first commit

This commit is contained in:
xxl 2025-01-15 15:50:07 +08:00
parent b1d57c632b
commit 405f2e73a5
33 changed files with 488205 additions and 2 deletions

1381
README.md

File diff suppressed because it is too large Load Diff

59
added_tokens.json Normal file
View File

@ -0,0 +1,59 @@
{
"</asr>": 151682,
"</box>": 151670,
"</image>": 151666,
"</image_id>": 151678,
"</point>": 151674,
"</quad>": 151672,
"</query>": 151684,
"</ref>": 151668,
"</slice>": 151676,
"</tool_call>": 151658,
"</unit>": 151680,
"<asr>": 151681,
"<box>": 151669,
"<image>": 151665,
"<image_id>": 151677,
"<point>": 151673,
"<quad>": 151671,
"<query>": 151683,
"<ref>": 151667,
"<reserved_43>": 151698,
"<reserved_53>": 151699,
"<slice>": 151675,
"<tool_call>": 151657,
"<unit>": 151679,
"<|audio_end|>": 151687,
"<|audio_start|>": 151685,
"<|audio|>": 151686,
"<|box_end|>": 151649,
"<|box_start|>": 151648,
"<|endoftext|>": 151643,
"<|file_sep|>": 151664,
"<|fim_middle|>": 151660,
"<|fim_pad|>": 151662,
"<|fim_prefix|>": 151659,
"<|fim_suffix|>": 151661,
"<|im_end|>": 151645,
"<|im_start|>": 151644,
"<|image_pad|>": 151655,
"<|interrupt|>": 151695,
"<|listen|>": 151693,
"<|object_ref_end|>": 151647,
"<|object_ref_start|>": 151646,
"<|quad_end|>": 151651,
"<|quad_start|>": 151650,
"<|repo_name|>": 151663,
"<|speak|>": 151694,
"<|spk_bos|>": 151688,
"<|spk_eos|>": 151690,
"<|spk|>": 151689,
"<|tts_bos|>": 151691,
"<|tts_eos|>": 151692,
"<|vad_end|>": 151697,
"<|vad_start|>": 151696,
"<|video_pad|>": 151656,
"<|vision_end|>": 151653,
"<|vision_pad|>": 151654,
"<|vision_start|>": 151652
}

BIN
assets/Vocos.pt (Stored with Git LFS) Normal file

Binary file not shown.

View File

@ -0,0 +1,389 @@
{
"additional_special_tokens": [
{
"content": "[Sasr]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[Pasr]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[Easr]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[Stts]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[Ptts]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[Etts]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[Sbreak]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[Pbreak]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[Ebreak]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[uv_break]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[v_break]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[lbreak]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[llbreak]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[undefine]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[laugh]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[spk_emb]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[empty_spk]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[music]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[pure]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[break_0]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[break_1]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[break_2]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[break_3]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[break_4]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[break_5]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[break_6]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[break_7]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[laugh_0]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[laugh_1]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[laugh_2]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[oral_0]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[oral_1]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[oral_2]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[oral_3]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[oral_4]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[oral_5]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[oral_6]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[oral_7]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[oral_8]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[oral_9]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[speed_0]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[speed_1]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[speed_2]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[speed_3]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[speed_4]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[speed_5]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[speed_6]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[speed_7]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[speed_8]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "[speed_9]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
}
],
"cls_token": {
"content": "[CLS]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
"mask_token": {
"content": "[MASK]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
"pad_token": {
"content": "[PAD]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
"sep_token": {
"content": "[SEP]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
"unk_token": {
"content": "[UNK]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
}
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,516 @@
{
"added_tokens_decoder": {
"0": {
"content": "[PAD]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100": {
"content": "[UNK]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"101": {
"content": "[CLS]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"102": {
"content": "[SEP]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"103": {
"content": "[MASK]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21128": {
"content": "[Sasr]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21129": {
"content": "[Pasr]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21130": {
"content": "[Easr]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21131": {
"content": "[Stts]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21132": {
"content": "[Ptts]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21133": {
"content": "[Etts]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21134": {
"content": "[Sbreak]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21135": {
"content": "[Pbreak]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21136": {
"content": "[Ebreak]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21137": {
"content": "[uv_break]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21138": {
"content": "[v_break]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21139": {
"content": "[lbreak]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21140": {
"content": "[llbreak]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21141": {
"content": "[undefine]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21142": {
"content": "[laugh]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21143": {
"content": "[spk_emb]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21144": {
"content": "[empty_spk]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21145": {
"content": "[music]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21146": {
"content": "[pure]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21147": {
"content": "[break_0]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21148": {
"content": "[break_1]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21149": {
"content": "[break_2]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21150": {
"content": "[break_3]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21151": {
"content": "[break_4]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21152": {
"content": "[break_5]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21153": {
"content": "[break_6]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21154": {
"content": "[break_7]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21155": {
"content": "[laugh_0]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21156": {
"content": "[laugh_1]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21157": {
"content": "[laugh_2]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21158": {
"content": "[oral_0]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21159": {
"content": "[oral_1]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21160": {
"content": "[oral_2]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21161": {
"content": "[oral_3]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21162": {
"content": "[oral_4]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21163": {
"content": "[oral_5]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21164": {
"content": "[oral_6]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21165": {
"content": "[oral_7]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21166": {
"content": "[oral_8]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21167": {
"content": "[oral_9]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21168": {
"content": "[speed_0]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21169": {
"content": "[speed_1]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21170": {
"content": "[speed_2]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21171": {
"content": "[speed_3]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21172": {
"content": "[speed_4]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21173": {
"content": "[speed_5]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21174": {
"content": "[speed_6]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21175": {
"content": "[speed_7]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21176": {
"content": "[speed_8]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"21177": {
"content": "[speed_9]",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
}
},
"additional_special_tokens": [
"[Sasr]",
"[Pasr]",
"[Easr]",
"[Stts]",
"[Ptts]",
"[Etts]",
"[Sbreak]",
"[Pbreak]",
"[Ebreak]",
"[uv_break]",
"[v_break]",
"[lbreak]",
"[llbreak]",
"[undefine]",
"[laugh]",
"[spk_emb]",
"[empty_spk]",
"[music]",
"[pure]",
"[break_0]",
"[break_1]",
"[break_2]",
"[break_3]",
"[break_4]",
"[break_5]",
"[break_6]",
"[break_7]",
"[laugh_0]",
"[laugh_1]",
"[laugh_2]",
"[oral_0]",
"[oral_1]",
"[oral_2]",
"[oral_3]",
"[oral_4]",
"[oral_5]",
"[oral_6]",
"[oral_7]",
"[oral_8]",
"[oral_9]",
"[speed_0]",
"[speed_1]",
"[speed_2]",
"[speed_3]",
"[speed_4]",
"[speed_5]",
"[speed_6]",
"[speed_7]",
"[speed_8]",
"[speed_9]"
],
"clean_up_tokenization_spaces": true,
"cls_token": "[CLS]",
"do_basic_tokenize": true,
"do_lower_case": true,
"mask_token": "[MASK]",
"max_length": 256,
"model_max_length": 1000000000000000019884624838656,
"never_split": null,
"pad_to_multiple_of": null,
"pad_token": "[PAD]",
"pad_token_type_id": 0,
"padding_side": "right",
"sep_token": "[SEP]",
"stride": 0,
"strip_accents": null,
"tokenize_chinese_chars": true,
"tokenizer_class": "BertTokenizer",
"truncation_side": "right",
"truncation_strategy": "longest_first",
"unk_token": "[UNK]"
}

BIN
assets/demo.wav Normal file

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 1023 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.8 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 785 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.6 MiB

