83 lines
3.1 KiB
Markdown
83 lines
3.1 KiB
Markdown
---
|
|
license: apache-2.0
|
|
datasets:
|
|
- FreedomIntelligence/medical-o1-reasoning-SFT
|
|
- FreedomIntelligence/medical-o1-verifiable-problem
|
|
language:
|
|
- en
|
|
base_model:
|
|
- meta-llama/Llama-3.1-8B-Instruct
|
|
pipeline_tag: text-generation
|
|
tags:
|
|
- medical
|
|
---
|
|
|
|
<div align="center">
|
|
<h1>
|
|
HuatuoGPT-o1-8B
|
|
</h1>
|
|
</div>
|
|
|
|
<div align="center">
|
|
<a href="https://github.com/FreedomIntelligence/HuatuoGPT-o1" target="_blank">GitHub</a> | <a href="https://arxiv.org/pdf/2412.18925" target="_blank">Paper</a>
|
|
</div>
|
|
|
|
# <span>Introduction</span>
|
|
**HuatuoGPT-o1** is a medical LLM designed for advanced medical reasoning. It generates a complex thought process, reflecting and refining its reasoning, before providing a final response.
|
|
|
|
For more information, visit our GitHub repository:
|
|
[https://github.com/FreedomIntelligence/HuatuoGPT-o1](https://github.com/FreedomIntelligence/HuatuoGPT-o1).
|
|
|
|
# <span>Model Info</span>
|
|
| | Backbone | Supported Languages | Link |
|
|
| -------------------- | ------------ | ----- | --------------------------------------------------------------------- |
|
|
| **HuatuoGPT-o1-8B** | LLaMA-3.1-8B | English | [HF Link](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-8B) |
|
|
| **HuatuoGPT-o1-70B** | LLaMA-3.1-70B | English | [HF Link](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-70B) |
|
|
| **HuatuoGPT-o1-7B** | Qwen2.5-7B | English & Chinese | [HF Link](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-7B) |
|
|
| **HuatuoGPT-o1-72B** | Qwen2.5-72B | English & Chinese | [HF Link](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-72B) |
|
|
|
|
|
|
|
|
# <span>Usage</span>
|
|
You can use HuatuoGPT-o1 in the same way as `Llama-3.1-8B-Instruct`. You can deploy it with tools like [vllm](https://github.com/vllm-project/vllm) or [Sglang](https://github.com/sgl-project/sglang), or perform direct inference:
|
|
```python
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
model = AutoModelForCausalLM.from_pretrained("FreedomIntelligence/HuatuoGPT-o1-8B",torch_dtype="auto",device_map="auto")
|
|
tokenizer = AutoTokenizer.from_pretrained("FreedomIntelligence/HuatuoGPT-o1-8B")
|
|
|
|
input_text = "How to stop a cough?"
|
|
messages = [{"role": "user", "content": input_text}]
|
|
|
|
inputs = tokenizer(tokenizer.apply_chat_template(messages, tokenize=False,add_generation_prompt=True
|
|
), return_tensors="pt").to(model.device)
|
|
outputs = model.generate(**inputs, max_new_tokens=2048)
|
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
|
```
|
|
|
|
HuatuoGPT-o1 adopts a *thinks-before-it-answers* approach, with outputs formatted as:
|
|
|
|
```
|
|
## Thinking
|
|
[Reasoning process]
|
|
|
|
## Final Response
|
|
[Output]
|
|
```
|
|
|
|
# <span>📖 Citation</span>
|
|
```
|
|
@misc{chen2024huatuogpto1medicalcomplexreasoning,
|
|
title={HuatuoGPT-o1, Towards Medical Complex Reasoning with LLMs},
|
|
author={Junying Chen and Zhenyang Cai and Ke Ji and Xidong Wang and Wanlong Liu and Rongsheng Wang and Jianye Hou and Benyou Wang},
|
|
year={2024},
|
|
eprint={2412.18925},
|
|
archivePrefix={arXiv},
|
|
primaryClass={cs.CL},
|
|
url={https://arxiv.org/abs/2412.18925},
|
|
}
|
|
```
|
|
|
|
|
|
|