first commit
This commit is contained in:
parent
ee16787cff
commit
2371e46c89
71
README.md
71
README.md
|
@ -1,3 +1,70 @@
|
|||
# Llama3-Chinese-8B-Instruct_a13568140478509056667206
|
||||
---
|
||||
license: Apache License 2.0
|
||||
---
|
||||
### Clone with HTTP
|
||||
```bash
|
||||
git clone https://www.modelscope.cn/FlagAlpha/Llama3-Chinese-8B-Instruct.git
|
||||
```
|
||||
|
||||
Llama3-Chinese-8B基于Llama3-8B的中文对话模型,由Llama中文社区和AtomEcho(原子回声)联合研发
|
||||
# Llama3-Chinese-8B
|
||||
|
||||
Llama3-Chinese-8B基于Llama3-8B的中文对话模型,由Llama中文社区和AtomEcho(原子回声)联合研发,我们会持续提供更新的模型参数,模型训练过程见(https://llama.family)。
|
||||
|
||||
模型的部署、训练、微调等方法详见Llama中文社区GitHub仓库:https://github.com/LlamaFamily/Llama-Chinese
|
||||
|
||||
## 在线体验
|
||||
|
||||
https://llama.family/chat/#/
|
||||
|
||||
## 如何使用
|
||||
|
||||
下载模型
|
||||
```
|
||||
git clone https://www.modelscope.cn/FlagAlpha/Llama3-Chinese-8B-Instruct.git
|
||||
```
|
||||
|
||||
使用
|
||||
```
|
||||
import transformers
|
||||
import torch
|
||||
|
||||
|
||||
model_id = "./Llama3-Chinese-8B-Instruct"
|
||||
|
||||
pipeline = transformers.pipeline(
|
||||
"text-generation",
|
||||
model=model_id,
|
||||
model_kwargs={"torch_dtype": torch.float16},
|
||||
device="cuda",
|
||||
)
|
||||
|
||||
|
||||
messages = [{"role": "system", "content": ""}]
|
||||
|
||||
messages.append(
|
||||
{"role": "user", "content": "介绍一下机器学习"}
|
||||
)
|
||||
|
||||
prompt = pipeline.tokenizer.apply_chat_template(
|
||||
messages,
|
||||
tokenize=False,
|
||||
add_generation_prompt=True
|
||||
)
|
||||
|
||||
terminators = [
|
||||
pipeline.tokenizer.eos_token_id,
|
||||
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
||||
]
|
||||
outputs = pipeline(
|
||||
prompt,
|
||||
max_new_tokens=512,
|
||||
eos_token_id=terminators,
|
||||
do_sample=True,
|
||||
temperature=0.6,
|
||||
top_p=0.9
|
||||
)
|
||||
|
||||
content = outputs[0]["generated_text"][len(prompt):]
|
||||
|
||||
print(content)
|
||||
```
|
||||
|
|
|
@ -0,0 +1,34 @@
|
|||
{
|
||||
"_name_or_path": "/data/zhangzheng/model/Meta-Llama-3-8B-Instruct",
|
||||
"architectures": [
|
||||
"LlamaForCausalLM"
|
||||
],
|
||||
"auto_map": {
|
||||
"AutoConfig":"configuration_llama.LlamaConfig",
|
||||
"AutoModel": "modeling_llama.LlamaForCausalLM",
|
||||
"AutoModelForCausalLM": "modeling_llama.LlamaForCausalLM",
|
||||
"AutoModelForSequenceClassification":"modeling_llama.LlamaForSequenceClassification"
|
||||
},
|
||||
"attention_bias": false,
|
||||
"attention_dropout": 0.0,
|
||||
"bos_token_id": 128000,
|
||||
"eos_token_id": 128001,
|
||||
"hidden_act": "silu",
|
||||
"hidden_size": 4096,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 14336,
|
||||
"max_position_embeddings": 8192,
|
||||
"model_type": "llama",
|
||||
"num_attention_heads": 32,
|
||||
"num_hidden_layers": 32,
|
||||
"num_key_value_heads": 8,
|
||||
"pretraining_tp": 1,
|
||||
"rms_norm_eps": 1e-05,
|
||||
"rope_scaling": null,
|
||||
"rope_theta": 500000.0,
|
||||
"tie_word_embeddings": false,
|
||||
"torch_dtype": "float16",
|
||||
"transformers_version": "4.39.0",
|
||||
"use_cache": true,
|
||||
"vocab_size": 128256
|
||||
}
|
|
@ -0,0 +1,11 @@
|
|||
{
|
||||
"framework": "pytorch",
|
||||
"task": "text-generation",
|
||||
"model": {
|
||||
"type": "Llama3-Chinese-8B"
|
||||
},
|
||||
"pipeline": {
|
||||
"type": "Llama3-Chinese-8B-pipe"
|
||||
},
|
||||
"allow_remote": true
|
||||
}
|
|
@ -0,0 +1,191 @@
|
|||
# coding=utf-8
|
||||
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||
# and OPT implementations in this library. It has been modified from its
|
||||
# original forms to accommodate minor architectural differences compared
|
||||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" LLaMA model configuration"""
|
||||
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
