1573 lines
72 KiB
Python
1573 lines
72 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
||
|
#
|
||
|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||
|
# and OPT implementations in this library. It has been modified from its
|
||
|
# original forms to accommodate minor architectural differences compared
|
||
|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""PyTorch LLaMA model."""
|
||
|
|
||
|
import math
|
||
|
import warnings
|
||
|
from typing import List, Optional, Tuple, Union
|
||
|
|
||
|
import torch
|
||
|
import torch.nn.functional as F
|
||
|
import torch.utils.checkpoint
|
||
|
from torch import nn
|
||
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
||
|
|
||
|
from transformers.activations import ACT2FN
|
||
|
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
||
|
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
||
|
from transformers.modeling_outputs import (
|
||
|
BaseModelOutputWithPast,
|
||
|
CausalLMOutputWithPast,
|
||
|
QuestionAnsweringModelOutput,
|
||
|
SequenceClassifierOutputWithPast,
|
||
|
)
|
||
|
from transformers.modeling_utils import PreTrainedModel
|
||
|
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
||
|
from transformers.utils import (
|
||
|
add_start_docstrings,
|
||
|
add_start_docstrings_to_model_forward,
|
||
|
is_flash_attn_2_available,
|
||
|
is_flash_attn_greater_or_equal_2_10,
|
||
|
logging,
|
||
|
replace_return_docstrings,
|
||
|
)
|
||
|
from .configuration_llama import LlamaConfig
|
||
|
|
||
|
|
||
|
if is_flash_attn_2_available():
|
||
|
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
||
|
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
_CONFIG_FOR_DOC = "LlamaConfig"
|
||
|
|
||
|
|
||
|
def _get_unpad_data(attention_mask):
|
||
|
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
||
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
||
|
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
||
|
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
||
|
return (
|
||
|
indices,
|
||
|
cu_seqlens,
|
||
|
max_seqlen_in_batch,
|
||
|
)
|
||
|
|
||
|
|
||
|
class LlamaRMSNorm(nn.Module):
|
||
|
def __init__(self, hidden_size, eps=1e-6):
|
||
|
"""
|
||
|
LlamaRMSNorm is equivalent to T5LayerNorm
|
||
|
"""
|
||
|
super().__init__()
|
||
|
self.weight = nn.Parameter(torch.ones(hidden_size))
|
||
|
self.variance_epsilon = eps
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
input_dtype = hidden_states.dtype
|
||
|
hidden_states = hidden_states.to(torch.float32)
|
||
|
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
||
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
||
|
return self.weight * hidden_states.to(input_dtype)
|
||
|
|
||
|
|
||
|
ALL_LAYERNORM_LAYERS.append(LlamaRMSNorm)
|
||
|
|
||
|
|
||
|
class LlamaRotaryEmbedding(nn.Module):
|
||
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
||
|
super().__init__()
|
||
|
self.scaling_factor = scaling_factor
|
||
|
self.dim = dim
|
||
|
self.max_position_embeddings = max_position_embeddings
|
||
|
self.base = base
|
||
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
||
|
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
||
|
# For BC we register cos and sin cached
|
||
|
self.max_seq_len_cached = max_position_embeddings
|
||
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
||
|
t = t / self.scaling_factor
|
||
|
freqs = torch.outer(t, self.inv_freq)
|
||
|
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
||
|
emb = torch.cat((freqs, freqs), dim=-1)
|
||
|
self.register_buffer("_cos_cached", emb.cos().to(torch.get_default_dtype()), persistent=False)
|
||
|
self.register_buffer("_sin_cached", emb.sin().to(torch.get_default_dtype()), persistent=False)
|
||
|
|
||
|
@property
|
||
|
def sin_cached(self):
|
||
|
logger.warning_once(
|
||
|
"The sin_cached attribute will be removed in 4.39. Bear in mind that its contents changed in v4.38. Use "
|
||
|
"the forward method of RoPE from now on instead. It is not used in the `LlamaAttention` class"
|
||
|
)
|
||
|
return self._sin_cached
|
||
|
|
||
|
@property
|
||
|
def cos_cached(self):
|
||
|
logger.warning_once(
|
||
|
"The cos_cached attribute will be removed in 4.39. Bear in mind that its contents changed in v4.38. Use "
|
||
|
"the forward method of RoPE from now on instead. It is not used in the `LlamaAttention` class"
|
||
|
)
|
||
|
return self._cos_cached
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def forward(self, x, position_ids):
|
||
|
# x: [bs, num_attention_heads, seq_len, head_size]
|
||
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
||
|
position_ids_expanded = position_ids[:, None, :].float()
|
||
|
# Force float32 since bfloat16 loses precision on long contexts
|
||
|
# See https://github.com/huggingface/transformers/pull/29285
|
||
|
device_type = x.device.type
|
||
|
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
||
|
with torch.autocast(device_type=device_type, enabled=False):
|
||
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
||
|
emb = torch.cat((freqs, freqs), dim=-1)
|
||
|
cos = emb.cos()
|
||
|
sin = emb.sin()
|
||
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
||
|
|
||
|
|
||
|
class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
||
|
"""LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
||
|
|
||
|
def forward(self, x, position_ids):
|
||
|
# difference to the original RoPE: a scaling factor is aplied to the position ids
|
||
|
position_ids = position_ids.float() / self.scaling_factor
|
||
|
cos, sin = super().forward(x, position_ids)
|
||
|
return cos, sin
|
||
|
|
||
|
|
||
|
class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
||
|
"""LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
||
|
|
||
|
def forward(self, x, position_ids):
|
||
|
# difference to the original RoPE: inv_freq is recomputed when the sequence length > original length
|
||
|
seq_len = torch.max(position_ids) + 1
|
||
|
if seq_len > self.max_position_embeddings:
|
||
|
base = self.base * (
|
||
|
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
||
|
) ** (self.dim / (self.dim - 2))
|
||
|
inv_freq = 1.0 / (
|
||
|
base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(x.device) / self.dim)
|
||
|
)
|
||
|
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: this may break with compilation
|
||
|
|
||
|
cos, sin = super().forward(x, position_ids)
|
||
|
return cos, sin
|
||
|
|
||
|
|
||
|
def rotate_half(x):
|
||
|
"""Rotates half the hidden dims of the input."""