BIN
assets/radar.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 842 KiB

194
config.json Normal file
View File

@ -0,0 +1,194 @@
{
"_name_or_path": "openbmb/MiniCPM-o-2_6",
"architectures": [
"MiniCPMO"
],
"attention_dropout": 0.0,
"bos_token_id": 151643,
"eos_token_id": 151645,
"hidden_act": "silu",
"hidden_size": 3584,
"initializer_range": 0.02,
"intermediate_size": 18944,
"max_position_embeddings": 32768,
"max_window_layers": 28,
"num_attention_heads": 28,
"num_hidden_layers": 28,
"num_key_value_heads": 4,
"rms_norm_eps": 1e-06,
"rope_theta": 1000000.0,
"sliding_window": 131072,
"tie_word_embeddings": false,
"use_sliding_window": false,
"vocab_size": 151700,
"batch_vision_input": true,
"drop_vision_last_layer": false,
"image_size": 448,
"audio_chunk_length": 1.0,
"audio_config": {
"_name_or_path": "openai/whisper-medium",
"architectures": [
"MiniCPMWhisperEncoder"
],
"begin_suppress_tokens": [
220,
50257
],
"bos_token_id": 50257,
"d_model": 1024,
"decoder_attention_heads": 16,
"decoder_ffn_dim": 4096,
"decoder_layers": 24,
"decoder_start_token_id": 50258,
"encoder_attention_heads": 16,
"encoder_ffn_dim": 4096,
"encoder_layers": 24,
"eos_token_id": 50257,
"forced_decoder_ids": [
[
1,
50259
],
[
2,
50359
],
[
3,
50363
]
],
"max_length": 448,
"model_type": "whisper",
"num_hidden_layers": 24,
"pad_token_id": 50257,
"suppress_tokens": [
1,
2,
7,
8,
9,
10,
14,
25,
26,
27,
28,
29,
31,
58,
59,
60,
61,
62,
63,
90,
91,
92,
93,
359,
503,
522,
542,
873,
893,
902,
918,
922,
931,
1350,
1853,
1982,
2460,
2627,
3246,
3253,
3268,
3536,
3846,
3961,
4183,
4667,
6585,
6647,
7273,
9061,
9383,
10428,
10929,
11938,
12033,
12331,
12562,
13793,
14157,
14635,
15265,
15618,
16553,
16604,
18362,
18956,
20075,
21675,
22520,
26130,
26161,
26435,
28279,
29464,
31650,
32302,
32470,
36865,
42863,
47425,
49870,
50254,
50258,
50358,
50359,
50360,
50361,
50362
],
"torch_dtype": "float32"
},
"audio_pool_step": 2,
"auto_map": {
"AutoConfig": "configuration_minicpm.MiniCPMOConfig",
"AutoModel": "modeling_minicpmo.MiniCPMO",
"AutoModelForCausalLM": "modeling_minicpmo.MiniCPMO"
},
"chunk_input": true,
"listen_speak_type": "asr",
"model_type": "minicpmo",
"patch_size": 14,
"query_num": 64,
"slice_config": {
"max_slice_nums": 9,
"model_type": "minicpmv"
},
"slice_mode": true,
"torch_dtype": "bfloat16",
"transformers_version": "4.44.2",
"tts_config": {
"model_type": "conditional_chattts",
"llm_dim": 3584
},
"use_cache": true,
"use_image_id": true,
"version": 2.6,
"vision_batch_size": 16,
"vision_config": {
"hidden_size": 1152,
"image_size": 980,
"intermediate_size": 4304,
"model_type": "siglip_vision_model",
"num_attention_heads": 16,
"num_hidden_layers": 27,
"patch_size": 14
}
}

1
configuration.json Normal file
View File

@ -0,0 +1 @@
{"framework":"Pytorch","task":"any-to-any"}

210
configuration_minicpm.py Normal file
View File

@ -0,0 +1,210 @@
# coding=utf-8
# Copyright 2025 The OpenBMB Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import Union
from transformers import PretrainedConfig
from transformers import Qwen2Config
from transformers import WhisperConfig
from transformers.utils import logging
from .modeling_navit_siglip import SiglipVisionConfig
logger = logging.get_logger(__name__)
class MiniCPMVSliceConfig(PretrainedConfig):
model_type = "minicpmv"
def __init__(
self,
patch_size=14,
max_slice_nums=9,
scale_resolution=448,
**kwargs,
):
super().__init__(**kwargs)
self.patch_size = patch_size
self.max_slice_nums = max_slice_nums
self.scale_resolution = scale_resolution
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
if config_dict.get("model_type") == "minicpmv":
config_dict = config_dict["slice_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class ConditionalChatTTSConfig(PretrainedConfig):
model_type = "conditional_chattts"
def __init__(
self,
llm_dim: int = 2560,
hidden_size: int = 768,
intermediate_size: int = 3072,
num_attention_heads: int = 12,
num_hidden_layers: int = 20,
max_position_embeddings: int = 4096,
num_audio_tokens: int = 626,
num_text_tokens: int = 21178,
num_mel_bins: int = 100,
num_vq: int = 4,
use_speaker_embedding: bool = True,
use_llm_hidden_state: bool = False,
spk_emb_token_id: int = 21143,
num_spk_embs: int = 1,
audio_bos_token_id: int = 21132,
text_eos_token_id: int = 21133,
use_text: bool = True,
streaming: bool = True,
streaming_text_chunk_size: int = 10,
streaming_text_reserved_len: int = 300,
streaming_audio_chunk_size: int = 50,
attn_implementation: str = "sdpa",
use_mlp: bool = True,
aug_loss_weight: bool = True,
do_sample: bool = True,
top_p: float = 0.7,
top_k: int = 20,
repetition_penalty: float = 1.0,
**kwargs,
):
super().__init__(**kwargs)
self.llm_dim = llm_dim
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_attention_heads = num_attention_heads
self.num_hidden_layers = num_hidden_layers
self.max_position_embeddings = max_position_embeddings
self.num_audio_tokens = num_audio_tokens
self.num_text_tokens = num_text_tokens
self.num_mel_bins = num_mel_bins
self.num_vq = num_vq
self.use_speaker_embedding = use_speaker_embedding
self.use_llm_hidden_state = use_llm_hidden_state
self.spk_emb_token_id = spk_emb_token_id
self.num_spk_embs = num_spk_embs
self.audio_bos_token_id = audio_bos_token_id
self.text_eos_token_id = text_eos_token_id
self.use_text = use_text
self.streaming = streaming
self.streaming_text_chunk_size = streaming_text_chunk_size
self.streaming_text_reserved_len = streaming_text_reserved_len
self.streaming_audio_chunk_size = streaming_audio_chunk_size
self.attn_implementation = attn_implementation
self.use_mlp = use_mlp
self.aug_loss_weight = aug_loss_weight
self.do_sample = do_sample
self.top_p = top_p
self.top_k = top_k
self.repetition_penalty = repetition_penalty
class MiniCPMOConfig(Qwen2Config):
model_type = "minicpmo"
keys_to_ignore_at_inference = ["past_key_values"]
default_vision_config = {
"hidden_size": 1152,
"image_size": 980,
"intermediate_size": 4304,
"model_type": "siglip",
"num_attention_heads": 16,
"num_hidden_layers": 27,
"patch_size": 14,
}
def __init__(
self,
use_cache=True,
query_num=64,
image_size=448,
drop_vision_last_layer=True,
batch_vision_input=True,
slice_config=None,
vision_config=None,
audio_config=None,
tts_config=None,
use_image_id=True,
vision_batch_size=16,
audio_pool_step=2,
audio_chunk_length=1.0,
stream_input=False,
init_vision=True,
init_audio=True,
init_tts=True,
**kwargs,
):
self.use_cache = use_cache
self.query_num = query_num
self.image_size = image_size
self.drop_vision_last_layer = drop_vision_last_layer
self.batch_vision_input = batch_vision_input
self.use_image_id = use_image_id
self.vision_batch_size = vision_batch_size
self.audio_pool_step = audio_pool_step
self.audio_chunk_length = audio_chunk_length
self.stream_input = stream_input
self.init_vision = init_vision
self.init_audio = init_audio
self.init_tts = init_tts
if slice_config is None:
self.slice_config = MiniCPMVSliceConfig(max_slice_nums=1)
else:
self.slice_config = MiniCPMVSliceConfig(**slice_config)
self.slice_mode = True
# same as HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit add tgt_sizes
if vision_config is None:
self.vision_config = SiglipVisionConfig(**self.default_vision_config)
logger.info("vision_config is None, using default vision config")
elif isinstance(vision_config, dict):
self.vision_config = SiglipVisionConfig(**vision_config)
elif isinstance(vision_config, SiglipVisionConfig):
self.vision_config = vision_config
# same as openai/whisper-medium add use_cache
if audio_config is None:
self.audio_config = WhisperConfig()
elif isinstance(audio_config, dict):
self.audio_config = WhisperConfig(**audio_config)
elif isinstance(audio_config, WhisperConfig):
self.audio_config = audio_config
if tts_config is None:
self.tts_config = ConditionalChatTTSConfig()
elif isinstance(tts_config, dict):
self.tts_config = ConditionalChatTTSConfig(**tts_config)
elif isinstance(tts_config, ConditionalChatTTSConfig):
self.tts_config = tts_config
self.patch_size = self.vision_config.patch_size
super().__init__(**kwargs)