from transformers.utils import logging
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {} # noqa: F401, E402
|
||||
|
||||
|
||||
class LlamaConfig(PretrainedConfig):
|
||||
r"""
|
||||
This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
|
||||
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
||||
defaults will yield a similar configuration to that of the LLaMA-7B.
|
||||
|
||||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||
documentation from [`PretrainedConfig`] for more information.
|
||||
|
||||
|
||||
Args:
|
||||
vocab_size (`int`, *optional*, defaults to 32000):
|
||||
Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
|
||||
`inputs_ids` passed when calling [`LlamaModel`]
|
||||
hidden_size (`int`, *optional*, defaults to 4096):
|
||||
Dimension of the hidden representations.
|
||||
intermediate_size (`int`, *optional*, defaults to 11008):
|
||||
Dimension of the MLP representations.
|
||||
num_hidden_layers (`int`, *optional*, defaults to 32):
|
||||
Number of hidden layers in the Transformer decoder.
|
||||
num_attention_heads (`int`, *optional*, defaults to 32):
|
||||
Number of attention heads for each attention layer in the Transformer decoder.
|
||||
num_key_value_heads (`int`, *optional*):
|
||||
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
||||
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
||||
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
||||
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
||||
by meanpooling all the original heads within that group. For more details checkout [this
|
||||
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
||||
`num_attention_heads`.
|
||||
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
||||
The non-linear activation function (function or string) in the decoder.
|
||||
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
||||
The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
|
||||
Llama 2 up to 4096, CodeLlama up to 16384.
|
||||
initializer_range (`float`, *optional*, defaults to 0.02):
|
||||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
||||
The epsilon used by the rms normalization layers.
|
||||
use_cache (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
||||
relevant if `config.is_decoder=True`.
|
||||
pad_token_id (`int`, *optional*):
|
||||
Padding token id.
|
||||
bos_token_id (`int`, *optional*, defaults to 1):
|
||||
Beginning of stream token id.
|
||||
eos_token_id (`int`, *optional*, defaults to 2):
|
||||
End of stream token id.
|
||||
pretraining_tp (`int`, *optional*, defaults to 1):
|
||||
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
||||
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to understand more about it. This value is
|
||||
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
||||
issue](https://github.com/pytorch/pytorch/issues/76232).
|
||||
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
||||
Whether to tie weight embeddings
|
||||
rope_theta (`float`, *optional*, defaults to 10000.0):
|
||||
The base period of the RoPE embeddings.
|
||||
rope_scaling (`Dict`, *optional*):
|
||||
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
||||
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
||||
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
||||
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
||||
these scaling strategies behave:
|
||||
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
||||
experimental feature, subject to breaking API changes in future versions.
|
||||
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
||||
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
||||
attention_dropout (`float`, *optional*, defaults to 0.0):
|
||||
The dropout ratio for the attention probabilities.
