4.7 KiB
license | library_name | pipeline_tag | base_model | language | tags | ||||
---|---|---|---|---|---|---|---|---|---|
llama3.1 | transformers | text-generation | meta-llama/Meta-Llama-3.1-8B-Instruct |
|
|
[!CAUTION] For optimal performance, we refrain from fine-tuning the model's identity. Thus, inquiries such as "Who are you" or "Who developed you" may yield random responses that are not necessarily accurate.
[!IMPORTANT] If you enjoy our model, please give it a star on our Hugging Face repo and kindly cite our model. Your support means a lot to us. Thank you!
Updates
- 🚀🚀🚀 [July 24, 2024] We now introduce shenzhi-wang/Llama3.1-8B-Chinese-Chat! The training dataset contains >100K preference pairs, and it exhibits significant enhancements, especially in roleplay, function calling, and math capabilities!
- 🔥 We provide the official q4_k_m, q8_0, and f16 GGUF versions of Llama3.1-8B-Chinese-Chat-v2.1 at https://huggingface.co/shenzhi-wang/Llama3.1-8B-Chinese-Chat/tree/main/gguf!
Model Summary
llama3.1-8B-Chinese-Chat is an instruction-tuned language model for Chinese & English users with various abilities such as roleplaying & tool-using built upon the Meta-Llama-3.1-8B-Instruct model.
Developers: Shenzhi Wang*, Yaowei Zheng*, Guoyin Wang (in.ai), Shiji Song, Gao Huang. (*: Equal Contribution)
- License: Llama-3.1 License
- Base Model: Meta-Llama-3.1-8B-Instruct
- Model Size: 8.03B
- Context length: 128K (reported by Meta-Llama-3.1-8B-Instruct model, untested for our Chinese model)
1. Introduction
This is the first model specifically fine-tuned for Chinese & English users based on the Meta-Llama-3.1-8B-Instruct model. The fine-tuning algorithm used is ORPO [1].
[1] Hong, Jiwoo, Noah Lee, and James Thorne. "Reference-free Monolithic Preference Optimization with Odds Ratio." arXiv preprint arXiv:2403.07691 (2024).
Training framework: LLaMA-Factory.
Training details:
- epochs: 3
- learning rate: 3e-6
- learning rate scheduler type: cosine
- Warmup ratio: 0.1
- cutoff len (i.e. context length): 8192
- orpo beta (i.e.
\lambda
in the ORPO paper): 0.05 - global batch size: 128
- fine-tuning type: full parameters
- optimizer: paged_adamw_32bit
2. Usage
2.1 Usage of Our BF16 Model
-
Please upgrade the
transformers
package to ensure it supports Llama3.1 models. The current version we are using is4.43.0
. -
Use the following Python script to download our BF16 model
from huggingface_hub import snapshot_download
snapshot_download(repo_id="shenzhi-wang/Llama3.1-8B-Chinese-Chat", ignore_patterns=["*.gguf"]) # Download our BF16 model without downloading GGUF models.
- Inference with the BF16 model
import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "/Your/Local/Path/to/Llama3.1-8B-Chinese-Chat"
dtype = torch.bfloat16
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="cuda",
torch_dtype=dtype,
)
chat = [
{"role": "user", "content": "写一首关于机器学习的诗。"},
]
input_ids = tokenizer.apply_chat_template(
chat, tokenize=True, add_generation_prompt=True, return_tensors="pt"
).to(model.device)
outputs = model.generate(
input_ids,
max_new_tokens=8192,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
response = outputs[0][input_ids.shape[-1] :]
print(tokenizer.decode(response, skip_special_tokens=True))
2.2 Usage of Our GGUF Models
- Download our GGUF models from the gguf_models folder;
- Use the GGUF models with LM Studio;
- You can also follow the instructions from https://github.com/ggerganov/llama.cpp/tree/master#usage to use gguf models.
Citation
If our Llama3.1-8B-Chinese-Chat is helpful, please kindly cite as:
@misc {shenzhi_wang_2024,
author = { Wang, Shenzhi and Zheng, Yaowei and Wang, Guoyin and Song, Shiji and Huang, Gao },
title = { Llama3.1-8B-Chinese-Chat },
year = 2024,
url = { https://huggingface.co/shenzhi-wang/Llama3.1-8B-Chinese-Chat },
doi = { 10.57967/hf/2779 },
publisher = { Hugging Face }
}