View File

@ -0,0 +1,407 @@
# coding=utf-8
# Copyright 2025 The OpenBMB Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Any
from typing import Dict
from typing import List
from typing import Optional
from typing import Union
import numpy as np
import PIL
import PIL.Image
import PIL.ImageSequence
import torch
from PIL import Image
from transformers import AutoImageProcessor
from transformers.image_processing_utils import BaseImageProcessor
from transformers.image_processing_utils import BatchFeature
from transformers.image_transforms import to_channel_dimension_format
from transformers.image_utils import ChannelDimension
from transformers.image_utils import infer_channel_dimension_format
from transformers.image_utils import is_torch_tensor
from transformers.image_utils import to_numpy_array
from transformers.image_utils import valid_images
from transformers.utils import is_torch_device
from transformers.utils import is_torch_dtype
from transformers.utils import requires_backends
from transformers.utils import TensorType
def recursive_converter(converter, value):
if isinstance(value, list):
new_value = []
for v in value:
new_value += [recursive_converter(converter, v)]
return new_value
else:
return converter(value)
class MiniCPMOBatchFeature(BatchFeature):
r"""
Extend from BatchFeature for supporting various image size
"""
def __init__(self, data: Optional[Dict[str, Any]] = None, tensor_type: Union[None, str, TensorType] = None):
super().__init__(data)
self.convert_to_tensors(tensor_type=tensor_type)
def convert_to_tensors(self, tensor_type: Optional[Union[str, TensorType]] = None):
if tensor_type is None:
return self
is_tensor, as_tensor = self._get_is_as_tensor_fns(tensor_type)
def converter(value):
try:
if not is_tensor(value):
tensor = as_tensor(value)
return tensor
except: # noqa E722
if key == "overflowing_values":
raise ValueError("Unable to create tensor returning overflowing values of different lengths. ")
raise ValueError(
"Unable to create tensor, you should probably activate padding "
"with 'padding=True' to have batched tensors with the same length."
)
for key, value in self.items():
self[key] = recursive_converter(converter, value)
return self
def to(self, *args, **kwargs) -> "MiniCPMOBatchFeature":
requires_backends(self, ["torch"])
import torch
def cast_tensor(v):
# check if v is a floating point
if torch.is_floating_point(v):
# cast and send to device
return v.to(*args, **kwargs)
elif device is not None:
return v.to(device=device)
else:
return v
new_data = {}
device = kwargs.get("device")
# Check if the args are a device or a dtype
if device is None and len(args) > 0:
# device should be always the first argument
arg = args[0]
if is_torch_dtype(arg):
# The first argument is a dtype
pass
elif isinstance(arg, str) or is_torch_device(arg) or isinstance(arg, int):
device = arg
else:
# it's something else
raise ValueError(f"Attempting to cast a BatchFeature to type {str(arg)}. This is not supported.")
# We cast only floating point tensors to avoid issues with tokenizers casting `LongTensor` to `FloatTensor`
for k, v in self.items():
new_data[k] = recursive_converter(cast_tensor, v)
self.data = new_data
return self
class MiniCPMVImageProcessor(BaseImageProcessor):
model_input_names = ["pixel_values"]
def __init__(self, max_slice_nums=9, scale_resolution=448, patch_size=14, **kwargs):
super().__init__(**kwargs)
self.max_slice_nums = max_slice_nums
self.scale_resolution = scale_resolution
self.patch_size = patch_size
self.use_image_id = kwargs.pop("use_image_id", False)
self.image_feature_size = kwargs.pop("image_feature_size", 64)
self.im_start_token = kwargs.pop("im_start", "<image>")
self.im_end_token = kwargs.pop("im_end", "</image>")
self.slice_start_token = kwargs.pop("slice_start", "<slice>")
self.slice_end_token = kwargs.pop("slice_end", "</slice>")
self.unk_token = kwargs.pop("unk", "<unk>")
self.im_id_start = kwargs.pop("im_id_start", "<image_id>")
self.im_id_end = kwargs.pop("im_id_end", "</image_id>")
self.slice_mode = kwargs.pop("slice_mode", True)
self.mean = np.array(kwargs.pop("norm_mean", [0.5, 0.5, 0.5]))
self.std = np.array(kwargs.pop("norm_std", [0.5, 0.5, 0.5]))
self.version = kwargs.pop("version", 2.0)
def ensure_divide(self, length, patch_size):
return max(round(length / patch_size) * patch_size, patch_size)
def find_best_resize(self, original_size, scale_resolution, patch_size, allow_upscale=False):
width, height = original_size
if (width * height > scale_resolution * scale_resolution) or allow_upscale:
r = width / height
height = int(scale_resolution / math.sqrt(r))
width = int(height * r)
best_width = self.ensure_divide(width, patch_size)
best_height = self.ensure_divide(height, patch_size)
return (best_width, best_height)
def get_refine_size(self, original_size, grid, scale_resolution, patch_size, allow_upscale=False):
width, height = original_size
grid_x, grid_y = grid
refine_width = self.ensure_divide(width, grid_x)
refine_height = self.ensure_divide(height, grid_y)
grid_width = refine_width / grid_x
grid_height = refine_height / grid_y
best_grid_size = self.find_best_resize(
(grid_width, grid_height), scale_resolution, patch_size, allow_upscale=allow_upscale
)
refine_size = (best_grid_size[0] * grid_x, best_grid_size[1] * grid_y)
return refine_size
def split_to_patches(self, image, grid):
patches = []
width, height = image.size
grid_x = int(width / grid[0])
grid_y = int(height / grid[1])
for i in range(0, height, grid_y):
images = []
for j in range(0, width, grid_x):
box = (j, i, j + grid_x, i + grid_y)
patch = image.crop(box)
images.append(patch)
patches.append(images)
return patches
def slice_image(self, image, max_slice_nums=9, scale_resolution=448, patch_size=14, never_split=False):
original_size = image.size
source_image = None
best_grid = self.get_sliced_grid(original_size, max_slice_nums, never_split)
patches = []
if best_grid is None:
# dont need to slice, upsample
best_size = self.find_best_resize(original_size, scale_resolution, patch_size, allow_upscale=True)
source_image = image.resize(best_size, resample=Image.Resampling.BICUBIC)
else:
# source image, down-sampling and ensure divided by patch_size
best_resize = self.find_best_resize(original_size, scale_resolution, patch_size)
source_image = image.copy().resize(best_resize, resample=Image.Resampling.BICUBIC)
refine_size = self.get_refine_size(
original_size, best_grid, scale_resolution, patch_size, allow_upscale=True
)
refine_image = image.resize(refine_size, resample=Image.Resampling.BICUBIC)
patches = self.split_to_patches(refine_image, best_grid)
return source_image, patches, best_grid
def get_grid_placeholder(self, grid):