|
||||
|
||||
```python
|
||||
>>> from transformers import LlamaModel, LlamaConfig
|
||||
|
||||
>>> # Initializing a LLaMA llama-7b style configuration
|
||||
>>> configuration = LlamaConfig()
|
||||
|
||||
>>> # Initializing a model from the llama-7b style configuration
|
||||
>>> model = LlamaModel(configuration)
|
||||
|
||||
>>> # Accessing the model configuration
|
||||
>>> configuration = model.config
|
||||
```"""
|
||||
|
||||
model_type = "llama"
|
||||
keys_to_ignore_at_inference = ["past_key_values"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=32000,
|
||||
hidden_size=4096,
|
||||
intermediate_size=11008,
|
||||
num_hidden_layers=32,
|
||||
num_attention_heads=32,
|
||||
num_key_value_heads=None,
|
||||
hidden_act="silu",
|
||||
max_position_embeddings=2048,
|
||||
initializer_range=0.02,
|
||||
rms_norm_eps=1e-6,
|
||||
use_cache=True,
|
||||
pad_token_id=None,
|
||||
bos_token_id=1,
|
||||
eos_token_id=2,
|
||||
pretraining_tp=1,
|
||||
tie_word_embeddings=False,
|
||||
rope_theta=10000.0,
|
||||
rope_scaling=None,
|
||||
attention_bias=False,
|
||||
attention_dropout=0.0,
|
||||
**kwargs,
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.hidden_size = hidden_size
|
||||
self.intermediate_size = intermediate_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
|
||||
# for backward compatibility
|
||||
if num_key_value_heads is None:
|
||||
num_key_value_heads = num_attention_heads
|
||||
|
||||
self.num_key_value_heads = num_key_value_heads
|
||||
self.hidden_act = hidden_act
|
||||
self.initializer_range = initializer_range
|
||||
self.rms_norm_eps = rms_norm_eps
|
||||
self.pretraining_tp = pretraining_tp
|
||||
self.use_cache = use_cache
|
||||
self.rope_theta = rope_theta
|
||||
self.rope_scaling = rope_scaling
|
||||
self._rope_scaling_validation()
|
||||
self.attention_bias = attention_bias
|
||||
self.attention_dropout = attention_dropout
|
||||
|
||||
super().__init__(
|
||||
pad_token_id=pad_token_id,
|
||||
bos_token_id=bos_token_id,
|
||||
eos_token_id=eos_token_id,
|
||||
tie_word_embeddings=tie_word_embeddings,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
def _rope_scaling_validation(self):
|
||||
"""
|
||||
Validate the `rope_scaling` configuration.
|
||||
"""
|
||||
if self.rope_scaling is None:
|
||||
return
|
||||
|
||||
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
||||
raise ValueError(
|
||||
"`rope_scaling` must be a dictionary with two fields, `type` and `factor`, " f"got {self.rope_scaling}"
|
||||
)
|
||||
rope_scaling_type = self.rope_scaling.get("type", None)
|
||||
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
||||
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
||||
raise ValueError(
|
||||
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
||||
)
|
||||
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
||||
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
|
@ -0,0 +1,6 @@
|
|||
{
|
||||
"_from_model_config": true,
|
||||
"bos_token_id": 128000,
|
||||
"eos_token_id": 128001,
|
||||
"transformers_version": "4.39.0"
|
||||
}
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -0,0 +1,298 @@
|
|||
{
|
||||
"metadata": {
|
||||
"total_size": 16060522496
|
||||
},
|
||||
"weight_map": {
|
||||
"lm_head.weight": "model-00004-of-00004.safetensors",
|
||||
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.norm.weight": "model-00004-of-00004.safetensors"
|
||||
}
|
||||
}
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,16 @@
|
|||
{
|
||||
"bos_token": {
|
||||
"content": "<|begin_of_text|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
},
|
||||
"eos_token": {
|
||||
"content": "<|end_of_text|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
}
|
||||
}
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue