) | [📜Paper](https://arxiv.org/abs/2409.01704)</a>
|
||||
|
||||
|
||||
[Haoran Wei*](https://scholar.google.com/citations?user=J4naK0MAAAAJ&hl=en), Chenglong Liu*, Jinyue Chen, Jia Wang, Lingyu Kong, Yanming Xu, [Zheng Ge](https://joker316701882.github.io/), Liang Zhao, [Jianjian Sun](https://scholar.google.com/citations?user=MVZrGkYAAAAJ&hl=en), [Yuang Peng](https://scholar.google.com.hk/citations?user=J0ko04IAAAAJ&hl=zh-CN&oi=ao), Chunrui Han, [Xiangyu Zhang](https://scholar.google.com/citations?user=yuB-cfoAAAAJ&hl=en)
|
||||
|
||||
|
||||
|
||||
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6653eee7a2d7a882a805ab95/QCEFY-M_YG3Bp5fn1GQ8X.jpeg)
|
||||
|
||||
|
||||
|
||||
## Usage
|
||||
Inference using Huggingface transformers on NVIDIA GPUs. Requirements tested on python 3.10:
|
||||
```
|
||||
torch==2.0.1
|
||||
torchvision==0.15.2
|
||||
transformers==4.37.2
|
||||
tiktoken==0.6.0
|
||||
verovio==4.3.1
|
||||
accelerate==0.28.0
|
||||
```
|
||||
|
||||
|
||||
```python
|
||||
from modelscope import AutoModel, AutoTokenizer
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained('stepfun-ai/GOT-OCR2_0', trust_remote_code=True)
|
||||
model = AutoModel.from_pretrained('stepfun-ai/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
|
||||
model = model.eval().cuda()
|
||||
|
||||
|
||||
# input your test image
|
||||
image_file = '/mnt/workspace/58F3EF14-E073-4BBE-B9D9-53CCFE6AE183.png'
|
||||
|
||||
# plain texts OCR
|
||||
res = model.chat(tokenizer, image_file, ocr_type='ocr')
|
||||
|
||||
# format texts OCR:
|
||||
# res = model.chat(tokenizer, image_file, ocr_type='format')
|
||||
|
||||
# fine-grained OCR:
|
||||
# res = model.chat(tokenizer, image_file, ocr_type='ocr', ocr_box='')
|
||||
# res = model.chat(tokenizer, image_file, ocr_type='format', ocr_box='')
|
||||
# res = model.chat(tokenizer, image_file, ocr_type='ocr', ocr_color='')
|
||||
# res = model.chat(tokenizer, image_file, ocr_type='format', ocr_color='')
|
||||
|
||||
# multi-crop OCR:
|
||||
# res = model.chat_crop(tokenizer, image_file, ocr_type='ocr')
|
||||
# res = model.chat_crop(tokenizer, image_file, ocr_type='format')
|
||||
|
||||
# render the formatted OCR results:
|
||||
# res = model.chat(tokenizer, image_file, ocr_type='format', render=True, save_render_file = './demo.html')
|
||||
|
||||
print(res)
|
||||
|
||||
|
||||
|
||||
```
|
||||
More details about 'ocr_type', 'ocr_box', 'ocr_color', and 'render' can be found at our GitHub.
|
||||
Our training codes are available at our [GitHub](https://github.com/Ucas-HaoranWei/GOT-OCR2.0/).
|
||||
|
||||
|
||||
|
||||
## More Multimodal Projects
|
||||
|
||||
👏 Welcome to explore more multimodal projects of our team:
|
||||
|
||||
[Vary](https://github.com/Ucas-HaoranWei/Vary) | [Fox](https://github.com/ucaslcl/Fox) | [OneChart](https://github.com/LingyvKong/OneChart)
|
||||
|
||||
## Citation
|
||||
|
||||
If you find our work helpful, please consider citing our papers 📝 and liking this project ❤️!
|
||||
|
||||
```bib
|
||||
@article{wei2024general,
|
||||
title={General OCR Theory: Towards OCR-2.0 via a Unified End-to-end Model},
|
||||
author={Wei, Haoran and Liu, Chenglong and Chen, Jinyue and Wang, Jia and Kong, Lingyu and Xu, Yanming and Ge, Zheng and Zhao, Liang and Sun, Jianjian and Peng, Yuang and others},
|
||||
journal={arXiv preprint arXiv:2409.01704},
|
||||
year={2024}
|
||||
}
|
||||
@article{liu2024focus,
|
||||
title={Focus Anywhere for Fine-grained Multi-page Document Understanding},
|
||||
author={Liu, Chenglong and Wei, Haoran and Chen, Jinyue and Kong, Lingyu and Ge, Zheng and Zhu, Zining and Zhao, Liang and Sun, Jianjian and Han, Chunrui and Zhang, Xiangyu},
|
||||
journal={arXiv preprint arXiv:2405.14295},
|
||||
year={2024}
|
||||
}
|
||||
@article{wei2023vary,
|
||||
title={Vary: Scaling up the Vision Vocabulary for Large Vision-Language Models},
|
||||
author={Wei, Haoran and Kong, Lingyu and Chen, Jinyue and Zhao, Liang and Ge, Zheng and Yang, Jinrong and Sun, Jianjian and Han, Chunrui and Zhang, Xiangyu},
|
||||
journal={arXiv preprint arXiv:2312.06109},
|
||||
year={2023}
|
||||
}
|
||||
```
|
|
@ -0,0 +1,38 @@
|
|||
{
|
||||
"_name_or_path": "ucaslcl/GOT-OCR2_0",
|
||||
"architectures": [
|
||||
"GOTQwenForCausalLM"
|
||||
],
|
||||
"auto_map": {
|
||||
"AutoConfig": "modeling_GOT.GOTConfig",
|
||||
"AutoModel": "modeling_GOT.GOTQwenForCausalLM"
|
||||
},
|
||||
"attention_dropout": 0.0,
|
||||
"bos_token_id": 151643,
|
||||
"eos_token_id": 151643,
|
||||
"freeze_vision_tower": false,
|
||||
"hidden_act": "silu",
|
||||
"hidden_size": 1024,
|
||||
"im_end_token": 151858,
|
||||
"im_patch_token": 151859,
|
||||
"im_start_token": 151857,
|
||||
"image_token_len": 256,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 2816,
|
||||
"max_position_embeddings": 32768,
|
||||
"max_window_layers": 21,
|
||||
"model_type": "GOT",
|
||||
"num_attention_heads": 16,
|
||||
"num_hidden_layers": 24,
|
||||
"num_key_value_heads": 16,
|
||||
"rms_norm_eps": 1e-06,
|
||||
"rope_theta": 1000000.0,
|
||||
"sliding_window": 32768,
|
||||
"tie_word_embeddings": true,
|
||||
"torch_dtype": "bfloat16",
|
||||
"transformers_version": "4.37.2",
|
||||
"use_cache": true,
|
||||
"use_im_start_end": true,
|
||||
"use_sliding_window": false,
|
||||
"vocab_size": 151860
|
||||
}
|
|
@ -0,0 +1 @@
|
|||
{}
|
|
@ -0,0 +1,6 @@
|
|||
{
|
||||
"bos_token_id": 151643,
|
||||
"eos_token_id": 151643,
|
||||
"max_new_tokens": 2048,
|
||||
"transformers_version": "4.37.2"
|
||||
}
|
|
@ -0,0 +1,468 @@
|
|||
import torch
|
||||
import torch.nn.functional as F
|
||||
from typing import Optional, Tuple, Type
|
||||
from functools import partial
|
||||
import torch.nn as nn
|
||||
from typing import Type
|
||||
|
||||
|
||||
|
||||
class MLPBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
embedding_dim: int,
|
||||
mlp_dim: int,
|
||||
act: Type[nn.Module] = nn.GELU,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.lin1 = nn.Linear(embedding_dim, mlp_dim)
|
||||
self.lin2 = nn.Linear(mlp_dim, embedding_dim)
|
||||
self.act = act()
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
return self.lin2(self.act(self.lin1(x)))
|
||||
|
||||
|
||||
|
||||
class LayerNorm2d(nn.Module):
|
||||
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
|
||||
super().__init__()
|
||||
self.weight = nn.Parameter(torch.ones(num_channels))
|
||||
self.bias = nn.Parameter(torch.zeros(num_channels))
|
||||
self.eps = eps
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
u = x.mean(1, keepdim=True)
|
||||
s = (x - u).pow(2).mean(1, keepdim=True)
|
||||
x = (x - u) / torch.sqrt(s + self.eps)
|
||||
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
||||
return x
|
||||
|
||||
|
||||
|
||||
class ImageEncoderViT(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
img_size: int = 1024,
|
||||
patch_size: int = 16,
|
||||
in_chans: int = 3,
|
||||
embed_dim: int = 768,
|
||||
depth: int = 12,
|
||||
num_heads: int = 12,
|
||||
mlp_ratio: float = 4.0,
|
||||
out_chans: int = 256,
|
||||
qkv_bias: bool = True,
|
||||
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
||||
act_layer: Type[nn.Module] = nn.GELU,
|
||||
use_abs_pos: bool = True,
|
||||
use_rel_pos: bool = False,
|
||||
rel_pos_zero_init: bool = True,
|
||||
window_size: int = 0,
|
||||
global_attn_indexes: Tuple[int, ...] = (),
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
img_size (int): Input image size.
|
||||
patch_size (int): Patch size.
|
||||
in_chans (int): Number of input image channels.
|
||||
embed_dim (int): Patch embedding dimension.
|
||||
depth (int): Depth of ViT.
|
||||
num_heads (int): Number of attention heads in each ViT block.
|
||||
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
||||
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
||||
norm_layer (nn.Module): Normalization layer.
|
||||
act_layer (nn.Module): Activation layer.
|
||||
use_abs_pos (bool): If True, use absolute positional embeddings.
|
||||
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
||||
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
||||
window_size (int): Window size for window attention blocks.
|
||||
global_attn_indexes (list): Indexes for blocks using global attention.
|
||||
"""
|
||||
super().__init__()
|
||||
self.img_size = img_size
|
||||
|
||||
self.patch_embed = PatchEmbed(
|
||||
kernel_size=(patch_size, patch_size),
|
||||
stride=(patch_size, patch_size),
|
||||
in_chans=in_chans,
|
||||
embed_dim=embed_dim,
|
||||
)
|
||||
|
||||
self.pos_embed: Optional[nn.Parameter] = None
|
||||
if use_abs_pos:
|
||||
# Initialize absolute positional embedding with pretrain image size.
|
||||
self.pos_embed = nn.Parameter(
|
||||
torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim)
|
||||
)
|
||||
|
||||
self.blocks = nn.ModuleList()
|
||||
for i in range(depth):
|
||||
block = Block(
|
||||
dim=embed_dim,
|
||||
num_heads=num_heads,
|
||||
mlp_ratio=mlp_ratio,
|
||||
qkv_bias=qkv_bias,
|
||||
norm_layer=norm_layer,
|
||||
act_layer=act_layer,
|
||||
use_rel_pos=use_rel_pos,
|
||||
rel_pos_zero_init=rel_pos_zero_init,
|
||||
window_size=window_size if i not in global_attn_indexes else 0,
|
||||
input_size=(img_size // patch_size, img_size // patch_size),
|
||||
)
|
||||
self.blocks.append(block)
|
||||
|
||||
self.neck = nn.Sequential(
|
||||
nn.Conv2d(
|
||||
embed_dim,
|
||||
out_chans,
|
||||
kernel_size=1,
|
||||
bias=False,
|
||||
),
|
||||
LayerNorm2d(out_chans),
|
||||
nn.Conv2d(
|
||||
out_chans,
|
||||
out_chans,
|
||||
kernel_size=3,
|
||||
padding=1,
|
||||
bias=False,
|
||||
),
|
||||
LayerNorm2d(out_chans),
|
||||
)
|
||||
|
||||
|
||||
self.net_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False)
|
||||
self.net_3 = nn.Conv2d(512, 1024, kernel_size=3, stride=2, padding=1, bias=False)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x = self.patch_embed(x)
|
||||
if self.pos_embed is not None:
|
||||
x = x + self.pos_embed
|
||||
|
||||
for blk in self.blocks:
|
||||
x = blk(x)
|
||||
|
||||
x = self.neck(x.permute(0, 3, 1, 2))
|
||||
x = self.net_2(x)
|
||||
x = self.net_3(x)
|
||||
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class Block(nn.Module):
|
||||
"""Transformer blocks with support of window attention and residual propagation blocks"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
num_heads: int,
|
||||
mlp_ratio: float = 4.0,
|
||||
qkv_bias: bool = True,
|
||||
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
||||
act_layer: Type[nn.Module] = nn.GELU,
|
||||
use_rel_pos: bool = False,
|
||||
rel_pos_zero_init: bool = True,
|
||||
window_size: int = 0,
|
||||
input_size: Optional[Tuple[int, int]] = None,
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
dim (int): Number of input channels.
|
||||
num_heads (int): Number of attention heads in each ViT block.
|
||||
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
||||
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
||||
norm_layer (nn.Module): Normalization layer.
|
||||
act_layer (nn.Module): Activation layer.
|
||||
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
||||
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
||||
window_size (int): Window size for window attention blocks. If it equals 0, then
|
||||
use global attention.
|
||||
input_size (tuple(int, int) or None): Input resolution for calculating the relative
|
||||
positional parameter size.
|
||||
"""
|
||||
super().__init__()
|
||||
self.norm1 = norm_layer(dim)
|
||||
self.attn = Attention(
|
||||
dim,
|
||||
num_heads=num_heads,
|
||||
qkv_bias=qkv_bias,
|
||||
use_rel_pos=use_rel_pos,
|
||||
rel_pos_zero_init=rel_pos_zero_init,
|
||||
input_size=input_size if window_size == 0 else (window_size, window_size),
|
||||
)
|
||||
|
||||
self.norm2 = norm_layer(dim)
|
||||
self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer)
|
||||
|
||||
self.window_size = window_size
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
shortcut = x
|
||||
x = self.norm1(x)
|
||||
# Window partition
|
||||
if self.window_size > 0:
|
||||
H, W = x.shape[1], x.shape[2]
|
||||
x, pad_hw = window_partition(x, self.window_size)
|
||||
|
||||
x = self.attn(x)
|
||||
# Reverse window partition
|
||||
if self.window_size > 0:
|
||||
x = window_unpartition(x, self.window_size, pad_hw, (H, W))
|
||||
|
||||
x = shortcut + x
|
||||
x = x + self.mlp(self.norm2(x))
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
"""Multi-head Attention block with relative position embeddings."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
num_heads: int = 8,
|
||||
qkv_bias: bool = True,
|
||||
use_rel_pos: bool = False,
|
||||
rel_pos_zero_init: bool = True,
|
||||
input_size: Optional[Tuple[int, int]] = None,
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
dim (int): Number of input channels.
|
||||
num_heads (int): Number of attention heads.
|
||||
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
||||
rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
||||
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
||||
input_size (tuple(int, int) or None): Input resolution for calculating the relative
|
||||
positional parameter size.
|
||||
"""
|
||||
super().__init__()
|
||||
self.num_heads = num_heads
|
||||
head_dim = dim // num_heads
|
||||
self.scale = head_dim**-0.5
|
||||
|
||||
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
||||
self.proj = nn.Linear(dim, dim)
|
||||
|
||||
self.use_rel_pos = use_rel_pos
|
||||
if self.use_rel_pos:
|
||||
assert (
|
||||
input_size is not None
|
||||
), "Input size must be provided if using relative positional encoding."
|
||||
# initialize relative positional embeddings
|
||||
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
|
||||
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
B, H, W, _ = x.shape
|
||||
# qkv with shape (3, B, nHead, H * W, C)
|
||||
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
# q, k, v with shape (B * nHead, H * W, C)
|
||||
q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
|
||||
|
||||
attn = (q * self.scale) @ k.transpose(-2, -1)
|
||||
|
||||
if self.use_rel_pos:
|
||||
attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))
|
||||
|
||||
attn = attn.softmax(dim=-1)
|
||||
x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
|
||||
x = self.proj(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
|
||||
"""
|
||||
Partition into non-overlapping windows with padding if needed.
|
||||
Args:
|
||||
x (tensor): input tokens with [B, H, W, C].
|
||||
window_size (int): window size.
|
||||
|
||||
Returns:
|
||||
windows: windows after partition with [B * num_windows, window_size, window_size, C].
|
||||
(Hp, Wp): padded height and width before partition
|
||||
"""
|
||||
B, H, W, C = x.shape
|
||||
|
||||
pad_h = (window_size - H % window_size) % window_size
|
||||
pad_w = (window_size - W % window_size) % window_size
|
||||
if pad_h > 0 or pad_w > 0:
|
||||
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
|
||||
Hp, Wp = H + pad_h, W + pad_w
|
||||
|
||||
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
|
||||
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
||||
return windows, (Hp, Wp)
|
||||
|
||||
|
||||
def window_unpartition(
|
||||
windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int]
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Window unpartition into original sequences and removing padding.
|
||||
Args:
|
||||
windows (tensor): input tokens with [B * num_windows, window_size, window_size, C].