|
||
|
x1 = x[..., : x.shape[-1] // 2]
|
||
|
x2 = x[..., x.shape[-1] // 2 :]
|
||
|
return torch.cat((-x2, x1), dim=-1)
|
||
|
|
||
|
|
||
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
||
|
"""Applies Rotary Position Embedding to the query and key tensors.
|
||
|
|
||
|
Args:
|
||
|
q (`torch.Tensor`): The query tensor.
|
||
|
k (`torch.Tensor`): The key tensor.
|
||
|
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
||
|
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
||
|
position_ids (`torch.Tensor`, *optional*):
|
||
|
Deprecated and unused.
|
||
|
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
||
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
||
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
||
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
||
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
||
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
||
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
||
|
Returns:
|
||
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
||
|
"""
|
||
|
cos = cos.unsqueeze(unsqueeze_dim)
|
||
|
sin = sin.unsqueeze(unsqueeze_dim)
|
||
|
q_embed = (q * cos) + (rotate_half(q) * sin)
|
||
|
k_embed = (k * cos) + (rotate_half(k) * sin)
|
||
|
return q_embed, k_embed
|
||
|
|
||
|
|
||
|
class LlamaMLP(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.hidden_size = config.hidden_size
|
||
|
self.intermediate_size = config.intermediate_size
|
||
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
||
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
||
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
||
|
self.act_fn = ACT2FN[config.hidden_act]
|
||
|
|
||
|
def forward(self, x):
|
||
|
if self.config.pretraining_tp > 1:
|
||
|
slice = self.intermediate_size // self.config.pretraining_tp
|
||
|
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
|
||
|
up_proj_slices = self.up_proj.weight.split(slice, dim=0)
|
||
|
down_proj_slices = self.down_proj.weight.split(slice, dim=1)
|
||
|
|
||
|
gate_proj = torch.cat(
|
||
|
[F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
|
||
|
)
|
||
|
up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
|
||
|
|
||
|
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
|
||
|
down_proj = [
|
||
|
F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
|
||
|
]
|
||
|
down_proj = sum(down_proj)
|
||
|
else:
|
||
|
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
||
|
|
||
|
return down_proj
|
||
|
|
||
|
|
||
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
||
|
"""
|
||
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
||
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
||
|
"""
|
||
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
||
|
if n_rep == 1:
|
||
|
return hidden_states
|
||
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
||
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
||
|
|
||
|
|
||
|
class LlamaAttention(nn.Module):
|
||
|
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
||
|
|
||
|
def __init__(self, config: LlamaConfig, layer_idx: Optional[int] = None):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.layer_idx = layer_idx
|
||
|
if layer_idx is None:
|
||
|
logger.warning_once(
|
||
|
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
||
|
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
||
|
"when creating this class."
|
||
|
)
|
||
|
|
||
|
self.attention_dropout = config.attention_dropout
|
||
|
self.hidden_size = config.hidden_size
|
||
|
self.num_heads = config.num_attention_heads
|
||
|
self.head_dim = self.hidden_size // self.num_heads
|
||
|
self.num_key_value_heads = config.num_key_value_heads
|
||
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
||
|
self.max_position_embeddings = config.max_position_embeddings
|
||
|
self.rope_theta = config.rope_theta
|
||
|
self.is_causal = True
|
||
|
|
||
|
if (self.head_dim * self.num_heads) != self.hidden_size:
|
||
|
raise ValueError(
|
||
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
||
|
f" and `num_heads`: {self.num_heads})."
|
||
|
)
|
||
|
|
||
|
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
|
||
|
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
||
|
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
||
|
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.attention_bias)
|
||
|
self._init_rope()
|
||
|
|
||
|
def _init_rope(self):
|
||
|
if self.config.rope_scaling is None:
|
||
|
self.rotary_emb = LlamaRotaryEmbedding(
|
||
|
self.head_dim,
|
||
|
max_position_embeddings=self.max_position_embeddings,
|
||
|
base=self.rope_theta,
|
||
|
)
|
||
|
else:
|
||
|
scaling_type = self.config.rope_scaling["type"]
|
||
|
scaling_factor = self.config.rope_scaling["factor"]
|
||
|
if scaling_type == "linear":
|
||
|
self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
|
||
|
self.head_dim,
|
||
|
max_position_embeddings=self.max_position_embeddings,
|
||
|
scaling_factor=scaling_factor,
|
||
|
base=self.rope_theta,
|
||
|
)
|
||
|
elif scaling_type == "dynamic":
|
||
|
self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
|
||
|
self.head_dim,
|
||
|
max_position_embeddings=self.max_position_embeddings,
|
||
|
scaling_factor=scaling_factor,
|
||
|
base=self.rope_theta,
|
||
|
)
|
||
|
else:
|
||
|
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
past_key_value: Optional[Cache] = None,
|
||
|
output_attentions: bool = False,
|
||
|
use_cache: bool = False,
|
||
|
cache_position: Optional[torch.LongTensor] = None,
|
||
|
**kwargs,
|
||
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||
|
bsz, q_len, _ = hidden_states.size()
|
||
|
|
||
|
if self.config.pretraining_tp > 1:
|
||
|
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
|
||
|
query_slices = self.q_proj.weight.split(
|
||
|
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
|
||
|
)
|
||
|
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
||
|
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
||
|
|
||
|
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
|
||
|
query_states = torch.cat(query_states, dim=-1)
|
||
|
|
||
|
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
|
||
|
key_states = torch.cat(key_states, dim=-1)
|
||
|
|
||
|
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
|
||
|
value_states = torch.cat(value_states, dim=-1)
|
||
|
|
||
|
else:
|
||
|
query_states = self.q_proj(hidden_states)
|
||
|
key_states = self.k_proj(hidden_states)
|
||
|
value_states = self.v_proj(hidden_states)
|
||
|
|
||
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||
|
|
||
|
past_key_value = getattr(self, "past_key_value", past_key_value)
|
||
|
cos, sin = self.rotary_emb(value_states, position_ids)
|
||
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
||
|
|
||
|
if past_key_value is not None:
|
||
|
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
||
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
||
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
||
|
|
||
|
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||
|
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||
|
|
||
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
||
|
|
||
|
if attention_mask is not None: # no matter the length, we just slice it
|
||
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
||
|
attn_weights = attn_weights + causal_mask
|
||
|
|
||
|
# upcast attention to fp32
|
||
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
||
|
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
||
|
attn_output = torch.matmul(attn_weights, value_states)
|
||
|
|
||
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
||
|
raise ValueError(
|
||
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
||
|
f" {attn_output.size()}"
|
||
|
)
|
||
|
|
||
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
||
|
|
||
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||
|
|
||
|
if self.config.pretraining_tp > 1:
|
||
|
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
|
||
|
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
|
||
|
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
|
||
|
else:
|
||
|
attn_output = self.o_proj(attn_output)
|
||
|
|
||
|
if not output_attentions:
|
||
|
attn_weights = None
|
||
|
|
||
|
return attn_output, attn_weights, past_key_value
|
||
|
|
||
|
|
||
|
class LlamaFlashAttention2(LlamaAttention):
|
||
|
"""
|
||
|
Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
|
||
|
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
||
|
flash attention and deal with padding tokens in case the input contains any of them.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, *args, **kwargs):
|
||
|
super().__init__(*args, **kwargs)
|
||
|
|
||
|
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
||
|
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
||
|
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
||
|
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
attention_mask: Optional[torch.LongTensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
past_key_value: Optional[Cache] = None,
|
||
|
output_attentions: bool = False,
|
||
|
use_cache: bool = False,
|
||
|
cache_position: Optional[torch.LongTensor] = None,
|
||
|
**kwargs,
|
||
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||
|
output_attentions = False
|
||
|
|
||
|
bsz, q_len, _ = hidden_states.size()
|
||
|
|
||
|
query_states = self.q_proj(hidden_states)
|
||
|
key_states = self.k_proj(hidden_states)
|
||
|
value_states = self.v_proj(hidden_states)
|
||
|
|
||
|
# Flash attention requires the input to have the shape
|
||
|
# batch_size x seq_length x head_dim x hidden_dim
|
||
|
# therefore we just need to keep the original shape
|
||
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||
|
|
||
|
cos, sin = self.rotary_emb(value_states, position_ids)
|
||
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
||
|
|
||
|
past_key_value = getattr(self, "past_key_value", past_key_value)
|
||
|
|
||
|
if past_key_value is not None:
|
||
|
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
||
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
||
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
||
|
|
||
|
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
||
|
# to be able to avoid many of these transpose/reshape/view.
|
||
|
query_states = query_states.transpose(1, 2)
|
||
|
key_states = key_states.transpose(1, 2)
|
||
|
value_states = value_states.transpose(1, 2)
|
||
|
|
||
|
dropout_rate = self.attention_dropout if self.training else 0.0
|
||
|
|
||
|
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
||
|
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
||
|
# cast them back in the correct dtype just to be sure everything works as expected.
|
||
|
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
||
|
# in fp32. (LlamaRMSNorm handles it correctly)
|
||
|
|
||
|
input_dtype = query_states.dtype
|
||
|
if input_dtype == torch.float32:
|
||
|
if torch.is_autocast_enabled():
|
||
|
target_dtype = torch.get_autocast_gpu_dtype()
|
||
|
# Handle the case where the model is quantized
|
||
|
elif hasattr(self.config, "_pre_quantization_dtype"):
|
||
|
target_dtype = self.config._pre_quantization_dtype
|
||
|
else:
|
||
|
target_dtype = self.q_proj.weight.dtype
|
||
|
|
||
|
logger.warning_once(
|
||
|
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
||
|
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
||
|
f" {target_dtype}."
|
||
|
)
|
||
|
|
||
|
query_states = query_states.to(target_dtype)
|
||
|
key_states = key_states.to(target_dtype)
|
||
|
value_states = value_states.to(target_dtype)
|
||
|
|
||
|
attn_output = self._flash_attention_forward(
|
||
|
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
|
||
|
)
|
||
|
|
||
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
||
|
attn_output = self.o_proj(attn_output)
|
||
|
|
||
|
if not output_attentions:
|
||
|
attn_weights = None
|
||
|
|
||
|
return attn_output, attn_weights, past_key_value
|
||
|
|
||
|
def _flash_attention_forward(
|
||
|
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
||
|
):
|
||
|
"""
|
||
|
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
||
|
first unpad the input, then computes the attention scores and pad the final attention scores.
|
||
|
|
||
|
Args:
|
||
|
query_states (`torch.Tensor`):
|
||
|
Input query states to be passed to Flash Attention API
|
||
|
key_states (`torch.Tensor`):
|
||
|
Input key states to be passed to Flash Attention API
|
||
|
value_states (`torch.Tensor`):
|
||
|
Input value states to be passed to Flash Attention API
|
||
|
attention_mask (`torch.Tensor`):
|
||
|
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
||
|
position of padding tokens and 1 for the position of non-padding tokens.
|
||
|
dropout (`float`):
|
||
|
Attention dropout
|
||
|
softmax_scale (`float`, *optional*):
|
||
|
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
||
|
"""
|
||
|
if not self._flash_attn_uses_top_left_mask:
|
||
|
causal = self.is_causal
|
||
|
else:
|
||
|
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
||
|
causal = self.is_causal and query_length != 1
|
||
|
|
||
|
# Contains at least one padding token in the sequence
|
||
|
if attention_mask is not None:
|
||
|
batch_size = query_states.shape[0]
|
||
|
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
||
|
query_states, key_states, value_states, attention_mask, query_length
|
||
|
)
|
||
|
|
||
|
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
||
|
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
||
|
|
||
|
attn_output_unpad = flash_attn_varlen_func(
|
||
|
query_states,
|
||
|
key_states,
|
||
|
value_states,
|
||
|
cu_seqlens_q=cu_seqlens_q,
|
||
|
cu_seqlens_k=cu_seqlens_k,
|
||
|
max_seqlen_q=max_seqlen_in_batch_q,
|
||
|
max_seqlen_k=max_seqlen_in_batch_k,
|
||
|
dropout_p=dropout,
|
||
|
softmax_scale=softmax_scale,
|
||
|
causal=causal,
|
||
|
)
|
||
|
|
||
|
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
||
|
else:
|
||
|
attn_output = flash_attn_func(
|
||
|
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
||
|
)
|
||
|
|
||
|
return attn_output
|
||
|
|
||
|
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
||
|
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
||
|
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
||
|
|
||
|
key_layer = index_first_axis(
|
||
|
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
||
|
)
|
||
|
value_layer = index_first_axis(
|
||
|
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
||
|
)
|
||
|
if query_length == kv_seq_len:
|
||
|
query_layer = index_first_axis(
|
||
|
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
||
|
)
|
||
|
cu_seqlens_q = cu_seqlens_k
|
||
|
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
||
|
indices_q = indices_k
|
||
|
elif query_length == 1:
|
||
|
max_seqlen_in_batch_q = 1
|
||
|
cu_seqlens_q = torch.arange(
|
||
|
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
||
|
) # There is a memcpy here, that is very bad.