if grid is None:
return ""
slice_image_placeholder = (
self.slice_start_token + self.unk_token * self.image_feature_size + self.slice_end_token
)
cols = grid[0]
rows = grid[1]
slices = []
for i in range(rows):
lines = []
for j in range(cols):
lines.append(slice_image_placeholder)
slices.append("".join(lines))
slice_placeholder = "\n".join(slices)
return slice_placeholder
def get_image_id_placeholder(self, idx=0):
return f"{self.im_id_start}{idx}{self.im_id_end}"
def get_sliced_images(self, image, max_slice_nums=None):
slice_images = []
if not self.slice_mode:
return [image]
max_slice_nums = self.max_slice_nums if max_slice_nums is None else int(max_slice_nums)
assert max_slice_nums > 0
source_image, patches, sliced_grid = self.slice_image(
image, max_slice_nums, self.scale_resolution, self.patch_size # default: 9 # default: 448 # default: 14
)
slice_images.append(source_image)
if len(patches) > 0:
for i in range(len(patches)):
for j in range(len(patches[0])):
slice_images.append(patches[i][j])
return slice_images
def get_sliced_grid(self, image_size, max_slice_nums, nerver_split=False):
original_width, original_height = image_size
log_ratio = math.log(original_width / original_height)
ratio = original_width * original_height / (self.scale_resolution * self.scale_resolution)
multiple = min(math.ceil(ratio), max_slice_nums)
if multiple <= 1 or nerver_split:
return None
candidate_split_grids_nums = []
for i in [multiple - 1, multiple, multiple + 1]:
if i == 1 or i > max_slice_nums:
continue
candidate_split_grids_nums.append(i)
candidate_grids = []
for split_grids_nums in candidate_split_grids_nums:
m = 1
while m <= split_grids_nums:
if split_grids_nums % m == 0:
candidate_grids.append([m, split_grids_nums // m])
m += 1
best_grid = [1, 1]
min_error = float("inf")
for grid in candidate_grids:
error = abs(log_ratio - math.log(grid[0] / grid[1]))
if error < min_error:
best_grid = grid
min_error = error
return best_grid
def get_slice_image_placeholder(self, image_size, image_idx=0, max_slice_nums=None, use_image_id=None):
max_slice_nums = self.max_slice_nums if max_slice_nums is None else int(max_slice_nums)
assert max_slice_nums > 0
grid = self.get_sliced_grid(image_size=image_size, max_slice_nums=max_slice_nums)
image_placeholder = self.im_start_token + self.unk_token * self.image_feature_size + self.im_end_token
use_image_id = self.use_image_id if use_image_id is None else bool(use_image_id)
if use_image_id:
final_placeholder = self.get_image_id_placeholder(image_idx) + image_placeholder
else:
final_placeholder = image_placeholder
if self.slice_mode:
final_placeholder = final_placeholder + self.get_grid_placeholder(grid=grid)
return final_placeholder
def to_pil_image(self, image, rescale=None) -> PIL.Image.Image:
"""
Converts `image` to a PIL Image. Optionally rescales it and puts the channel dimension back as the last axis if
needed.
Args:
image (`PIL.Image.Image` or `numpy.ndarray` or `torch.Tensor`):
The image to convert to the PIL Image format.
rescale (`bool`, *optional*):
Whether or not to apply the scaling factor (to make pixel values integers between 0 and 255). Will
default to `True` if the image type is a floating type, `False` otherwise.
"""
if isinstance(image, PIL.Image.Image):
return image
if is_torch_tensor(image):
image = image.numpy()
if isinstance(image, np.ndarray):
if rescale is None:
# rescale default to the array being of floating type.
rescale = isinstance(image.flat[0], np.floating)
# If the channel as been moved to first dim, we put it back at the end.
if image.ndim == 3 and image.shape[0] in [1, 3]:
image = image.transpose(1, 2, 0)
if rescale:
image = image * 255
image = image.astype(np.uint8)
return PIL.Image.fromarray(image)
return image
def reshape_by_patch(self, image):
"""
:param image: shape [3, H, W]
:param patch_size:
:return: [3, patch_size, HW/patch_size]
"""
image = torch.from_numpy(image)
patch_size = self.patch_size
patches = torch.nn.functional.unfold(image, (patch_size, patch_size), stride=(patch_size, patch_size))
patches = patches.reshape(image.size(0), patch_size, patch_size, -1)
patches = patches.permute(0, 1, 3, 2).reshape(image.size(0), patch_size, -1)
return patches.numpy()
def preprocess(
self,
images: Union[Image.Image, List[Image.Image], List[List[Image.Image]]],
do_pad: Optional[bool] = True,
max_slice_nums: int = None,
return_tensors: Optional[Union[str, TensorType]] = None,
**kwargs,
) -> MiniCPMOBatchFeature:
if isinstance(images, Image.Image):
images_list = [[images]]
elif isinstance(images[0], Image.Image):
images_list = [images]
else:
images_list = images
new_images_list = []
image_sizes_list = []
tgt_sizes_list = []
for _images in images_list:
if _images is None or len(_images) == 0:
new_images_list.append([])
image_sizes_list.append([])
tgt_sizes_list.append([])
continue
if not valid_images(_images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
_images = [self.to_pil_image(image).convert("RGB") for image in _images]
input_data_format = infer_channel_dimension_format(np.array(_images[0]))
new_images = []
image_sizes = [image.size for image in _images]
tgt_sizes = []
for image in _images:
image_patches = self.get_sliced_images(image, max_slice_nums)
image_patches = [to_numpy_array(image).astype(np.float32) / 255 for image in image_patches]
image_patches = [
self.normalize(image=image, mean=self.mean, std=self.std, input_data_format=input_data_format)
for image in image_patches
]
image_patches = [
to_channel_dimension_format(image, ChannelDimension.FIRST, input_channel_dim=input_data_format)
for image in image_patches
]
for slice_image in image_patches:
new_images.append(self.reshape_by_patch(slice_image))
tgt_sizes.append(
np.array((slice_image.shape[1] // self.patch_size, slice_image.shape[2] // self.patch_size))
)
if tgt_sizes:
tgt_sizes = np.vstack(tgt_sizes)
new_images_list.append(new_images)
image_sizes_list.append(image_sizes)
tgt_sizes_list.append(tgt_sizes)
return MiniCPMOBatchFeature(
data={"pixel_values": new_images_list, "image_sizes": image_sizes_list, "tgt_sizes": tgt_sizes_list},
tensor_type=return_tensors,
)
AutoImageProcessor.register("MiniCPMVImageProcessor", MiniCPMVImageProcessor)

151388
merges.txt Normal file

File diff suppressed because it is too large Load Diff

BIN
model-00001-of-00004.safetensors (Stored with Git LFS) Normal file

Binary file not shown.

BIN
model-00002-of-00004.safetensors (Stored with Git LFS) Normal file

Binary file not shown.

BIN
model-00003-of-00004.safetensors (Stored with Git LFS) Normal file

Binary file not shown.

BIN
model-00004-of-00004.safetensors (Stored with Git LFS) Normal file

Binary file not shown.

1606
model.safetensors.index.json Normal file

File diff suppressed because it is too large Load Diff

3259
modeling_minicpmo.py Normal file

File diff suppressed because it is too large Load Diff

940
modeling_navit_siglip.py Normal file
View File

@ -0,0 +1,940 @@
# coding=utf-8
# Copyright 2024 Google AI and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Siglip model. """
# Copied from HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit and add tgt_sizes
import math
import os
import warnings
from dataclasses import dataclass
from typing import Optional
from typing import Tuple
from typing import Union
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn.init import _calculate_fan_in_and_fan_out
from transformers.activations import ACT2FN
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask
from transformers.modeling_outputs import BaseModelOutput
from transformers.modeling_outputs import BaseModelOutputWithPooling
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import add_start_docstrings
from transformers.utils import add_start_docstrings_to_model_forward
from transformers.utils import is_flash_attn_2_available
from transformers.utils import logging
from transformers.utils import ModelOutput
from transformers.utils import replace_return_docstrings
logger = logging.get_logger(__name__)
class SiglipVisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`SiglipVisionModel`]. It is used to instantiate a
Siglip vision encoder according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
num_channels (`int`, *optional*, defaults to 3):
Number of channels in the input images.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
Example:
```python
>>> from transformers import SiglipVisionConfig, SiglipVisionModel
>>> # Initializing a SiglipVisionConfig with google/siglip-base-patch16-224 style configuration
>>> configuration = SiglipVisionConfig()
>>> # Initializing a SiglipVisionModel (with random weights) from the google/siglip-base-patch16-224 style configuration
>>> model = SiglipVisionModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "siglip_vision_model"
def __init__(
self,
hidden_size=768,
intermediate_size=3072,
num_hidden_layers=12,
num_attention_heads=12,
num_channels=3,
image_size=224,
patch_size=16,
hidden_act="gelu_pytorch_tanh",
layer_norm_eps=1e-6,
attention_dropout=0.0,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.patch_size = patch_size
self.image_size = image_size
self.attention_dropout = attention_dropout
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the vision config dict if we are loading from SiglipConfig
if config_dict.get("model_type") == "siglip":
config_dict = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
_CHECKPOINT_FOR_DOC = "google/siglip-base-patch16-224"
SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [
"google/siglip-base-patch16-224",
# See all SigLIP models at https://huggingface.co/models?filter=siglip
]
if is_flash_attn_2_available():
from flash_attn import flash_attn_func
from flash_attn import flash_attn_varlen_func
from flash_attn.bert_padding import index_first_axis # noqa
from flash_attn.bert_padding import pad_input
from flash_attn.bert_padding import unpad_input
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
def _get_unpad_data(attention_mask):
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
max_seqlen_in_batch = seqlens_in_batch.max().item()
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
return (
indices,
cu_seqlens,
max_seqlen_in_batch,
)
def _trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn(
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2,
)
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
if tensor.dtype in [torch.float16, torch.bfloat16]:
# The `erfinv_` op is not (yet?) defined in float16+cpu, bfloat16+gpu
og_dtype = tensor.dtype
tensor = tensor.to(torch.float32)
tensor.erfinv_()
tensor = tensor.to(og_dtype)
else:
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.0))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
if tensor.dtype == torch.float16:
# The `clamp_` op is not (yet?) defined in float16+cpu
tensor = tensor.to(torch.float32)
tensor.clamp_(min=a, max=b)
tensor = tensor.to(torch.float16)
else:
tensor.clamp_(min=a, max=b)
def trunc_normal_tf_(
tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0
) -> torch.Tensor:
"""Fills the input Tensor with values drawn from a truncated
normal distribution. The values are effectively drawn from the
normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)`
with values outside :math:`[a, b]` redrawn until they are within
the bounds. The method used for generating the random values works
best when :math:`a \\leq \text{mean} \\leq b`.
NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the
bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0
and the result is subsquently scaled and shifted by the mean and std args.
Args:
tensor: an n-dimensional `torch.Tensor`
mean: the mean of the normal distribution
std: the standard deviation of the normal distribution
a: the minimum cutoff value
b: the maximum cutoff value
"""
with torch.no_grad():
_trunc_normal_(tensor, 0, 1.0, a, b)
tensor.mul_(std).add_(mean)
def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"):
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
if mode == "fan_in":
denom = fan_in
elif mode == "fan_out":
denom = fan_out
elif mode == "fan_avg":
denom = (fan_in + fan_out) / 2
variance = scale / denom
if distribution == "truncated_normal":
# constant is stddev of standard normal truncated to (-2, 2)
trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978)
elif distribution == "normal":
with torch.no_grad():
tensor.normal_(std=math.sqrt(variance))
elif distribution == "uniform":
bound = math.sqrt(3 * variance)
with torch.no_grad():
tensor.uniform_(-bound, bound)
else:
raise ValueError(f"invalid distribution {distribution}")
def lecun_normal_(tensor):
variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal")
def default_flax_embed_init(tensor):
variance_scaling_(tensor, mode="fan_in", distribution="normal")
@dataclass
# Copied from transformers.models.clip.modeling_clip.CLIPVisionModelOutput with CLIP->Siglip
class SiglipVisionModelOutput(ModelOutput):
"""
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
Args:
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
The image embeddings obtained by applying the projection layer to the pooler_output.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
image_embeds: Optional[torch.FloatTensor] = None
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
class SiglipVisionEmbeddings(nn.Module):
def __init__(self, config: SiglipVisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=self.embed_dim,
kernel_size=self.patch_size,
stride=self.patch_size,
padding="valid",
)
self.num_patches_per_side = self.image_size // self.patch_size
self.num_patches = self.num_patches_per_side**2
self.num_positions = self.num_patches
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
def forward(
self,
pixel_values: torch.FloatTensor,
patch_attention_mask: torch.BoolTensor,
tgt_sizes: Optional[torch.IntTensor] = None,
) -> torch.Tensor:
batch_size = pixel_values.size(0)
patch_embeds = self.patch_embedding(pixel_values)
embeddings = patch_embeds.flatten(2).transpose(1, 2)
max_im_h, max_im_w = pixel_values.size(2), pixel_values.size(3)
max_nb_patches_h, max_nb_patches_w = max_im_h // self.patch_size, max_im_w // self.patch_size
boundaries = torch.arange(1 / self.num_patches_per_side, 1.0, 1 / self.num_patches_per_side)
position_ids = torch.full(
size=(
batch_size,
max_nb_patches_h * max_nb_patches_w,
),
fill_value=0,
)
for batch_idx, p_attn_mask in enumerate(patch_attention_mask):
if tgt_sizes is not None:
nb_patches_h = tgt_sizes[batch_idx][0]
nb_patches_w = tgt_sizes[batch_idx][1]
else:
nb_patches_h = p_attn_mask[:, 0].sum()
nb_patches_w = p_attn_mask[0].sum()
fractional_coords_h = torch.arange(0, 1 - 1e-6, 1 / nb_patches_h)
fractional_coords_w = torch.arange(0, 1 - 1e-6, 1 / nb_patches_w)
bucket_coords_h = torch.bucketize(fractional_coords_h, boundaries, right=True)
bucket_coords_w = torch.bucketize(fractional_coords_w, boundaries, right=True)
pos_ids = (bucket_coords_h[:, None] * self.num_patches_per_side + bucket_coords_w).flatten()
position_ids[batch_idx][p_attn_mask.view(-1).cpu()] = pos_ids
position_ids = position_ids.to(self.position_embedding.weight.device)
embeddings = embeddings + self.position_embedding(position_ids)
return embeddings
class SiglipAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
# Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__
def __init__(self, config):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
batch_size, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
k_v_seq_len = key_states.shape[-2]
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale
if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len):
raise ValueError(
f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len):
raise ValueError(
f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights
class SiglipFlashAttention2(SiglipAttention):
"""
Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
flash attention and deal with padding tokens in case the input contains any of them.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.is_causal = False # Hack to make sure we don't use a causal mask
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
output_attentions = False
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
# Flash attention requires the input to have the shape
# batch_size x seq_length x head_dim x hidden_dim
# therefore we just need to keep the original shape
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
# cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
# query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
# if past_key_value is not None:
# cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
# key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
# to be able to avoid many of these transpose/reshape/view.
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
dropout_rate = self.dropout if self.training else 0.0
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in the correct dtype just to be sure everything works as expected.
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
# in fp32. (LlamaRMSNorm handles it correctly)
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
"The input hidden states seems to be silently casted in float32, this might be related to the fact"
" you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
attn_output = self._flash_attention_forward(
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
)
attn_output = attn_output.reshape(bsz, q_len, self.embed_dim).contiguous()
attn_output = self.out_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights
def _flash_attention_forward(
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
):
"""
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
first unpad the input, then computes the attention scores and pad the final attention scores.
Args:
query_states (`torch.Tensor`):
Input query states to be passed to Flash Attention API
key_states (`torch.Tensor`):
Input key states to be passed to Flash Attention API
value_states (`torch.Tensor`):
Input value states to be passed to Flash Attention API
attention_mask (`torch.Tensor`):
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
position of padding tokens and 1 for the position of non-padding tokens.
dropout (`int`, *optional*):
Attention dropout
softmax_scale (`float`, *optional*):
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
"""
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
causal = self.is_causal and query_length != 1
# Contains at least one padding token in the sequence
if attention_mask is not None:
batch_size = query_states.shape[0]
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
query_states, key_states, value_states, attention_mask, query_length
)
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
attn_output_unpad = flash_attn_varlen_func(
query_states,
key_states,
value_states,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_in_batch_q,
max_seqlen_k=max_seqlen_in_batch_k,
dropout_p=dropout,
softmax_scale=softmax_scale,
causal=causal,
)
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
else:
attn_output = flash_attn_func(
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
)
return attn_output
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
key_layer = index_first_axis(
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
)
value_layer = index_first_axis(
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
)
if query_length == kv_seq_len:
query_layer = index_first_axis(
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
)
cu_seqlens_q = cu_seqlens_k
max_seqlen_in_batch_q = max_seqlen_in_batch_k
indices_q = indices_k
elif query_length == 1:
max_seqlen_in_batch_q = 1
cu_seqlens_q = torch.arange(
batch_size + 1, dtype=torch.int32, device=query_layer.device
) # There is a memcpy here, that is very bad.
indices_q = cu_seqlens_q[:-1]
query_layer = query_layer.squeeze(1)
else:
# The -q_len: slice assumes left padding.
attention_mask = attention_mask[:, -query_length:]
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
return (
query_layer,
key_layer,
value_layer,
indices_q,
(cu_seqlens_q, cu_seqlens_k),
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
)
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Siglip
class SiglipMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->Siglip
class SiglipEncoderLayer(nn.Module):
def __init__(self, config: SiglipVisionConfig):
super().__init__()
self.embed_dim = config.hidden_size
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
self.self_attn = SiglipAttention(config) if not self._use_flash_attention_2 else SiglipFlashAttention2(config)
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = SiglipMLP(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`):
Input to the layer of shape `(batch, seq_len, embed_dim)`.
attention_mask (`torch.FloatTensor`):
Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values.
output_attentions (`bool`, *optional*, defaults to `False`):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class SiglipPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = SiglipVisionConfig
base_model_prefix = "siglip"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, SiglipVisionEmbeddings):
width = self.config.hidden_size
nn.init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width))
elif isinstance(module, nn.Embedding):
default_flax_embed_init(module.weight)
elif isinstance(module, SiglipAttention):
nn.init.normal_(module.q_proj.weight)
nn.init.normal_(module.k_proj.weight)
nn.init.normal_(module.v_proj.weight)
nn.init.normal_(module.out_proj.weight)
nn.init.zeros_(module.q_proj.bias)
nn.init.zeros_(module.k_proj.bias)
nn.init.zeros_(module.v_proj.bias)
nn.init.zeros_(module.out_proj.bias)
elif isinstance(module, SiglipMLP):
nn.init.normal_(module.fc1.weight)
nn.init.normal_(module.fc2.weight)
nn.init.normal_(module.fc1.bias, std=1e-6)
nn.init.normal_(module.fc2.bias, std=1e-6)
elif isinstance(module, (nn.Linear, nn.Conv2d)):
lecun_normal_(module.weight)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
SIGLIP_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`SiglipVisionConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
SIGLIP_VISION_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->Siglip
class SiglipEncoder(nn.Module):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`SiglipEncoderLayer`].
Args:
config: SiglipConfig
"""
def __init__(self, config: SiglipVisionConfig):
super().__init__()
self.config = config
self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
# Ignore copy
def forward(
self,
inputs_embeds,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for encoder_layer in self.layers:
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions)
@add_start_docstrings("""The vision model from SigLIP without any head or projection on top.""", SIGLIP_START_DOCSTRING)
class SiglipVisionTransformer(SiglipPreTrainedModel):
config_class = SiglipVisionConfig
main_input_name = "pixel_values"
_supports_flash_attn_2 = True
_no_split_modules = []
def __init__(self, config: SiglipVisionConfig):
super().__init__(config)
self.config = config
embed_dim = config.hidden_size
self.embeddings = SiglipVisionEmbeddings(config)
self.encoder = SiglipEncoder(config)
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.embeddings.patch_embedding
@add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipVisionConfig)
def forward(
self,
pixel_values,
patch_attention_mask: Optional[torch.BoolTensor] = None,
tgt_sizes: Optional[torch.IntTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size = pixel_values.size(0)
if patch_attention_mask is None:
patch_attention_mask = torch.ones(
size=(
batch_size,
pixel_values.size(2) // self.config.patch_size,
pixel_values.size(3) // self.config.patch_size,
),
dtype=torch.bool,
device=pixel_values.device,
)
hidden_states = self.embeddings(
pixel_values=pixel_values, patch_attention_mask=patch_attention_mask, tgt_sizes=tgt_sizes
)
patch_attention_mask = patch_attention_mask.view(batch_size, -1)
# The call to `_upad_input` in `_flash_attention_forward` is expensive
# So when the `patch_attention_mask` is full of 1s (i.e. attending to the whole sequence),
# avoiding passing the attention_mask, which is equivalent to attending to the full sequence
if not torch.any(~patch_attention_mask):
attention_mask = None
else:
attention_mask = (
_prepare_4d_attention_mask(patch_attention_mask, hidden_states.dtype)
if not self._use_flash_attention_2
else patch_attention_mask
)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
last_hidden_state = self.post_layernorm(last_hidden_state)
if not return_dict:
return (last_hidden_state, None) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=None,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)

24
preprocessor_config.json Normal file
View File

@ -0,0 +1,24 @@
{
"image_processor_type": "MiniCPMVImageProcessor",
"auto_map": {
"AutoProcessor": "processing_minicpmo.MiniCPMOProcessor",
"AutoImageProcessor": "image_processing_minicpmv.MiniCPMVImageProcessor"
},
"processor_class": "MiniCPMOProcessor",
"max_slice_nums": 9,
"scale_resolution": 448,
"patch_size": 14,
"use_image_id": true,
"image_feature_size": 64,
"im_start": "<image>",
"im_end": "</image>",
"slice_start": "<slice>",
"slice_end": "</slice>",
"unk": "<unk>",
"im_id_start": "<image_id>",
"im_id_end": "</image_id>",
"slice_mode": true,
"norm_mean": [0.5, 0.5, 0.5],
"norm_std": [0.5, 0.5, 0.5],
"version": 2.6
}

505
processing_minicpmo.py Normal file
View File

@ -0,0 +1,505 @@
# coding=utf-8
# Copyright 2025 The OpenBMB Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for MiniCPMO.
"""
import math
import re
from typing import List
from typing import Literal
from typing import Optional
from typing import Union
import numpy as np
import torch
import torchaudio
from transformers.image_utils import ImageInput
from transformers.processing_utils import ProcessorMixin
from transformers.tokenization_utils_base import PreTokenizedInput
from transformers.tokenization_utils_base import TextInput
from transformers.utils import TensorType
from .image_processing_minicpmv import MiniCPMOBatchFeature
class MiniCPMOProcessor(ProcessorMixin):
r"""
Constructs a MiniCPMV processor which wraps a MiniCPMV image processor and a MiniCPMV tokenizer into a single processor.
[`MiniCPMVProcessor`] offers all the functionalities of [`MiniCPMVImageProcessor`] and [`LlamaTokenizerWrapper`]. See the
[`~MiniCPMVProcessor.__call__`] and [`~MiniCPMVProcessor.decode`] for more information.
Args:
image_processor ([`MiniCPMVImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`LlamaTokenizerWrapper`], *optional*):
The tokenizer is a required input.
"""
attributes = ["image_processor", "feature_extractor", "tokenizer"]
feature_extractor_class = "WhisperFeatureExtractor"
image_processor_class = "AutoImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(self, image_processor=None, feature_extractor=None, tokenizer=None):
super().__init__(image_processor, feature_extractor, tokenizer)
self.version = image_processor.version
def __call__(
self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
images: ImageInput = None,
audios: Union[np.ndarray, List[np.ndarray], List[List[np.ndarray]]] = None,
audio_parts: Optional[list] = None,
max_length: Optional[int] = None,
do_pad: Optional[bool] = True,
max_slice_nums: int = None,
use_image_id: bool = True,
chunk_input: bool = False,
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
sampling_rate: Optional[int] = 16000,
**kwargs,
) -> MiniCPMOBatchFeature:
if images is not None:
image_inputs = self.image_processor(
images, do_pad=do_pad, max_slice_nums=max_slice_nums, return_tensors=return_tensors
)
else:
image_inputs = None
if audios is not None:
audio_features, audio_feature_lens, audio_phs = self.audio_feature_extract(
audios, audio_parts, chunk_input, sampling_rate
)
else:
audio_features, audio_feature_lens, audio_phs = [], [], []
model_inputs = self._convert_omni_to_inputs(
image_inputs,
audio_phs,
text,
max_slice_nums=max_slice_nums,
use_image_id=use_image_id,
max_length=max_length,
**kwargs,
)
model_inputs["audio_features"] = audio_features
model_inputs["audio_feature_lens"] = audio_feature_lens
return MiniCPMOBatchFeature(data={**model_inputs})
def audio_feature_extract(
self,
audios: Union[np.ndarray, List[np.ndarray], List[List[np.ndarray]]],
audio_parts: Optional[list] = None,
chunk_input: Optional[bool] = False,
sampling_rate: Optional[int] = None,
chunk_length: Optional[int] = 1,
**kwargs,
):
def get_audio_placeholder(audio_lens, chunk_input):
pool_step = 2
feature_lens = math.ceil(audio_lens / self.feature_extractor.hop_length)
feature_lens = (feature_lens - 1) // 2 + 1
output_lens = (feature_lens - pool_step) // pool_step + 1
if chunk_input:
fbank_feat_in_chunk = int(chunk_length * 100)
cnn_feat_in_chunk = (fbank_feat_in_chunk - 1) // 2 + 1
audio_embeds_in_chunk = (cnn_feat_in_chunk - pool_step) // pool_step + 1
num_audio_chunks = (output_lens + audio_embeds_in_chunk - 1) // audio_embeds_in_chunk
place_holders = ""
total_unk_len = 0
for _ in range(num_audio_chunks):
unk_len = min(audio_embeds_in_chunk, output_lens - total_unk_len)
place_holders += self.tokenizer.audio_start + "<unk>" * unk_len + self.tokenizer.audio_end
total_unk_len += unk_len
audio_placeholder = place_holders
else:
audio_placeholder = self.tokenizer.audio_start + "<unk>" * output_lens + self.tokenizer.audio_end
return audio_placeholder
if isinstance(audios, np.ndarray):
audios_list = [[audios]]
elif isinstance(audios[0], np.ndarray):
audios_list = [audios]
else:
audios_list = audios
if audio_parts is not None:
assert len(audio_parts) == len(audios_list)
for parts, audios in zip(audio_parts, audios_list):
assert len(parts) == len(audios)
audio_feature_lens_list = []
audio_ph_list = []
audio_features_all = []
# audio placeholder not dependent on audio_parts
for audios in audios_list:
if audios:
audio_ph_list.append([get_audio_placeholder(len(a), chunk_input) for a in audios])
else:
audio_ph_list.append([])
for idx, audios in enumerate(audios_list):
if audio_parts is not None:
# same audio part merge
audio_part = audio_parts[idx]
merge_audio = []
cur_audio = []
for aid, (part, audio) in enumerate(zip(audio_part, audios)):
if aid == 0 or audio_part[aid] == audio_part[aid - 1]:
cur_audio.append(audio)
else:
merge_audio.append(np.hstack(cur_audio))
cur_audio = [audio]
if cur_audio:
merge_audio.append(np.hstack(cur_audio))
else:
merge_audio = audios
audio_feature_lens = []
# If the audio exceeds 30 seconds, split it into chunks every 30 seconds.
final_merge_audio = []
max_audio_inp_len = 30 * sampling_rate
for audio in merge_audio:
if len(audio) <= max_audio_inp_len:
final_merge_audio.append(audio)
else:
for i in range(math.ceil(len(audio) / max_audio_inp_len)):
final_merge_audio.append(audio[i * max_audio_inp_len : (i + 1) * max_audio_inp_len])
if audios:
audio_inputs = self.feature_extractor(
final_merge_audio,
sampling_rate=sampling_rate,
return_attention_mask=True,
padding="max_length",
return_tensors="pt",
**kwargs,
)
audio_feature = audio_inputs["input_features"]
actual_lens = audio_inputs["attention_mask"].sum(dim=1)
for feat, lens in zip(audio_feature, actual_lens):
audio_features_all.append(feat[:, :lens])
audio_feature_lens.append(lens)
audio_feature_lens = torch.hstack(audio_feature_lens)
audio_feature_lens_list.append(audio_feature_lens)
else:
audio_feature_lens_list.append([])
if audio_features_all:
audio_features = [i.permute(1, 0) for i in audio_features_all]
audio_features = torch.nn.utils.rnn.pad_sequence(
audio_features, batch_first=True, padding_value=0.0
).permute(0, 2, 1)
else:
audio_features = []
return audio_features, audio_feature_lens_list, audio_ph_list
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
output_ids = args[0]
result_text = []