|
||||
window_size (int): window size.
|
||||
pad_hw (Tuple): padded height and width (Hp, Wp).
|
||||
hw (Tuple): original height and width (H, W) before padding.
|
||||
|
||||
Returns:
|
||||
x: unpartitioned sequences with [B, H, W, C].
|
||||
"""
|
||||
Hp, Wp = pad_hw
|
||||
H, W = hw
|
||||
B = windows.shape[0] // (Hp * Wp // window_size // window_size)
|
||||
x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
|
||||
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
|
||||
|
||||
if Hp > H or Wp > W:
|
||||
x = x[:, :H, :W, :].contiguous()
|
||||
return x
|
||||
|
||||
|
||||
def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Get relative positional embeddings according to the relative positions of
|
||||
query and key sizes.
|
||||
Args:
|
||||
q_size (int): size of query q.
|
||||
k_size (int): size of key k.
|
||||
rel_pos (Tensor): relative position embeddings (L, C).
|
||||
|
||||
Returns:
|
||||
Extracted positional embeddings according to relative positions.
|
||||
"""
|
||||
max_rel_dist = int(2 * max(q_size, k_size) - 1)
|
||||
# Interpolate rel pos if needed.
|
||||
if rel_pos.shape[0] != max_rel_dist:
|
||||
# Interpolate rel pos.
|
||||
rel_pos_resized = F.interpolate(
|
||||
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
|
||||
size=max_rel_dist,
|
||||
mode="linear",
|
||||
)
|
||||
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
|
||||
else:
|
||||
rel_pos_resized = rel_pos
|
||||
|
||||
# Scale the coords with short length if shapes for q and k are different.
|
||||
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
|
||||
k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
|
||||
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
|
||||
|
||||
return rel_pos_resized[relative_coords.long()]
|
||||
|
||||
|
||||
def add_decomposed_rel_pos(
|
||||
attn: torch.Tensor,
|
||||
q: torch.Tensor,
|
||||
rel_pos_h: torch.Tensor,
|
||||
rel_pos_w: torch.Tensor,
|
||||
q_size: Tuple[int, int],
|
||||
k_size: Tuple[int, int],
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
attn (Tensor): attention map.
|
||||
q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
|
||||
rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
|
||||
rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
|
||||
q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
|
||||
k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
|
||||
|
||||
Returns:
|
||||
attn (Tensor): attention map with added relative positional embeddings.
|
||||
"""
|
||||
q_h, q_w = q_size
|
||||
k_h, k_w = k_size
|
||||
Rh = get_rel_pos(q_h, k_h, rel_pos_h)
|
||||
Rw = get_rel_pos(q_w, k_w, rel_pos_w)
|
||||
|
||||
B, _, dim = q.shape
|
||||
r_q = q.reshape(B, q_h, q_w, dim)
|
||||
rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
|
||||
rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
|
||||
|
||||
attn = (
|
||||
attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]
|
||||
).view(B, q_h * q_w, k_h * k_w)
|
||||
|
||||
return attn
|
||||
|
||||
|
||||
class PatchEmbed(nn.Module):
|
||||
"""
|
||||
Image to Patch Embedding.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
kernel_size: Tuple[int, int] = (16, 16),
|
||||
stride: Tuple[int, int] = (16, 16),
|
||||
padding: Tuple[int, int] = (0, 0),
|
||||
in_chans: int = 3,
|
||||
embed_dim: int = 768,
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
kernel_size (Tuple): kernel size of the projection layer.
|
||||
stride (Tuple): stride of the projection layer.
|
||||
padding (Tuple): padding size of the projection layer.
|
||||
in_chans (int): Number of input image channels.
|
||||
embed_dim (int): Patch embedding dimension.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.proj = nn.Conv2d(
|
||||
in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x = self.proj(x)
|
||||
# B C H W -> B H W C
|
||||
x = x.permute(0, 2, 3, 1)
|
||||
return x
|
||||
|
||||
|
||||
|
||||
def build_GOT_vit_b(checkpoint=None):
|
||||
return _build_GOT_vision(
|
||||
encoder_embed_dim=768,
|
||||
encoder_depth=12,
|
||||
encoder_num_heads=12,
|
||||
encoder_global_attn_indexes=[2, 5, 8, 11],
|
||||
checkpoint=checkpoint,
|
||||
)
|
||||
|
||||
|
||||
def _build_GOT_vision(
|
||||
encoder_embed_dim,
|
||||
encoder_depth,
|
||||
encoder_num_heads,
|
||||
encoder_global_attn_indexes,
|
||||
checkpoint=None,
|
||||
):
|
||||
prompt_embed_dim = 256
|
||||
image_size = 1024
|
||||
vit_patch_size = 16
|
||||
image_embedding_size = image_size // vit_patch_size
|
||||
image_encoder=ImageEncoderViT(
|
||||
depth=encoder_depth,
|
||||
embed_dim=encoder_embed_dim,
|
||||
img_size=image_size,
|
||||
mlp_ratio=4,
|
||||
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
|
||||
num_heads=encoder_num_heads,
|
||||
patch_size=vit_patch_size,
|
||||
qkv_bias=True,
|
||||
use_rel_pos=True,
|
||||
global_attn_indexes=encoder_global_attn_indexes,
|
||||
window_size=14,
|
||||
out_chans=prompt_embed_dim,
|
||||
)
|
||||
|
||||
|
||||
return image_encoder
|
||||
|
Binary file not shown.
|
@ -0,0 +1,881 @@
|
|||
from transformers import Qwen2Config, Qwen2Model, Qwen2ForCausalLM, StoppingCriteria, TextStreamer
|
||||
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
||||
from typing import List, Optional, Tuple, Union
|
||||
from transformers.cache_utils import Cache
|
||||
import requests
|
||||
from PIL import Image
|
||||
from io import BytesIO
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.nn import CrossEntropyLoss
|
||||
from .got_vision_b import build_GOT_vit_b
|
||||
from torchvision import transforms
|
||||
from torchvision.transforms.functional import InterpolationMode
|
||||
import dataclasses
|
||||
###
|
||||
|
||||
DEFAULT_IMAGE_TOKEN = "<image>"
|
||||
DEFAULT_IMAGE_PATCH_TOKEN = '<imgpad>'
|
||||
DEFAULT_IM_START_TOKEN = '<img>'
|
||||
DEFAULT_IM_END_TOKEN = '</img>'
|
||||
|
||||
from enum import auto, Enum
|
||||
class SeparatorStyle(Enum):
|
||||
"""Different separator style."""
|
||||
SINGLE = auto()
|
||||
TWO = auto()
|
||||
MPT = auto()
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class Conversation:
|
||||
"""A class that keeps all conversation history."""
|
||||
system: str
|
||||
roles: List[str]
|
||||
messages: List[List[str]]
|
||||
offset: int
|
||||
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
|
||||
sep: str = "<|im_end|>"
|
||||
sep2: str = None
|
||||
version: str = "Unknown"
|
||||
|
||||
skip_next: bool = False
|
||||
|
||||
def get_prompt(self):
|
||||
if self.sep_style == SeparatorStyle.SINGLE:
|
||||
ret = self.system + self.sep + '\n'
|
||||
for role, message in self.messages:
|
||||
if message:
|
||||
if type(message) is tuple:
|
||||
message, _, _ = message
|
||||
ret += role + ": " + message + self.sep
|
||||
else:
|
||||
ret += role + ":"
|
||||
return ret
|
||||
elif self.sep_style == SeparatorStyle.TWO:
|
||||
seps = [self.sep, self.sep2]
|
||||
ret = self.system + seps[0]
|
||||
for i, (role, message) in enumerate(self.messages):
|
||||
if message:
|
||||
if type(message) is tuple:
|
||||
message, _, _ = message
|
||||
ret += role + ": " + message + seps[i % 2]
|
||||
else:
|
||||
ret += role + ":"
|
||||
return ret
|
||||
if self.sep_style == SeparatorStyle.MPT:
|
||||
if self.system:
|
||||
ret = self.system + self.sep
|
||||
else:
|
||||
ret = ''
|
||||
for role, message in self.messages:
|
||||
if message:
|
||||
if type(message) is tuple:
|
||||
message, _, _ = message
|
||||
ret += role + message + self.sep
|
||||
else:
|
||||
ret += role
|
||||
return ret
|
||||
else:
|
||||
raise ValueError(f"Invalid style: {self.sep_style}")
|
||||
|
||||
|
||||
def append_message(self, role, message):
|
||||
self.messages.append([role, message])
|
||||
|
||||
def copy(self):
|
||||
return Conversation(
|
||||
system=self.system,
|
||||
roles=self.roles,
|
||||
messages=[[x, y] for x, y in self.messages],
|
||||
offset=self.offset,
|
||||
sep_style=self.sep_style,
|
||||
sep=self.sep,
|
||||
sep2=self.sep2)
|
||||
|
||||
|
||||
|
||||
class KeywordsStoppingCriteria(StoppingCriteria):
|
||||
def __init__(self, keywords, tokenizer, input_ids):
|
||||
self.keywords = keywords
|
||||
self.keyword_ids = [tokenizer(keyword).input_ids for keyword in keywords]
|
||||
self.keyword_ids = [keyword_id[0] for keyword_id in self.keyword_ids if type(keyword_id) is list and len(keyword_id) == 1]
|
||||
self.tokenizer = tokenizer
|
||||
self.start_len = None
|
||||
self.input_ids = input_ids
|
||||
|
||||
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
||||
if self.start_len is None:
|
||||
self.start_len = self.input_ids.shape[1]
|
||||
else:
|
||||
for keyword_id in self.keyword_ids:
|
||||
if output_ids[0, -1] == keyword_id:
|
||||
return True
|
||||
outputs = self.tokenizer.batch_decode(output_ids[:, self.start_len:], skip_special_tokens=True)[0]
|
||||
for keyword in self.keywords:
|
||||
if keyword in outputs:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
class GOTImageEvalProcessor:
|
||||
def __init__(self, image_size=384, mean=None, std=None):
|
||||
if mean is None:
|
||||
mean = (0.48145466, 0.4578275, 0.40821073)
|
||||
if std is None:
|
||||
std = (0.26862954, 0.26130258, 0.27577711)
|
||||
|
||||
self.normalize = transforms.Normalize(mean, std)
|
||||
|
||||
self.transform = transforms.Compose(
|
||||
[
|
||||
transforms.Resize(
|
||||
(image_size, image_size), interpolation=InterpolationMode.BICUBIC
|
||||
),
|
||||
transforms.ToTensor(),
|
||||
self.normalize,
|
||||
]
|
||||
)
|
||||
def __call__(self, item):
|
||||
return self.transform(item)
|
||||
|
||||
|
||||
|
||||
class GOTConfig(Qwen2Config):
|
||||
model_type = "GOT"
|
||||
|
||||
|
||||
class GOTQwenModel(Qwen2Model):
|
||||
config_class = GOTConfig
|
||||
|
||||
def __init__(self, config: Qwen2Config):
|
||||
super(GOTQwenModel, self).__init__(config)
|
||||
|
||||
self.vision_tower_high = build_GOT_vit_b()
|
||||
|
||||
self.mm_projector_vary = nn.Linear(1024, 1024)
|
||||
|
||||
|
||||
def initialize_vision_modules(
|
||||
self,
|
||||
vision_tower,
|
||||
pretrained_stage1_model=None,
|
||||
freeze_vision_tower=False,
|
||||
use_im_start_end=False,
|
||||
vision_select_layer=-1,
|
||||
dtype=torch.float16,
|
||||
device="cuda"
|
||||
):
|
||||
|
||||
|
||||
image_processor_high = GOTImageEvalProcessor(image_size=1024)
|
||||
|
||||
self.vision_tower_high = self.vision_tower_high.to(dtype=dtype, device=device)
|
||||
|
||||
self.mm_projector_vary = self.mm_projector_vary.to(dtype=dtype, device=device)
|
||||
|
||||
|
||||
image_token_len = 256
|
||||
|
||||
self.config.vision_tower = vision_tower
|
||||
self.config.image_token_len = image_token_len
|
||||
|
||||
self.config.use_im_start_end = True
|
||||
|
||||
self.config.vision_select_layer = vision_select_layer
|
||||
self.config.freeze_vision_tower = freeze_vision_tower
|
||||
|
||||
return dict(
|
||||
image_processor_high=image_processor_high,
|
||||
image_token_len=image_token_len,
|
||||
)
|
||||
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
images: Optional[torch.FloatTensor] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||
|
||||
# HACK: replace back original embeddings for LLaVA pretraining
|
||||
orig_embeds_params = getattr(self, 'orig_embeds_params', None)
|
||||
if orig_embeds_params is not None:
|
||||
with torch.no_grad():
|
||||
self.get_input_embeddings().weight[:-self.num_new_tokens] = orig_embeds_params[:-self.num_new_tokens].data
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.embed_tokens(input_ids)
|
||||
|
||||
|
||||
vision_tower_high = getattr(self, 'vision_tower_high', None)
|
||||
|
||||
|
||||
if vision_tower_high is not None and (input_ids.shape[1] != 1 or self.training) and images is not None:
|
||||
use_im_start_end = getattr(self.config, "use_im_start_end", -1)
|
||||
|
||||
vision_select_layer = getattr(self.config, "vision_select_layer", -1)
|
||||
im_patch_token = getattr(self.config, "im_patch_token", -1)
|
||||
im_start_token = getattr(self.config, "im_start_token", -1)
|
||||
im_end_token = getattr(self.config, "im_end_token", -1)
|
||||
freeze_vision_tower = getattr(self.config, "freeze_vision_tower", False)
|
||||
|
||||
im_patch_token = 151859
|
||||
|
||||
im_start_token = 151857
|
||||
|
||||
im_end_token = 151858
|
||||
|
||||
image_features = []
|
||||
|
||||
for image in images:
|
||||
P, C, H, W = image.shape
|
||||
if P == 1:
|
||||
with torch.set_grad_enabled(False):
|
||||
cnn_feature = vision_tower_high(image)
|
||||
cnn_feature = cnn_feature.flatten(2).permute(0, 2, 1) # 256*1024
|
||||
image_feature = self.mm_projector_vary(cnn_feature)
|
||||
image_features.append(image_feature)
|
||||
|
||||
else:
|
||||
image_patches = torch.unbind(image)
|
||||
image_patches_features = []
|
||||
for image_patch in image_patches:
|
||||
image_p = torch.stack([image_patch])
|
||||
|
||||
with torch.set_grad_enabled(False):
|
||||
cnn_feature_p = vision_tower_high(image_p)
|
||||
cnn_feature_p = cnn_feature_p.flatten(2).permute(0, 2, 1)
|
||||
image_feature_p = self.mm_projector_vary(cnn_feature_p)
|
||||
image_patches_features.append(image_feature_p)
|
||||
image_feature = torch.cat(image_patches_features, dim=1)
|
||||
image_features.append(image_feature)
|
||||
|
||||
|
||||
dummy_image_features_2 = torch.zeros(256, 1024, device=inputs_embeds.device, dtype=inputs_embeds.dtype)
|
||||
dummy_image_features = dummy_image_features_2
|
||||
use_im_start_end = True
|
||||
new_input_embeds = []
|
||||
for cur_input_ids, cur_input_embeds, cur_image_features in zip(input_ids, inputs_embeds, image_features):
|
||||
if (cur_input_ids == im_patch_token).sum() == 0:
|
||||
cur_input_embeds = cur_input_embeds + (0. * dummy_image_features).sum()
|
||||
new_input_embeds.append(cur_input_embeds)
|
||||
continue
|
||||
|
||||
if use_im_start_end:
|
||||
if (cur_input_ids == im_start_token).sum() != (cur_input_ids == im_end_token).sum():
|
||||
raise ValueError("The number of image start tokens and image end tokens should be the same.")
|
||||
|
||||
image_start_tokens = torch.where(cur_input_ids == im_start_token)[0]
|
||||
for image_start_token_pos, per_cur_image_features in zip(image_start_tokens, cur_image_features):
|
||||
per_cur_image_features = per_cur_image_features.to(device=cur_input_embeds.device)
|
||||
num_patches = per_cur_image_features.shape[0]
|
||||
|
||||
if cur_input_ids[image_start_token_pos + num_patches + 1] != im_end_token:
|
||||
raise ValueError("The image end token should follow the image start token.")
|
||||
|
||||
cur_input_embeds = torch.cat(
|
||||
(
|
||||
cur_input_embeds[:image_start_token_pos+1],
|
||||
per_cur_image_features,
|
||||
cur_input_embeds[image_start_token_pos + num_patches + 1:]
|
||||
),
|
||||
dim=0
|
||||
)
|
||||
|
||||
|
||||
new_input_embeds.append(cur_input_embeds)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
inputs_embeds = torch.stack(new_input_embeds, dim=0)
|
||||
|
||||
return super(GOTQwenModel, self).forward(
|
||||
input_ids=None, attention_mask=attention_mask, past_key_values=past_key_values,
|
||||
inputs_embeds=inputs_embeds, use_cache=use_cache, position_ids = position_ids,
|
||||
output_attentions=output_attentions, output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict
|
||||
)
|
||||
|
||||
|
||||
|
||||
class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
||||
config_class = GOTConfig
|
||||
# supports_gradient_checkpointing = True
|
||||
|
||||
def __init__(self, config):
|
||||
super(Qwen2ForCausalLM, self).__init__(config)
|
||||
self.model = GOTQwenModel(config)
|
||||
|
||||
self.vocab_size = config.vocab_size
|
||||
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||||
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def get_model(self):
|
||||
return self.model
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
images: Optional[torch.FloatTensor] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
|
||||
) -> Union[Tuple, CausalLMOutputWithPast]:
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
outputs = self.model(
|
||||
input_ids=input_ids,
|
||||
past_key_values=past_key_values,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
inputs_embeds=inputs_embeds,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
images=images,
|
||||
return_dict=return_dict
|
||||
|
||||
)
|
||||
|
||||
hidden_states = outputs[0]
|
||||
logits = self.lm_head(hidden_states)
|
||||
logits = logits.float()
|
||||
|
||||
# logits
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
# Shift so that tokens < n predict n
|
||||
shift_logits = logits[..., :-1, :].contiguous()
|
||||
shift_labels = labels[..., 1:].contiguous()
|
||||
# Flatten the tokens
|
||||
loss_fct = CrossEntropyLoss()
|
||||
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
||||
shift_labels = shift_labels.view(-1)
|
||||
# Enable model parallelism
|
||||
shift_labels = shift_labels.to(shift_logits.device)
|
||||
loss = loss_fct(shift_logits, shift_labels)
|
||||
|
||||
if not return_dict:
|
||||
output = (logits,) + outputs[1:]
|
||||
return (loss,) + output if loss is not None else output
|
||||
|
||||
return CausalLMOutputWithPast(
|
||||
loss=loss,
|
||||
logits=logits,
|
||||
past_key_values=outputs.past_key_values,
|
||||
hidden_states=outputs.hidden_states,
|
||||
attentions=outputs.attentions,
|
||||
)
|
||||
|
||||
|
||||
def prepare_inputs_for_generation(
|
||||
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
||||
):
|
||||
# Omit tokens covered by past_key_values
|
||||
if past_key_values is not None:
|
||||
if isinstance(past_key_values, Cache):
|
||||
cache_length = past_key_values.get_seq_length()
|
||||
past_length = past_key_values.seen_tokens
|
||||
max_cache_length = past_key_values.get_max_length()
|
||||
else:
|
||||
cache_length = past_length = past_key_values[0][0].shape[2]
|
||||
max_cache_length = None
|
||||
|
||||
# Keep only the unprocessed tokens:
|
||||
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
||||
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
||||
# input)
|
||||
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
||||
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
||||
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
||||
# input_ids based on the past_length.
|
||||
elif past_length < input_ids.shape[1]:
|
||||
input_ids = input_ids[:, past_length:]
|
||||
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
||||
|
||||
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
||||
if (
|
||||
max_cache_length is not None
|
||||
and attention_mask is not None
|
||||
and cache_length + input_ids.shape[1] > max_cache_length
|
||||
):
|
||||
attention_mask = attention_mask[:, -max_cache_length:]
|
||||
|
||||
position_ids = kwargs.get("position_ids", None)
|
||||
if attention_mask is not None and position_ids is None:
|
||||
# create position_ids on the fly for batch generation
|
||||
position_ids = attention_mask.long().cumsum(-1) - 1
|
||||
position_ids.masked_fill_(attention_mask == 0, 1)
|
||||
if past_key_values:
|
||||
position_ids = position_ids[:, -input_ids.shape[1] :]
|
||||
|
||||
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
||||
if inputs_embeds is not None and past_key_values is None:
|
||||
model_inputs = {"inputs_embeds": inputs_embeds}
|
||||
else:
|
||||
model_inputs = {"input_ids": input_ids}
|
||||
|
||||
model_inputs.update(
|
||||
{
|
||||
"position_ids": position_ids,
|
||||
"past_key_values": past_key_values,
|
||||
"use_cache": kwargs.get("use_cache"),
|
||||
"attention_mask": attention_mask,
|
||||
"images": kwargs.get("images", None),
|
||||
}
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
def initialize_vision_tokenizer(
|
||||
self,
|
||||
tokenizer,
|
||||
freeze_lm_model=False,
|
||||
pretrained_stage1_model=None,
|
||||
device="cuda"
|
||||
):
|
||||
config = self.get_model().config
|
||||
|
||||
|
||||
self.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
config.im_patch_token = 151859
|
||||
|
||||
config.use_im_start_end = True
|
||||
|
||||
if config.use_im_start_end:
|
||||
self.resize_token_embeddings(len(tokenizer))
|
||||
config.im_start_token, config.im_end_token = 151857, 151858
|
||||
|
||||
def load_image(self, image_file):
|
||||
if image_file.startswith('http') or image_file.startswith('https'):
|
||||
response = requests.get(image_file)
|
||||
image = Image.open(BytesIO(response.content)).convert('RGB')
|
||||
else:
|
||||
image = Image.open(image_file).convert('RGB')
|
||||
return image
|
||||
|
||||
def disable_torch_init(self):
|
||||
"""
|
||||
Disable the redundant torch default initialization to accelerate model creation.
|
||||
"""
|
||||
import torch
|
||||
setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
|
||||
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
|
||||
|
||||
def chat(self, tokenizer, image_file, ocr_type, ocr_box='', ocr_color='', render=False, save_render_file=None, print_prompt=False, gradio_input=False, stream_flag = False):
|
||||
|
||||
self.disable_torch_init()
|
||||
|
||||
|
||||
image_processor_high = GOTImageEvalProcessor(image_size=1024)
|
||||
|
||||
use_im_start_end = True
|
||||
|
||||
image_token_len = 256
|
||||
|
||||
if gradio_input:
|
||||
image = image_file.copy()
|
||||
else:
|
||||
image = self.load_image(image_file)
|
||||
|
||||
w, h = image.size
|
||||
|
||||
if ocr_type == 'format':
|
||||
qs = 'OCR with format: '
|
||||
else:
|
||||
qs = 'OCR: '
|
||||
|
||||
if ocr_box:
|
||||
bbox = eval(ocr_box)
|
||||
if len(bbox) == 2:
|
||||
bbox[0] = int(bbox[0]/w*1000)
|
||||
bbox[1] = int(bbox[1]/h*1000)
|
||||
if len(bbox) == 4:
|
||||
bbox[0] = int(bbox[0]/w*1000)
|
||||
bbox[1] = int(bbox[1]/h*1000)
|
||||
bbox[2] = int(bbox[2]/w*1000)
|
||||
bbox[3] = int(bbox[3]/h*1000)
|
||||
if ocr_type == 'format':
|
||||
qs = str(bbox) + ' ' + 'OCR with format: '
|
||||
else:
|
||||
qs = str(bbox) + ' ' + 'OCR: '
|
||||
|
||||
if ocr_color:
|
||||
if ocr_type == 'format':
|
||||
qs = '[' + ocr_color + ']' + ' ' + 'OCR with format: '
|
||||
else:
|
||||
qs = '[' + ocr_color + ']' + ' ' + 'OCR: '
|
||||
|
||||
if use_im_start_end:
|
||||
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_PATCH_TOKEN*image_token_len + DEFAULT_IM_END_TOKEN + '\n' + qs
|
||||
else:
|
||||
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
|
||||
|
||||
|
||||
conv_mpt = Conversation(
|
||||
system="""<|im_start|>system
|
||||
You should follow the instructions carefully and explain your answers in detail.""",
|
||||
# system = None,
|
||||
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
|
||||
version="mpt",
|
||||
messages=(),
|
||||
offset=0,
|
||||
sep_style=SeparatorStyle.MPT,
|
||||
sep="<|im_end|>",
|
||||
)
|
||||
|
||||
conv = conv_mpt.copy()
|
||||
conv.append_message(conv.roles[0], qs)
|
||||
conv.append_message(conv.roles[1], None)
|
||||
prompt = conv.get_prompt()
|
||||
|
||||
if print_prompt:
|
||||
print(prompt)
|
||||
|
||||
inputs = tokenizer([prompt])
|
||||
|
||||
image_tensor_1 = image_processor_high(image)
|
||||
|
||||
input_ids = torch.as_tensor(inputs.input_ids).cuda()
|
||||
|
||||
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
||||
keywords = [stop_str]
|
||||
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
||||
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
||||
|
||||
if stream_flag:
|
||||
with torch.autocast("cuda", dtype=torch.bfloat16):
|
||||
output_ids = self.generate(
|
||||
input_ids,
|
||||
images=[image_tensor_1.unsqueeze(0).half().cuda()],
|
||||
do_sample=False,
|
||||
num_beams = 1,
|
||||
no_repeat_ngram_size = 20,
|
||||
streamer=streamer,
|
||||
max_new_tokens=4096,
|
||||
stopping_criteria=[stopping_criteria]
|
||||
)
|
||||
else:
|
||||
with torch.autocast("cuda", dtype=torch.bfloat16):
|
||||
output_ids = self.generate(
|
||||
input_ids,
|
||||
images=[image_tensor_1.unsqueeze(0).half().cuda()],
|
||||
do_sample=False,
|
||||
num_beams = 1,
|
||||
no_repeat_ngram_size = 20,
|
||||
# streamer=streamer,
|
||||
max_new_tokens=4096,
|
||||
stopping_criteria=[stopping_criteria]
|
||||
)
|
||||
|
||||
outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
|
||||
|
||||
if outputs.endswith(stop_str):
|
||||
outputs = outputs[:-len(stop_str)]
|
||||
outputs = outputs.strip()
|
||||
response_str = outputs
|
||||
|
||||
if render:
|
||||
print('==============rendering===============')
|
||||
from .render_tools import svg_to_html, content_mmd_to_html, tik_html, translation_table
|
||||
|
||||
if '**kern' in outputs:
|
||||
import verovio
|
||||
tk = verovio.toolkit()
|
||||
tk.loadData(outputs)
|
||||
tk.setOptions({"pageWidth": 2100, "footer": 'none',
|
||||
'barLineWidth': 0.5, 'beamMaxSlope': 15,
|
||||
'staffLineWidth': 0.2, 'spacingStaff': 6})
|
||||
tk.getPageCount()
|
||||
svg = tk.renderToSVG()
|
||||
svg = svg.replace("overflow=\"inherit\"", "overflow=\"visible\"")
|
||||
|
||||
svg_to_html(svg, save_render_file)
|
||||
|
||||
if ocr_type == 'format' and '**kern' not in outputs:
|
||||
|
||||
|
||||
if '\\begin{tikzpicture}' not in outputs:
|
||||
html_path_2 = save_render_file
|
||||
right_num = outputs.count('\\right')
|
||||
left_num = outputs.count('\left')
|
||||
|
||||
if right_num != left_num:
|
||||
outputs = outputs.replace('\left(', '(').replace('\\right)', ')').replace('\left[', '[').replace('\\right]', ']').replace('\left{', '{').replace('\\right}', '}').replace('\left|', '|').replace('\\right|', '|').replace('\left.', '.').replace('\\right.', '.')
|
||||
|
||||
|
||||
outputs = outputs.replace('"', '``').replace('$', '')
|
||||
|
||||
outputs_list = outputs.split('\n')
|
||||
gt= ''
|
||||
for out in outputs_list:
|
||||
gt += '"' + out.replace('\\', '\\\\') + r'\n' + '"' + '+' + '\n'
|
||||
|
||||
gt = gt[:-2]
|
||||
|
||||
|
||||
lines = content_mmd_to_html
|
||||
lines = lines.split("const text =")
|
||||
new_web = lines[0] + 'const text =' + gt + lines[1]
|
||||
|
||||
else:
|
||||
html_path_2 = save_render_file
|
||||
outputs = outputs.translate(translation_table)
|
||||
outputs_list = outputs.split('\n')
|
||||
gt= ''
|
||||
for out in outputs_list:
|
||||
if out:
|
||||
if '\\begin{tikzpicture}' not in out and '\\end{tikzpicture}' not in out:
|
||||
while out[-1] == ' ':
|
||||
out = out[:-1]
|
||||
if out is None:
|
||||
break
|
||||
|
||||
if out:
|
||||
if out[-1] != ';':
|
||||
gt += out[:-1] + ';\n'
|
||||
else:
|
||||
gt += out + '\n'
|
||||
else:
|
||||
gt += out + '\n'
|
||||
|
||||
|
||||
lines = tik_html
|
||||
lines = lines.split("const text =")
|
||||
new_web = lines[0] + gt + lines[1]
|
||||
|
||||
with open(html_path_2, 'w') as web_f_new:
|
||||
web_f_new.write(new_web)
|
||||
return response_str
|
||||
|
||||
def dynamic_preprocess(self, image, min_num=1, max_num=6, image_size=1024, use_thumbnail=True):
|
||||
|
||||
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
||||
best_ratio_diff = float('inf')
|
||||
best_ratio = (1, 1)
|
||||
area = width * height
|
||||
for ratio in target_ratios:
|
||||
target_aspect_ratio = ratio[0] / ratio[1]
|
||||
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
||||
if ratio_diff < best_ratio_diff:
|
||||
best_ratio_diff = ratio_diff
|
||||
best_ratio = ratio
|
||||
elif ratio_diff == best_ratio_diff:
|
||||
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
||||
best_ratio = ratio
|
||||
# print(f'width: {width}, height: {height}, best_ratio: {best_ratio}')
|
||||
return best_ratio
|
||||
|
||||
orig_width, orig_height = image.size
|
||||
aspect_ratio = orig_width / orig_height
|
||||
|
||||
# calculate the existing image aspect ratio
|
||||
target_ratios = set(
|
||||
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
|
||||
i * j <= max_num and i * j >= min_num)
|
||||
# print(target_ratios)
|
||||
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
||||
|
||||
# find the closest aspect ratio to the target
|
||||
target_aspect_ratio = find_closest_aspect_ratio(
|
||||
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
||||
|
||||
# print(target_aspect_ratio)
|
||||
# calculate the target width and height
|
||||
target_width = image_size * target_aspect_ratio[0]
|
||||
target_height = image_size * target_aspect_ratio[1]
|
||||
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
||||
|
||||
# resize the image
|
||||
resized_img = image.resize((target_width, target_height))
|
||||
processed_images = []
|
||||
for i in range(blocks):
|
||||
box = (
|
||||
(i % (target_width // image_size)) * image_size,
|
||||
(i // (target_width // image_size)) * image_size,
|
||||
((i % (target_width // image_size)) + 1) * image_size,
|
||||
((i // (target_width // image_size)) + 1) * image_size
|
||||
)
|
||||
# split the image
|
||||
split_img = resized_img.crop(box)
|
||||
processed_images.append(split_img)
|
||||
assert len(processed_images) == blocks
|
||||
if use_thumbnail and len(processed_images) != 1:
|
||||
thumbnail_img = image.resize((image_size, image_size))
|
||||
processed_images.append(thumbnail_img)
|
||||
return processed_images
|
||||
|
||||
|
||||
def chat_crop(self, tokenizer, image_file, ocr_type, render=False, save_render_file=None, print_prompt=False, gradio_input=False, stream_flag = False):
|
||||
# Model
|
||||
self.disable_torch_init()
|
||||
multi_page=False
|
||||
|
||||
|
||||
image_processor_high = GOTImageEvalProcessor(image_size=1024)
|
||||
|
||||
use_im_start_end = True
|
||||
|
||||
|
||||
image_token_len = 256
|
||||
|
||||
image_list = []
|
||||
|
||||
# if len(image_file_list)>1:
|
||||
# multi_page = True
|
||||
|
||||
if multi_page:
|
||||
qs = 'OCR with format across multi pages: '
|
||||
# only for png files
|
||||
# import glob
|
||||
# from natsort import natsorted
|
||||
# patches = glob.glob(image_file + '/*png')
|
||||
patches = image_file
|
||||
# patches = natsorted(patches)
|
||||
sub_images = []
|
||||
for sub_image in patches:
|
||||
sub_images.append(self.load_image(sub_image))
|
||||
|
||||
ll = len(patches)
|
||||
# print(patches)
|
||||
# print("len ll: ", ll)
|
||||
|
||||
else:
|
||||
if ocr_type == 'format':
|
||||
qs = 'OCR with format upon the patch reference: '
|
||||
else:
|
||||
qs = 'OCR upon the patch reference: '
|
||||
if gradio_input:
|
||||
img = image_file.copy()
|
||||
else:
|
||||
img = self.load_image(image_file)
|
||||
sub_images = self.dynamic_preprocess(img)
|
||||
ll = len(sub_images)
|
||||
|
||||
for image in sub_images:
|
||||
image_tensor_1 = image_processor_high(image)
|
||||
image_list.append(image_tensor_1)
|
||||
|
||||
|
||||
image_list = torch.stack(image_list)
|
||||
|
||||
print('====new images batch size======: \n',image_list.shape)
|
||||
|
||||
|
||||
if use_im_start_end:
|
||||
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_PATCH_TOKEN*image_token_len*ll + DEFAULT_IM_END_TOKEN + '\n' + qs
|
||||
else:
|
||||
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
|
||||
|
||||
|
||||
conv_mpt = Conversation(
|
||||
system="""<|im_start|>system
|
||||
You should follow the instructions carefully and explain your answers in detail.""",
|
||||
# system = None,
|
||||
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
|
||||
version="mpt",
|
||||
messages=(),
|
||||
offset=0,
|
||||
sep_style=SeparatorStyle.MPT,
|
||||
sep="<|im_end|>",
|
||||
)
|
||||
|
||||
conv = conv_mpt.copy()
|
||||
conv.append_message(conv.roles[0], qs)
|
||||
conv.append_message(conv.roles[1], None)
|
||||
prompt = conv.get_prompt()
|
||||
|
||||
if print_prompt:
|
||||
print(prompt)
|
||||
|
||||
inputs = tokenizer([prompt])
|
||||
|
||||
input_ids = torch.as_tensor(inputs.input_ids).cuda()
|
||||
|
||||
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
||||
keywords = [stop_str]
|
||||
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
||||
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
||||
|
||||
if stream_flag:
|
||||
with torch.autocast("cuda", dtype=torch.bfloat16):
|
||||
output_ids = self.generate(
|
||||
input_ids,
|
||||
images=[image_list.half().cuda()],
|
||||
do_sample=False,
|
||||
num_beams = 1,
|
||||
# no_repeat_ngram_size = 20,
|
||||
streamer=streamer,
|
||||
max_new_tokens=4096,
|
||||
stopping_criteria=[stopping_criteria]
|
||||
)
|
||||
else:
|
||||
with torch.autocast("cuda", dtype=torch.bfloat16):
|
||||
output_ids = self.generate(
|
||||
input_ids,
|
||||
images=[image_list.half().cuda()],
|
||||
do_sample=False,
|
||||
num_beams = 1,
|
||||
# no_repeat_ngram_size = 20,
|
||||
# streamer=streamer,
|
||||
max_new_tokens=4096,
|
||||
stopping_criteria=[stopping_criteria]
|
||||
)
|
||||
|
||||
outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
|
||||
|
||||
if outputs.endswith(stop_str):
|
||||
outputs = outputs[:-len(stop_str)]
|
||||
outputs = outputs.strip()
|
||||
response_str = outputs
|
||||
|
||||
if render:
|
||||
print('==============rendering===============')
|
||||
from .render_tools import content_mmd_to_html
|
||||
html_path_2 = save_render_file
|
||||
right_num = outputs.count('\\right')
|
||||
left_num = outputs.count('\left')
|
||||
|
||||
if right_num != left_num:
|
||||
outputs = outputs.replace('\left(', '(').replace('\\right)', ')').replace('\left[', '[').replace('\\right]', ']').replace('\left{', '{').replace('\\right}', '}').replace('\left|', '|').replace('\\right|', '|').replace('\left.', '.').replace('\\right.', '.')
|
||||
|
||||
|
||||
outputs = outputs.replace('"', '``').replace('$', '')
|
||||
|
||||
outputs_list = outputs.split('\n')
|
||||
gt= ''
|
||||
for out in outputs_list:
|
||||
gt += '"' + out.replace('\\', '\\\\') + r'\n' + '"' + '+' + '\n'
|
||||
|
||||
gt = gt[:-2]
|
||||
|
||||
lines = content_mmd_to_html
|
||||
lines = lines.split("const text =")
|
||||
new_web = lines[0] + 'const text =' + gt + lines[1]
|
||||
|
||||
with open(html_path_2, 'w') as web_f_new:
|
||||
web_f_new.write(new_web)
|
||||
|
||||
return response_str
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,96 @@
|
|||
|
||||
punctuation_dict = {
|
||||
",": ",",
|
||||
"。": ".",
|
||||
|
||||
}
|
||||
translation_table = str.maketrans(punctuation_dict)
|
||||
|
||||
def svg_to_html(svg_content, output_filename):
|
||||
|
||||
html_content = f"""
|
||||
<!DOCTYPE html>
|
||||
<html lang="en">
|
||||
<head>
|
||||
<meta charset="UTF-8">
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||
<title>SVG Embedded in HTML</title>
|
||||
</head>
|
||||
<body>
|
||||
<svg width="2100" height="15000" xmlns="http://www.w3.org/2000/svg">
|
||||
{svg_content}
|
||||
</svg>
|
||||
</body>
|
||||
</html>
|
||||
"""
|
||||
|
||||
with open(output_filename, 'w') as file:
|
||||
file.write(html_content)
|
||||
|
||||
|
||||
|
||||
content_mmd_to_html = """<!DOCTYPE html>
|
||||
<html lang="en" data-lt-installed="true"><head>
|
||||
<meta charset="UTF-8">
|
||||
<title>Title</title>
|
||||
<script>
|
||||
const text =
|
||||
</script>
|
||||
<style>
|
||||
#content {
|
||||
max-width: 800px;
|
||||
margin: auto;
|
||||
}
|
||||
</style>
|
||||
<script>
|
||||
let script = document.createElement('script');
|
||||
script.src = "https://cdn.jsdelivr.net/npm/mathpix-markdown-it@1.3.6/es5/bundle.js";
|
||||
document.head.append(script);
|
||||
|
||||
script.onload = function() {
|
||||
const isLoaded = window.loadMathJax();
|
||||
if (isLoaded) {
|
||||
console.log('Styles loaded!')
|
||||
}
|
||||
|
||||
const el = window.document.getElementById('content-text');
|
||||
if (el) {
|
||||
const options = {
|
||||
htmlTags: true
|
||||
};
|
||||
const html = window.render(text, options);
|
||||
el.outerHTML = html;
|
||||
}
|
||||
};
|
||||
</script>
|
||||
</head>
|
||||
<body>
|
||||
<div id="content"><div id="content-text"></div></div>
|
||||
</body>
|
||||
</html>
|
||||
"""
|
||||
|
||||
|
||||
|
||||
tik_html = """
|
||||
<!DOCTYPE html>
|
||||
|
||||
<html>
|
||||
|
||||
<head>
|
||||
<meta charset="UTF-8">
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||
<title>Document</title>
|
||||
<link rel="stylesheet" type="text/css" href="https://tikzjax.com/v1/fonts.css">
|
||||
<script src="https://tikzjax.com/v1/tikzjax.js"></script>
|
||||
</head>
|
||||
<body>
|
||||
<script type="text/tikz">
|
||||
const text =
|
||||
</script>
|
||||
</body>
|
||||
</html>"""
|
||||
|
||||
|
||||
|
||||
# print(tik_html)
|
|
@ -0,0 +1,9 @@
|
|||
{
|
||||
"pad_token": {
|
||||
"content": "<|endoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
}
|
||||
}
|
|
@ -0,0 +1,264 @@
|
|||
# Copyright (c) Alibaba Cloud.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
"""Tokenization classes for QWen."""
|
||||
|
||||
import base64
|
||||
import logging
|
||||
import os
|
||||
import unicodedata
|
||||
from typing import Collection, Dict, List, Set, Tuple, Union
|
||||
|
||||
import tiktoken
|
||||
from transformers import PreTrainedTokenizer, AddedToken
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
|
||||
|
||||
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
||||
ENDOFTEXT = "<|endoftext|>"
|
||||
IMSTART = "<|im_start|>"
|
||||
IMEND = "<|im_end|>"
|
||||
# as the default behavior is changed to allow special tokens in
|
||||
# regular texts, the surface forms of special tokens need to be
|
||||
# as different as possible to minimize the impact
|
||||
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
|
||||
SPECIAL_TOKENS = (
|
||||
ENDOFTEXT,
|
||||
IMSTART,
|
||||
IMEND,
|
||||
) + EXTRAS
|
||||
|
||||
|
||||
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
|
||||
with open(tiktoken_bpe_file, "rb") as f:
|
||||
contents = f.read()
|
||||
return {
|
||||
base64.b64decode(token): int(rank)
|
||||
for token, rank in (line.split() for line in contents.splitlines() if line)
|
||||
}
|
||||
|
||||
class QWenTokenizer(PreTrainedTokenizer):
|
||||
"""QWen tokenizer."""
|
||||
|
||||
vocab_files_names = VOCAB_FILES_NAMES
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_file,
|
||||
errors="replace",
|
||||
image_start_tag='<img>',
|
||||
image_end_tag='</img>',
|
||||
image_pad_tag='<imgpad>',
|
||||
ref_start_tag='<ref>',
|
||||
ref_end_tag='</ref>',
|
||||
box_start_tag='<box>',
|
||||
box_end_tag='</box>',
|
||||
quad_start_tag='<quad>',
|
||||
quad_end_tag='</quad>',
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(**kwargs)
|
||||
|
||||
self.image_start_tag = image_start_tag
|
||||
self.image_end_tag = image_end_tag
|
||||
self.image_pad_tag = image_pad_tag
|
||||
self.ref_start_tag = ref_start_tag
|
||||
self.ref_end_tag = ref_end_tag
|
||||
self.box_start_tag = box_start_tag
|
||||
self.box_end_tag = box_end_tag
|
||||
self.quad_start_tag = quad_start_tag
|
||||
self.quad_end_tag = quad_end_tag
|
||||
self.IMAGE_ST = (
|
||||
ref_start_tag, ref_end_tag,
|
||||
box_start_tag, box_end_tag,
|
||||
quad_start_tag, quad_end_tag,
|
||||
image_start_tag, image_end_tag,
|
||||
image_pad_tag
|
||||
)
|
||||
|
||||
self.errors = errors # how to handle errors in decoding
|
||||
|
||||
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: dict[bytes, int]
|
||||
self.special_tokens = {
|
||||
token: index
|
||||
for index, token in enumerate(
|
||||
SPECIAL_TOKENS + self.IMAGE_ST, start=len(self.mergeable_ranks)
|
||||
)
|
||||
}
|
||||
|
||||
self.img_start_id = self.special_tokens[self.image_start_tag]
|
||||
self.img_end_id = self.special_tokens[self.image_end_tag]
|
||||
self.img_pad_id = self.special_tokens[self.image_pad_tag]
|
||||
self.ref_start_id = self.special_tokens[self.ref_start_tag]
|
||||
self.ref_end_id = self.special_tokens[self.ref_end_tag]
|
||||
self.box_start_id = self.special_tokens[self.box_start_tag]
|
||||
self.box_end_id = self.special_tokens[self.box_end_tag]
|
||||
self.quad_start_id = self.special_tokens[self.quad_start_tag]
|
||||
self.quad_end_id = self.special_tokens[self.quad_end_tag]
|
||||
|
||||
enc = tiktoken.Encoding(
|
||||
"Qwen",
|
||||
pat_str=PAT_STR,
|
||||
mergeable_ranks=self.mergeable_ranks,
|
||||
special_tokens=self.special_tokens,
|
||||
)
|
||||
assert (
|
||||
len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
|
||||
), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
|
||||
|
||||
self.decoder = {
|
||||
v: k for k, v in self.mergeable_ranks.items()
|
||||
} # type: dict[int, bytes|str]
|
||||
self.decoder.update({v: k for k, v in self.special_tokens.items()})
|
||||
|
||||
self.tokenizer = enc # type: tiktoken.Encoding
|
||||
|
||||
self.eod_id = self.tokenizer.eot_token
|
||||
self.im_start_id = self.special_tokens[IMSTART]
|
||||
self.im_end_id = self.special_tokens[IMEND]
|
||||
|
||||
def __len__(self) -> int:
|
||||
return self.tokenizer.n_vocab
|
||||
|
||||
def get_vocab(self) -> Dict[bytes, int]:
|
||||
return self.mergeable_ranks
|
||||
|
||||
def convert_tokens_to_ids(
|
||||
self, tokens: Union[bytes, str, List[Union[bytes, str]]]
|
||||
) -> List[int]:
|
||||
ids = []
|
||||
if isinstance(tokens, (str, bytes)):
|
||||
if tokens in self.special_tokens:
|
||||
return self.special_tokens[tokens]
|
||||
else:
|
||||
return self.mergeable_ranks.get(tokens)
|
||||
for token in tokens:
|
||||
if token in self.special_tokens:
|
||||
ids.append(self.special_tokens[token])
|
||||
else:
|
||||
ids.append(self.mergeable_ranks.get(token))
|
||||
return ids
|
||||
|
||||
def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int:
|
||||
if not special_tokens and new_tokens:
|
||||
raise ValueError('Adding regular tokens is not supported')
|
||||
for token in new_tokens:
|
||||
surface_form = token.content if isinstance(token, AddedToken) else token
|
||||
if surface_form not in SPECIAL_TOKENS:
|
||||
raise ValueError('Adding unknown special tokens is not supported')
|
||||
return 0
|
||||
|
||||
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
|
||||
"""
|
||||
Save only the vocabulary of the tokenizer (vocabulary).
|
||||
|
||||
Returns:
|
||||
`Tuple(str)`: Paths to the files saved.
|
||||
"""
|
||||
file_path = os.path.join(save_directory, "qwen.tiktoken")
|
||||
with open(file_path, "w", encoding="utf8") as w:
|
||||
for k, v in self.mergeable_ranks.items():
|
||||
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
|
||||
w.write(line)
|
||||
return (file_path,)
|
||||
|
||||
def tokenize(
|
||||
self,
|
||||
text: str,
|
||||
allowed_special: Union[Set, str] = "all",
|
||||
disallowed_special: Union[Collection, str] = (),
|
||||
**kwargs,
|
||||
) -> List[Union[bytes, str]]:
|
||||
"""
|
||||
Converts a string in a sequence of tokens.
|
||||
|
||||
Args:
|
||||
text (`str`):
|
||||
The sequence to be encoded.
|
||||
allowed_special (`Literal["all"]` or `set`):
|
||||
The surface forms of the tokens to be encoded as special tokens in regular texts.
|
||||
Default to "all".
|
||||
disallowed_special (`Literal["all"]` or `Collection`):
|
||||
The surface forms of the tokens that should not be in regular texts and trigger errors.
|
||||
Default to an empty tuple.
|
||||
|
||||
kwargs (additional keyword arguments, *optional*):
|
||||
Will be passed to the underlying model specific encode method.
|
||||
|
||||
Returns:
|
||||
`List[bytes|str]`: The list of tokens.
|
||||
"""
|
||||
tokens = []
|
||||
text = unicodedata.normalize("NFC", text)
|
||||
|
||||
# this implementation takes a detour: text -> token id -> token surface forms
|
||||
for t in self.tokenizer.encode(
|
||||
text, allowed_special=allowed_special, disallowed_special=disallowed_special
|
||||
):
|
||||
tokens.append(self.decoder[t])
|
||||
return tokens
|
||||
|
||||
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
|
||||
"""
|
||||
Converts a sequence of tokens in a single string.
|
||||
"""
|
||||
text = ""
|
||||
temp = b""
|
||||
for t in tokens:
|
||||
if isinstance(t, str):
|
||||
if temp:
|
||||
text += temp.decode("utf-8", errors=self.errors)
|
||||
temp = b""
|
||||
text += t
|
||||
elif isinstance(t, bytes):
|
||||
temp += t
|
||||
else:
|
||||
raise TypeError("token should only be of type types or str")
|
||||
if temp:
|
||||
text += temp.decode("utf-8", errors=self.errors)
|
||||
return text
|
||||
|
||||
@property
|
||||
def vocab_size(self):
|
||||
return self.tokenizer.n_vocab
|
||||
|
||||
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
|
||||
"""Converts an id to a token, special tokens included"""
|
||||
if index in self.decoder:
|
||||
return self.decoder[index]
|
||||
raise ValueError("unknown ids")
|
||||
|
||||
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
|
||||
"""Converts a token to an id using the vocab, special tokens included"""
|
||||
if token in self.special_tokens:
|
||||
return self.special_tokens[token]
|
||||
if token in self.mergeable_ranks:
|
||||
return self.mergeable_ranks[token]
|
||||
raise ValueError("unknown token")
|
||||
|
||||
def _tokenize(self, text: str, **kwargs):
|
||||
"""
|
||||
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
||||
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
|
||||
|
||||
Do NOT take care of added tokens.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def _decode(
|
||||
self,
|
||||
token_ids: Union[int, List[int]],
|
||||
skip_special_tokens: bool = False,
|
||||
errors: str = None,
|
||||
**kwargs,
|
||||
) -> str:
|
||||
if isinstance(token_ids, int):
|
||||
token_ids = [token_ids]
|
||||
if skip_special_tokens:
|
||||
token_ids = [i for i in token_ids if i < self.eod_id]
|
||||
return self.tokenizer.decode(token_ids, errors=errors or self.errors)
|
|
@ -0,0 +1,14 @@
|
|||
{
|
||||
"added_tokens_decoder": {},
|
||||
"auto_map": {
|
||||
"AutoTokenizer": [
|
||||
"tokenization_qwen.QWenTokenizer",
|
||||
null
|
||||
]
|
||||
},
|
||||
"clean_up_tokenization_spaces": true,
|
||||
"model_max_length": 8000,
|
||||
"pad_token": "<|endoftext|>",
|
||||
"padding_side": "right",
|
||||
"tokenizer_class": "QWenTokenizer"
|
||||
}
|
Loading…
Reference in New Issue