license |
license_name |
license_link |
metrics |
base_model |
pipeline_tag |
library_name |
language |
gemma |
license |
LICENSE |
|
ModelSpace/GemmaX2-28-2B-Pretrain |
|
translation |
transformers |
ar |
bn |
cs |
de |
en |
es |
fa |
fr |
he |
hi |
id |
it |
ja |
km |
ko |
lo |
ms |
my |
nl |
pl |
pt |
ru |
th |
tl |
tr |
ur |
vi |
zh |
|
Model Description
GemmaX2-28-2B-v0.1 is an LLM-based translation model. It has been fintuned on GemmaX2-28-2B-Pretrain, which is a language model developed through continual pretraining of Gemma2-2B using a mix of 56 billion tokens from both monolingual and parallel data across 28 different languages. Please find more details in our paper: Multilingual Machine Translation with Open Large Language Models at Practical Scale: An Empirical Study.
- Developed by: Xiaomi
- Model type: GemmaX2-28-2B-Pretrain is obtained by continually pretraining Gemma2-2B on a large amount of monolingual and parallel data. Subsequently, GemmaX2-28-2B-v0.1 is derived through supervised finetuning on a small set of high-quality translation instruction data.
- Languages: Arabic, Bengali, Czech, German, English, Spanish, Persian, French, Hebrew, Hindi, Indonesian, Italian, Japanese, Khmer, Korean, Lao, Malay, Burmese, Dutch, Polish, Portuguese, Russian, Thai, Tagalog, Turkish, Urdu, Vietnamese, Chinese.
Model Performance

Run the model
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "ModelSpace/GemmaX2-28-2B-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
text = "Translate this from Chinese to English:\nChinese: 我爱机器翻译\nEnglish:"
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=50)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Citation
@misc{cui2025multilingualmachinetranslationopen,
title={Multilingual Machine Translation with Open Large Language Models at Practical Scale: An Empirical Study},
author={Menglong Cui and Pengzhi Gao and Wei Liu and Jian Luan and Bin Wang},
year={2025},
eprint={2502.02481},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2502.02481},
}
Limitations
GemmaX2-28-2B-v0.1 only supports the 28 languages listed above and does not guarantee strong translation performance for other languages. We will continue to enhance the translation performance of GemmaX2-28-2B, and future models will be released in due course.