|
||
|
indices_q = cu_seqlens_q[:-1]
|
||
|
query_layer = query_layer.squeeze(1)
|
||
|
else:
|
||
|
# The -q_len: slice assumes left padding.
|
||
|
attention_mask = attention_mask[:, -query_length:]
|
||
|
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
||
|
|
||
|
return (
|
||
|
query_layer,
|
||
|
key_layer,
|
||
|
value_layer,
|
||
|
indices_q,
|
||
|
(cu_seqlens_q, cu_seqlens_k),
|
||
|
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
||
|
)
|
||
|
|
||
|
|
||
|
class LlamaSdpaAttention(LlamaAttention):
|
||
|
"""
|
||
|
Llama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
||
|
`LlamaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
||
|
SDPA API.
|
||
|
"""
|
||
|
|
||
|
# Adapted from LlamaAttention.forward
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
past_key_value: Optional[Cache] = None,
|
||
|
output_attentions: bool = False,
|
||
|
use_cache: bool = False,
|
||
|
cache_position: Optional[torch.LongTensor] = None,
|
||
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||
|
if output_attentions:
|
||
|
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
||
|
logger.warning_once(
|
||
|
"LlamaModel is using LlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
||
|
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
||
|
)
|
||
|
return super().forward(
|
||
|
hidden_states=hidden_states,
|
||
|
attention_mask=attention_mask,
|
||
|
position_ids=position_ids,
|
||
|
past_key_value=past_key_value,
|
||
|
output_attentions=output_attentions,
|
||
|
use_cache=use_cache,
|
||
|
cache_position=cache_position,
|
||
|
)
|
||
|
|
||
|
bsz, q_len, _ = hidden_states.size()
|
||
|
|
||
|
query_states = self.q_proj(hidden_states)
|
||
|
key_states = self.k_proj(hidden_states)
|
||
|
value_states = self.v_proj(hidden_states)
|
||
|
|
||
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||
|
|
||
|
cos, sin = self.rotary_emb(value_states, position_ids)
|
||
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
||
|
|
||
|
# In case static cache is used, it is an instance attribute.
|
||
|
past_key_value = getattr(self, "past_key_value", past_key_value)
|
||
|
|
||
|
if past_key_value is not None:
|
||
|
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
||
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
||
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
||
|
|
||
|
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||
|
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||
|
|
||
|
causal_mask = attention_mask
|
||
|
if attention_mask is not None:
|
||
|
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
|
||
|
|
||
|
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
||
|
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
||
|
if query_states.device.type == "cuda" and causal_mask is not None:
|
||
|
query_states = query_states.contiguous()
|
||
|
key_states = key_states.contiguous()
|
||
|
value_states = value_states.contiguous()
|
||
|
|
||
|
# In case we are not compiling, we may set `causal_mask` to None, which is required to dispatch to SDPA's Flash Attention 2 backend, rather
|
||
|
# relying on the `is_causal` argument.
|
||
|
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
||
|
query_states,
|
||
|
key_states,
|
||
|
value_states,
|
||
|
attn_mask=causal_mask,
|
||
|
dropout_p=self.attention_dropout if self.training else 0.0,
|
||
|
is_causal=causal_mask is None and q_len > 1,
|
||
|
)
|
||
|
|
||
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
||
|
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
||
|
|
||
|
attn_output = self.o_proj(attn_output)
|
||
|
|
||
|
return attn_output, None, past_key_value
|
||
|
|
||
|
|
||
|
LLAMA_ATTENTION_CLASSES = {
|
||
|
"eager": LlamaAttention,
|
||
|
"flash_attention_2": LlamaFlashAttention2,
|
||
|
"sdpa": LlamaSdpaAttention,
|
||
|
}
|
||
|
|
||
|
|
||
|
class LlamaDecoderLayer(nn.Module):
|
||
|
def __init__(self, config: LlamaConfig, layer_idx: int):
|
||
|
super().__init__()
|
||
|
self.hidden_size = config.hidden_size
|
||
|
|
||
|
self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
|
||
|
|
||
|
self.mlp = LlamaMLP(config)
|
||
|
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||
|
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||
|
output_attentions: Optional[bool] = False,
|
||
|
use_cache: Optional[bool] = False,
|
||
|
cache_position: Optional[torch.LongTensor] = None,
|
||
|
**kwargs,
|
||
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||
|
"""
|
||
|
Args:
|
||
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
||
|
attention_mask (`torch.FloatTensor`, *optional*):
|
||
|
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
||
|
query_sequence_length, key_sequence_length)` if default attention is used.
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||
|
returned tensors for more detail.
|
||
|
use_cache (`bool`, *optional*):
|
||
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
||
|
(see `past_key_values`).
|
||
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
||
|
"""
|
||
|
if "padding_mask" in kwargs:
|
||
|
warnings.warn(
|
||
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
||
|
)
|
||
|
|
||
|
residual = hidden_states
|
||
|
|
||
|
hidden_states = self.input_layernorm(hidden_states)
|
||
|
|
||
|
# Self Attention
|
||
|
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
||
|
hidden_states=hidden_states,
|
||
|
attention_mask=attention_mask,
|
||
|
position_ids=position_ids,
|
||
|
past_key_value=past_key_value,
|
||
|
output_attentions=output_attentions,
|
||
|
use_cache=use_cache,
|
||
|
cache_position=cache_position,
|
||
|
**kwargs,
|
||
|
)
|
||
|
hidden_states = residual + hidden_states
|
||
|
|
||
|
# Fully Connected
|
||
|
residual = hidden_states
|
||
|
hidden_states = self.post_attention_layernorm(hidden_states)
|
||
|
hidden_states = self.mlp(hidden_states)
|
||
|
hidden_states = residual + hidden_states
|
||
|
|
||
|
outputs = (hidden_states,)
|
||
|
|
||
|
if output_attentions:
|
||
|
outputs += (self_attn_weights,)
|
||
|
|
||
|
if use_cache:
|
||
|
outputs += (present_key_value,)
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
LLAMA_START_DOCSTRING = r"""
|
||
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
||
|
etc.)
|
||
|
|
||
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
||
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
||
|
and behavior.
|
||
|
|
||
|
Parameters:
|
||
|
config ([`LlamaConfig`]):
|
||
|
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
||
|
load the weights associated with the model, only the configuration. Check out the
|
||
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||
|
"""
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
||
|
LLAMA_START_DOCSTRING,
|
||
|
)
|
||
|
class LlamaPreTrainedModel(PreTrainedModel):
|
||
|
config_class = LlamaConfig
|
||
|
base_model_prefix = "model"
|
||
|
supports_gradient_checkpointing = True
|
||
|
_no_split_modules = ["LlamaDecoderLayer"]
|
||
|
_skip_keys_device_placement = ["past_key_values"]
|
||
|
_supports_flash_attn_2 = True
|
||
|
_supports_sdpa = True
|
||
|
_supports_cache_class = True
|
||
|
|
||
|
def _init_weights(self, module):
|
||
|
std = self.config.initializer_range
|
||
|
if isinstance(module, nn.Linear):
|
||
|
module.weight.data.normal_(mean=0.0, std=std)
|
||
|
if module.bias is not None:
|
||
|
module.bias.data.zero_()
|
||
|
elif isinstance(module, nn.Embedding):
|
||
|
module.weight.data.normal_(mean=0.0, std=std)
|
||
|
if module.padding_idx is not None:
|
||
|
module.weight.data[module.padding_idx].zero_()
|
||
|
|
||
|
def _setup_cache(self, cache_cls, max_batch_size, max_cache_len: Optional[int] = None):
|
||
|
if self.config._attn_implementation == "flash_attention_2" and cache_cls == StaticCache:
|
||
|
raise ValueError(
|
||
|
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
|
||
|
"make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
|
||
|
)
|
||
|
|
||
|
for layer in self.model.layers:
|
||
|
device = layer.input_layernorm.weight.device
|
||
|
if hasattr(self.config, "_pre_quantization_dtype"):
|
||
|
dtype = self.config._pre_quantization_dtype
|
||
|
else:
|
||
|
dtype = layer.self_attn.o_proj.weight.dtype
|
||
|
layer.self_attn.past_key_value = cache_cls(
|
||
|
self.config, max_batch_size, max_cache_len, device=device, dtype=dtype
|
||
|
)
|
||
|
|
||
|
def _reset_cache(self):
|
||
|
for layer in self.model.layers:
|
||
|
layer.self_attn.past_key_value = None
|
||
|
|
||
|
|
||
|
LLAMA_INPUTS_DOCSTRING = r"""
|
||
|
Args:
|
||
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
||
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
||
|
it.
|
||
|
|
||
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||
|
[`PreTrainedTokenizer.__call__`] for details.
|
||
|
|
||
|
[What are input IDs?](../glossary#input-ids)
|
||
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 for tokens that are **not masked**,
|
||
|
- 0 for tokens that are **masked**.
|
||
|
|
||
|
[What are attention masks?](../glossary#attention-mask)
|
||
|
|
||
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||
|
[`PreTrainedTokenizer.__call__`] for details.
|
||
|
|
||
|
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
||
|
`past_key_values`).
|
||
|
|
||
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
||
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
||
|
information on the default strategy.
|
||
|
|
||
|
- 1 indicates the head is **not masked**,
|
||
|
- 0 indicates the head is **masked**.
|
||
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
||
|
config.n_positions - 1]`.
|
||
|
|
||
|
[What are position IDs?](../glossary#position-ids)
|
||
|
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
||
|
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
||
|
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
||
|
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
||
|
|
||
|
Two formats are allowed:
|
||
|
- a [`~cache_utils.Cache`] instance;
|
||
|
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
||
|
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
||
|
cache format.
|
||
|
|
||
|
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
||
|
legacy cache format will be returned.
|
||
|
|
||
|
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
||
|
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
||
|
of shape `(batch_size, sequence_length)`.
|
||
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
||
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
||
|
model's internal embedding lookup matrix.
|
||
|
use_cache (`bool`, *optional*):
|
||
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
||
|
`past_key_values`).
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||
|
tensors for more detail.
|
||
|
output_hidden_states (`bool`, *optional*):
|
||
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||
|
more detail.
|
||
|
return_dict (`bool`, *optional*):
|
||
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
||
|
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
||
|
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
||
|
the complete sequence length.
|
||
|
"""
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
||
|
LLAMA_START_DOCSTRING,
|
||
|
)
|
||
|
class LlamaModel(LlamaPreTrainedModel):
|
||
|
"""
|
||
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
|
||
|
|
||
|
Args:
|
||
|
config: LlamaConfig
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: LlamaConfig):
|
||
|
super().__init__(config)
|
||
|
self.padding_idx = config.pad_token_id
|
||
|
self.vocab_size = config.vocab_size
|
||
|
|
||
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
||
|
self.layers = nn.ModuleList(
|
||
|
[LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
||
|
)
|
||
|
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||
|
self.gradient_checkpointing = False
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_input_embeddings(self):
|
||
|
return self.embed_tokens
|
||
|
|
||
|
def set_input_embeddings(self, value):
|
||
|
self.embed_tokens = value
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: torch.LongTensor = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
use_cache: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
cache_position: Optional[torch.LongTensor] = None,
|
||
|
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
if (input_ids is None) ^ (inputs_embeds is not None):
|
||
|
raise ValueError(
|
||
|
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
||
|
)
|
||
|
|
||
|
if self.gradient_checkpointing and self.training and use_cache:
|
||
|
logger.warning_once(
|
||
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
||
|
)
|
||
|
use_cache = False
|
||
|
|
||
|
if inputs_embeds is None:
|
||
|
inputs_embeds = self.embed_tokens(input_ids)
|
||
|
|
||
|
past_seen_tokens = 0
|
||
|
if use_cache: # kept for BC (cache positions)
|
||
|
if not isinstance(past_key_values, StaticCache):
|
||
|
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
||
|
past_seen_tokens = past_key_values.get_seq_length()
|
||
|
|
||
|
if cache_position is None:
|
||
|
if isinstance(past_key_values, StaticCache):
|
||
|
raise ValueError("cache_position is a required argument when using StaticCache.")
|
||
|
cache_position = torch.arange(
|
||
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
||
|
)
|
||
|
|
||
|
if position_ids is None:
|
||
|
position_ids = cache_position.unsqueeze(0)
|
||
|
|
||
|
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position, past_seen_tokens)
|
||
|
|
||
|
# embed positions
|
||
|
hidden_states = inputs_embeds
|
||
|
|
||
|
# decoder layers
|
||
|
all_hidden_states = () if output_hidden_states else None
|
||
|
all_self_attns = () if output_attentions else None
|
||
|
next_decoder_cache = None
|
||
|
|
||
|
for decoder_layer in self.layers:
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states += (hidden_states,)
|
||
|
|
||
|
if self.gradient_checkpointing and self.training:
|
||
|
layer_outputs = self._gradient_checkpointing_func(
|
||
|
decoder_layer.__call__,
|
||
|
hidden_states,
|
||
|
causal_mask,
|
||
|
position_ids,
|
||
|
past_key_values,
|
||
|
output_attentions,
|
||
|
use_cache,
|
||
|
cache_position,
|
||
|
)
|
||
|
else:
|
||
|
layer_outputs = decoder_layer(
|
||
|
hidden_states,
|
||
|
attention_mask=causal_mask,
|
||
|
position_ids=position_ids,
|
||
|
past_key_value=past_key_values,
|
||
|
output_attentions=output_attentions,
|
||
|
use_cache=use_cache,
|
||
|
cache_position=cache_position,
|
||
|
)
|
||
|
|
||
|
hidden_states = layer_outputs[0]
|
||
|
|
||
|
if use_cache:
|
||
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
||
|
|
||
|
if output_attentions:
|
||
|
all_self_attns += (layer_outputs[1],)
|
||
|
|
||
|
hidden_states = self.norm(hidden_states)
|
||
|
|
||
|
# add hidden states from the last decoder layer
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states += (hidden_states,)
|
||
|
|
||
|
next_cache = None
|
||
|
if use_cache:
|
||
|
next_cache = (
|
||
|
next_decoder_cache.to_legacy_cache() if isinstance(next_decoder_cache, Cache) else next_decoder_cache
|
||
|
)
|
||
|
if not return_dict:
|
||
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
||
|
return BaseModelOutputWithPast(
|
||
|
last_hidden_state=hidden_states,
|
||
|
past_key_values=next_cache,
|
||
|
hidden_states=all_hidden_states,
|
||
|
attentions=all_self_attns,
|
||
|
)
|
||
|
|
||
|
def _update_causal_mask(
|
||
|
self,
|
||
|
attention_mask: torch.Tensor,
|
||
|
input_tensor: torch.Tensor,
|
||
|
cache_position: torch.Tensor,
|
||
|
past_seen_tokens: int,
|
||
|
):
|
||
|
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
|
||
|
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
|
||
|
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
|
||
|
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
|
||
|
|
||
|
if self.config._attn_implementation == "flash_attention_2":
|
||
|
if attention_mask is not None and 0.0 in attention_mask:
|
||
|
return attention_mask
|
||
|
return None
|
||
|
|
||
|
if self.config._attn_implementation == "sdpa":
|
||
|
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument,
|
||
|
# in order to dispatch on Flash Attention 2.
|
||
|
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
||
|
attention_mask, inputs_embeds=input_tensor, past_key_values_length=past_seen_tokens
|
||
|
):
|
||
|
return None
|
||
|
|
||
|
dtype, device = input_tensor.dtype, input_tensor.device
|
||
|
min_dtype = torch.finfo(dtype).min
|
||
|
sequence_length = input_tensor.shape[1]
|
||
|
if hasattr(getattr(self.layers[0], "self_attn", {}), "past_key_value"): # static cache
|
||
|
target_length = self.config.max_position_embeddings
|
||
|
else: # dynamic cache
|
||
|
target_length = (
|
||
|
attention_mask.shape[-1]
|
||
|
if isinstance(attention_mask, torch.Tensor)
|
||
|
else past_seen_tokens + sequence_length + 1
|
||
|
)
|
||
|
|
||
|
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
|
||
|
if sequence_length != 1:
|
||
|
causal_mask = torch.triu(causal_mask, diagonal=1)
|
||
|
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
||
|
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
|
||
|
if attention_mask is not None:
|
||
|
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
||
|
if attention_mask.dim() == 2:
|
||
|
mask_length = attention_mask.shape[-1]
|
||
|
padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0)
|
||
|
causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype)
|
||
|
elif attention_mask.dim() == 4:
|
||
|
# backwards compatibility: we allow passing a 4D attention mask shorter than the input length with
|
||
|
# cache. In that case, the 4D attention mask attends to the newest tokens only.
|
||
|
if attention_mask.shape[-2] < cache_position[0] + sequence_length:
|
||
|
offset = cache_position[0]
|
||
|
else:
|
||
|
offset = 0
|
||
|
mask_shape = attention_mask.shape
|
||
|
mask_slice = (attention_mask.eq(0.0)).to(dtype=dtype) * min_dtype
|
||
|
causal_mask[
|
||
|
: mask_shape[0], : mask_shape[1], offset : mask_shape[2] + offset, : mask_shape[3]
|
||
|
] = mask_slice
|
||
|
|
||
|
if (
|
||
|
self.config._attn_implementation == "sdpa"
|
||
|
and attention_mask is not None
|
||
|
and attention_mask.device.type == "cuda"
|
||
|
):
|
||
|
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
||
|
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
||
|
# Details: https://github.com/pytorch/pytorch/issues/110213
|
||
|
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
||
|
|
||
|
return causal_mask
|
||
|
|
||
|
|
||
|
class LlamaForCausalLM(LlamaPreTrainedModel):
|
||
|
_tied_weights_keys = ["lm_head.weight"]
|
||
|
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
self.model = LlamaModel(config)
|
||
|
self.vocab_size = config.vocab_size
|
||
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_input_embeddings(self):
|
||
|
return self.model.embed_tokens
|
||
|
|
||
|
def set_input_embeddings(self, value):
|
||
|
self.model.embed_tokens = value
|
||
|
|
||
|
def get_output_embeddings(self):
|
||
|
return self.lm_head
|
||
|
|
||
|
def set_output_embeddings(self, new_embeddings):
|
||
|
self.lm_head = new_embeddings
|
||
|
|
||
|
def set_decoder(self, decoder):
|
||
|
self.model = decoder
|
||
|
|
||
|
def get_decoder(self):
|
||
|
return self.model
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: torch.LongTensor = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
labels: Optional[torch.LongTensor] = None,
|
||
|
use_cache: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
cache_position: Optional[torch.LongTensor] = None,
|
||
|
) -> Union[Tuple, CausalLMOutputWithPast]:
|
||
|
r"""
|
||
|
Args:
|
||
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
||
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
||
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
||
|
|
||
|
Returns:
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
||
|
|
||
|
>>> model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
|
||
|
>>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
|
||
|
|
||
|
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
||
|
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
||
|
|
||
|
>>> # Generate
|
||
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
||
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
||
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
||
|
```"""
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
||
|
outputs = self.model(
|
||
|
input_ids=input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
position_ids=position_ids,
|
||
|
past_key_values=past_key_values,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
use_cache=use_cache,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
cache_position=cache_position,
|
||
|
)
|
||
|
|
||
|
hidden_states = outputs[0]
|
||
|
if self.config.pretraining_tp > 1:
|
||
|
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
||
|
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
||
|
logits = torch.cat(logits, dim=-1)
|
||
|
else:
|
||
|
logits = self.lm_head(hidden_states)
|
||
|
logits = logits.float()
|
||
|
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
# Shift so that tokens < n predict n
|
||
|
shift_logits = logits[..., :-1, :].contiguous()
|
||
|
shift_labels = labels[..., 1:].contiguous()
|
||
|
# Flatten the tokens
|
||
|
loss_fct = CrossEntropyLoss()
|
||
|
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
||
|
shift_labels = shift_labels.view(-1)
|
||
|
# Enable model parallelism
|
||
|
shift_labels = shift_labels.to(shift_logits.device)
|
||
|
loss = loss_fct(shift_logits, shift_labels)
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (logits,) + outputs[1:]
|
||
|
return (loss,) + output if loss is not None else output
|
||
|
|
||
|
return CausalLMOutputWithPast(
|
||
|
loss=loss,
|
||
|
logits=logits,
|
||
|
past_key_values=outputs.past_key_values,
|
||
|
hidden_states=outputs.hidden_states,
|
||
|
attentions=outputs.attentions,
|
||
|
)
|
||
|
|
||
|
def prepare_inputs_for_generation(
|
||
|
self,
|
||
|
input_ids,
|
||
|
past_key_values=None,
|
||
|
attention_mask=None,
|
||
|
inputs_embeds=None,
|
||
|
cache_position=None,
|
||
|
use_cache=True,
|
||
|
**kwargs,
|
||
|
):
|
||
|
# With static cache, the `past_key_values` is None
|
||
|
# TODO joao: standardize interface for the different Cache classes and remove of this if
|
||
|
has_static_cache = False
|
||
|
if past_key_values is None:
|
||
|
past_key_values = getattr(getattr(self.model.layers[0], "self_attn", {}), "past_key_value", None)
|
||
|
has_static_cache = past_key_values is not None
|
||
|
|
||
|
past_length = 0
|
||
|
if past_key_values is not None:
|
||
|
if isinstance(past_key_values, Cache):
|
||
|
past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
|
||
|
max_cache_length = (
|
||
|
torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
|
||
|
if past_key_values.get_max_length() is not None
|
||
|
else None
|
||
|
)
|
||
|
cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
|
||
|
# TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
|
||
|
else:
|
||
|
cache_length = past_length = past_key_values[0][0].shape[2]
|
||
|
max_cache_length = None
|
||
|
|
||
|
# Keep only the unprocessed tokens:
|
||
|
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
||
|
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
||
|
# input)
|
||
|
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
||
|
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
||
|
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
||
|
# input_ids based on the past_length.
|
||
|
elif past_length < input_ids.shape[1]:
|
||
|
input_ids = input_ids[:, past_length:]
|
||
|
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
||
|
|
||
|
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
||
|
if (
|
||
|
max_cache_length is not None
|
||
|
and attention_mask is not None
|
||
|
and cache_length + input_ids.shape[1] > max_cache_length
|
||
|
):
|
||
|
attention_mask = attention_mask[:, -max_cache_length:]
|
||
|
|
||
|
position_ids = kwargs.get("position_ids", None)
|
||
|
if attention_mask is not None and position_ids is None:
|
||
|
# create position_ids on the fly for batch generation
|
||
|
position_ids = attention_mask.long().cumsum(-1) - 1
|
||
|
position_ids.masked_fill_(attention_mask == 0, 1)
|
||
|
if past_key_values:
|
||
|
position_ids = position_ids[:, -input_ids.shape[1] :]
|
||
|
|
||
|
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
||
|
if inputs_embeds is not None and past_key_values is None:
|
||
|
model_inputs = {"inputs_embeds": inputs_embeds}
|
||
|
else:
|
||
|
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
||
|
# recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
|
||
|
# TODO: use `next_tokens` directly instead.
|
||
|
model_inputs = {"input_ids": input_ids.contiguous()}
|
||
|
|
||
|
input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
|
||
|
if cache_position is None:
|
||
|
cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
|
||
|
elif use_cache:
|
||
|
cache_position = cache_position[-input_length:]
|
||
|
|
||
|
if has_static_cache:
|
||
|
past_key_values = None
|
||
|
|
||
|
model_inputs.update(
|
||
|
{
|
||
|
"position_ids": position_ids,
|
||
|
"cache_position": cache_position,
|
||
|
"past_key_values": past_key_values,
|
||
|
"use_cache": use_cache,
|
||
|
"attention_mask": attention_mask,
|
||
|
}
|
||
|
)
|
||
|
return model_inputs
|
||
|
|
||
|
@staticmethod
|
||
|
def _reorder_cache(past_key_values, beam_idx):
|
||
|
reordered_past = ()
|
||
|
for layer_past in past_key_values:
|
||
|
reordered_past += (
|
||
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
||
|
)
|
||
|
return reordered_past
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
The LLaMa Model transformer with a sequence classification head on top (linear layer).
|
||
|
|
||
|
[`LlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
||
|
(e.g. GPT-2) do.
|
||
|
|
||
|
Since it does classification on the last token, it requires to know the position of the last token. If a
|
||
|
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
||
|
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
||
|
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
||
|
each row of the batch).
|
||
|
""",
|
||
|
LLAMA_START_DOCSTRING,
|
||
|
)
|
||
|
class LlamaForSequenceClassification(LlamaPreTrainedModel):
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
self.num_labels = config.num_labels
|
||
|
self.model = LlamaModel(config)
|
||
|
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_input_embeddings(self):
|
||
|
return self.model.embed_tokens
|
||
|
|
||
|
def set_input_embeddings(self, value):
|
||
|
self.model.embed_tokens = value
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: torch.LongTensor = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
labels: Optional[torch.LongTensor] = None,
|
||
|
use_cache: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
||
|
r"""
|
||
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
||
|
"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
transformer_outputs = self.model(
|
||
|
input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
position_ids=position_ids,
|
||
|
past_key_values=past_key_values,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
use_cache=use_cache,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
hidden_states = transformer_outputs[0]
|
||
|
logits = self.score(hidden_states)
|
||
|
|
||
|
if input_ids is not None:
|
||
|
batch_size = input_ids.shape[0]
|
||
|
else:
|
||
|
batch_size = inputs_embeds.shape[0]
|
||
|
|
||
|
if self.config.pad_token_id is None and batch_size != 1:
|
||
|
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
||
|
if self.config.pad_token_id is None:
|
||
|
sequence_lengths = -1
|
||
|
else:
|
||
|
if input_ids is not None:
|
||
|
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
||
|
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
||
|
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
||
|
sequence_lengths = sequence_lengths.to(logits.device)
|
||
|
else:
|
||
|
sequence_lengths = -1
|
||
|
|
||
|
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
||
|
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
labels = labels.to(logits.device)
|
||
|
if self.config.problem_type is None:
|
||
|
if self.num_labels == 1:
|
||
|
self.config.problem_type = "regression"
|
||
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
||
|
self.config.problem_type = "single_label_classification"
|
||
|
else:
|
||
|
self.config.problem_type = "multi_label_classification"
|
||
|
|
||
|
if self.config.problem_type == "regression":
|
||
|
loss_fct = MSELoss()
|
||
|
if self.num_labels == 1:
|
||
|
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
||
|
else:
|
||
|
loss = loss_fct(pooled_logits, labels)
|
||
|
elif self.config.problem_type == "single_label_classification":
|
||
|
loss_fct = CrossEntropyLoss()
|
||
|
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
||
|
elif self.config.problem_type == "multi_label_classification":
|
||
|
loss_fct = BCEWithLogitsLoss()
|
||
|
loss = loss_fct(pooled_logits, labels)
|
||
|
if not return_dict:
|
||
|
output = (pooled_logits,) + transformer_outputs[1:]
|
||
|
return ((loss,) + output) if loss is not None else output
|
||
|
|
||
|
return SequenceClassifierOutputWithPast(
|
||
|
loss=loss,
|
||
|
logits=pooled_logits,
|
||
|
past_key_values=transformer_outputs.past_key_values,
|
||
|
hidden_states=transformer_outputs.hidden_states,
|
||
|
attentions=transformer_outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
The Llama Model transformer with a span classification head on top for extractive question-answering tasks like
|
||
|
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
||
|
""",
|
||
|
LLAMA_START_DOCSTRING,
|
||
|
)
|
||
|
class LlamaForQuestionAnswering(LlamaPreTrainedModel):
|
||
|
base_model_prefix = "transformer"
|
||
|
|
||
|
# Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->Llama
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
self.transformer = LlamaModel(config)
|
||
|
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_input_embeddings(self):
|
||
|
return self.transformer.embed_tokens
|
||
|
|
||
|
def set_input_embeddings(self, value):
|
||
|
self.transformer.embed_tokens = value
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
start_positions: Optional[torch.LongTensor] = None,
|
||
|
end_positions: Optional[torch.LongTensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
||
|
r"""
|
||
|
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
||
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
||
|
are not taken into account for computing the loss.
|
||
|
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
||
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
||
|
are not taken into account for computing the loss.
|
||
|
"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
outputs = self.transformer(
|
||
|
input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
position_ids=position_ids,
|
||
|
past_key_values=past_key_values,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
sequence_output = outputs[0]
|
||
|
|
||
|
logits = self.qa_outputs(sequence_output)
|
||
|
start_logits, end_logits = logits.split(1, dim=-1)
|
||
|
start_logits = start_logits.squeeze(-1).contiguous()
|
||
|
end_logits = end_logits.squeeze(-1).contiguous()
|
||
|
|
||
|
total_loss = None
|
||
|
if start_positions is not None and end_positions is not None:
|
||
|
# If we are on multi-GPU, split add a dimension
|
||
|
if len(start_positions.size()) > 1:
|
||
|
start_positions = start_positions.squeeze(-1).to(start_logits.device)
|
||
|
if len(end_positions.size()) > 1:
|
||
|
end_positions = end_positions.squeeze(-1).to(end_logits.device)
|
||
|
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
||
|
ignored_index = start_logits.size(1)
|
||
|
start_positions = start_positions.clamp(0, ignored_index)
|
||
|
end_positions = end_positions.clamp(0, ignored_index)
|
||
|
|
||
|
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
||
|
start_loss = loss_fct(start_logits, start_positions)
|
||
|
end_loss = loss_fct(end_logits, end_positions)
|
||
|
total_loss = (start_loss + end_loss) / 2
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (start_logits, end_logits) + outputs[2:]
|
||
|
return ((total_loss,) + output) if total_loss is not None else output
|
||
|
|
||
|
return QuestionAnsweringModelOutput(
|
||
|
loss=total_loss,
|
||
|
start_logits=start_logits,
|
||
|
end_logits=end_logits,
|
||
|
hidden_states=outputs.hidden_states,
|
||
|
attentions=outputs.attentions,
|
||
|
)
|