for result in output_ids:
result = result[result != 0]
if result[0] == self.tokenizer.bos_id:
result = result[1:]
if result[-1] == self.tokenizer.eos_id:
result = result[:-1]
result_text.append(self.tokenizer.decode(result, *args[1:], **kwargs).strip())
return result_text
# return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
result = args[0]
result = result[result != 0]
if result[0] == self.tokenizer.bos_id:
result = result[1:]
if result[-1] == self.tokenizer.eos_id or (
hasattr(self.tokenizer, "eot_id") and result[-1] == self.tokenizer.eot_id
):
result = result[:-1]
return self.tokenizer.decode(result, *args[1:], **kwargs).strip()
def _convert(self, input_str, max_inp_length: Optional[int] = None, **kwargs):
input_ids = self.tokenizer.encode(input_str, **kwargs)
if max_inp_length is not None:
input_ids = input_ids[:max_inp_length]
input_ids = torch.tensor(input_ids, dtype=torch.int32)
## image bound
start_cond = (input_ids == self.tokenizer.im_start_id) | (input_ids == self.tokenizer.slice_start_id)
end_cond = (input_ids == self.tokenizer.im_end_id) | (input_ids == self.tokenizer.slice_end_id)
image_start_idx = torch.where(start_cond)[0]
image_start_idx += 1
image_end_idx = torch.where(end_cond)[0]
valid_image_nums = max(len(image_start_idx), len(image_end_idx))
image_bounds = torch.hstack(
[
image_start_idx[:valid_image_nums].unsqueeze(-1),
image_end_idx[:valid_image_nums].unsqueeze(-1),
]
)
## audio bound
audio_start_idx = torch.where(input_ids == self.tokenizer.audio_start_id)[0]
audio_end_idx = torch.where(input_ids == self.tokenizer.audio_end_id)[0]
assert len(audio_start_idx) == len(audio_end_idx)
audio_bounds = torch.hstack([(audio_start_idx + 1).unsqueeze(-1), audio_end_idx.unsqueeze(-1)])
spk_start_idx = torch.where(input_ids == self.tokenizer.spk_start_id)[0]
spk_end_idx = torch.where(input_ids == self.tokenizer.spk_end_id)[0]
assert len(spk_start_idx) == len(spk_end_idx)
spk_bounds = torch.hstack([(spk_start_idx + 1).unsqueeze(-1), spk_end_idx.unsqueeze(-1)])
return input_ids, image_bounds, audio_bounds, spk_bounds
def _convert_omni_to_inputs(
self,
images,
audio_phs,
texts: Union[str, List[str]],
truncation=None,
max_length=None,
max_slice_nums=None,
use_image_id=None,
return_tensors=None,
**kwargs,
):
if images is None and audio_phs is None:
model_inputs = self.tokenizer(
texts, return_tensors=return_tensors, truncation=truncation, max_length=max_length, **kwargs
)
return MiniCPMOBatchFeature(data={**model_inputs})
image_tag = "(<image>./</image>)"
image_pattern = "\(<image>./</image>\)"
audio_tag = "(<audio>./</audio>)"
audio_pattern = "\(<audio>./</audio>\)"
split_pattern = f"({image_pattern}|{audio_pattern})"
if isinstance(texts, str):
texts = [texts]
bs = len(texts)
if images is not None:
images, image_sizes, tgt_sizes = images["pixel_values"], images["image_sizes"], images["tgt_sizes"]
else:
images, image_sizes, tgt_sizes = [[]] * bs, [[]] * bs, [[]] * bs
input_ids_list = []
image_bounds_list = []
audio_bounds_list = []
spk_bounds_list = []
for index, text in enumerate(texts):
text_chunks = re.split(split_pattern, text)
image_tags = re.findall(image_pattern, text)
audio_tags = re.findall(audio_pattern, text)
if image_tags:
assert images is not None
assert len(image_tags) == len(image_sizes[index])
if audio_tags:
assert audio_phs is not None
assert len(audio_tags) == len(audio_phs[index])
image_id = 0
audio_id = 0
for i, chunk in enumerate(text_chunks):
if chunk == image_tag:
image_placeholder = self.image_processor.get_slice_image_placeholder(
image_sizes[index][image_id], image_id, max_slice_nums, use_image_id
)
image_id += 1
text_chunks[i] = image_placeholder
elif chunk == audio_tag:
audio_placeholder = audio_phs[index][audio_id]
audio_id += 1
text_chunks[i] = audio_placeholder
final_text = "".join(text_chunks)
input_ids, image_bounds, audio_bounds, spk_bounds = self._convert(final_text, max_length, **kwargs)
input_ids_list.append(input_ids)
image_bounds_list.append(image_bounds)
audio_bounds_list.append(audio_bounds)
spk_bounds_list.append(spk_bounds)
padded_input_ids, padding_lengths = self.pad(input_ids_list, padding_side="left")
attention_mask = torch.ones_like(padded_input_ids, dtype=torch.bool)
for i, length in enumerate(padding_lengths):
image_bounds_list[i] = image_bounds_list[i] + length
audio_bounds_list[i] = audio_bounds_list[i] + length
spk_bounds_list[i] = spk_bounds_list[i] + length
attention_mask[i, :length] = False
data = {
"input_ids": padded_input_ids,
"attention_mask": attention_mask,
"pixel_values": images,
"image_sizes": image_sizes,
"image_bound": image_bounds_list,
"tgt_sizes": tgt_sizes,
"audio_bounds": audio_bounds_list,
"spk_bounds": spk_bounds_list,
}
return data
@property
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
feature_extractor_input_names = self.feature_extractor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names + feature_extractor_input_names))
def pad(self, inputs, max_length=None, padding_value=0, padding_side="left"):
items = []
if isinstance(inputs[0], list):
assert isinstance(inputs[0][0], torch.Tensor)
for it in inputs:
for tr in it:
items.append(tr)
else:
assert isinstance(inputs[0], torch.Tensor)
items = inputs
batch_size = len(items)
shape = items[0].shape
dim = len(shape)
assert dim <= 2
if max_length is None:
max_length = 0
max_length = max(max_length, max(item.shape[-1] for item in items))
min_length = min(item.shape[-1] for item in items)
dtype = items[0].dtype
if dim == 0:
return torch.stack([item for item in items], dim=0), [0]
elif dim == 1:
if max_length == min_length:
return torch.stack([item for item in items], dim=0), [0] * batch_size
tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value
else:
tensor = torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype) + padding_value
padding_length = []
for i, item in enumerate(items):
if dim == 1:
if padding_side == "left":
tensor[i, -len(item) :] = item.clone()
else:
tensor[i, : len(item)] = item.clone()
elif dim == 2:
if padding_side == "left":
tensor[i, -len(item) :, :] = item.clone()
else:
tensor[i, : len(item), :] = item.clone()
padding_length.append(tensor.shape[-1] - len(item))
return tensor, padding_length
class MelSpectrogramFeatures(torch.nn.Module):
def __init__(
self,
sample_rate=24000,
n_fft=1024,
hop_length=256,
n_mels=100,
padding: Literal["center", "same"] = "center",
):
super().__init__()
if padding not in ["center", "same"]:
raise ValueError("Padding must be 'center' or 'same'.")
self.padding = padding
self.mel_spec = torchaudio.transforms.MelSpectrogram(
sample_rate=sample_rate,
n_fft=n_fft,
hop_length=hop_length,
n_mels=n_mels,
center=padding == "center",
power=1,
)
def __call__(self, audio: torch.Tensor) -> torch.Tensor:
"""
audio: Tensor([num_channels, num_samples])
"""
return super().__call__(audio)
def forward(self, audio: torch.Tensor) -> torch.Tensor:
"""
audio: Tensor([num_channels, num_samples])
"""
mel: torch.Tensor = self.mel_spec(audio)
features = torch.log(torch.clip(mel, min=1e-5))
return features
class ChatTTSProcessor:
def __init__(self, text_tokenizer):
self.audio_processor = MelSpectrogramFeatures()
self.text_tokenizer = text_tokenizer
def __call__(self, text_list, audio_list):
assert len(text_list) == len(audio_list)
input_ids_varlen = []
for text in text_list:
input_ids_ = self.text_tokenizer.encode(text, return_tensors="pt", add_special_tokens=False) # [1, seq_len]
input_ids_ = input_ids_.squeeze(0) # [seq_len]
input_ids_varlen.append(input_ids_)
audio_features_varlen = []
for audio in audio_list:
assert audio.shape.__len__() == 1 # [seq_len]
try:
mel = self.audio_processor(audio) # [100(num_mel_bins), seq_len_mel]
except Exception as e:
raise e
audio_features_varlen.append(mel)
return {
"tts_input_ids_varlen": input_ids_varlen, # return List[Tensor]
"tts_input_features_varlen": audio_features_varlen, # return List[Tensor]
}

864
resampler.py Normal file
View File

@ -0,0 +1,864 @@
# coding=utf-8
# Copyright 2025 The OpenBMB Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from functools import partial
from typing import Optional
from typing import Tuple
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from torch import Tensor
from torch.nn.functional import *
from torch.nn.init import trunc_normal_
from torch.nn.modules.activation import *
from transformers.integrations import is_deepspeed_zero3_enabled
def get_2d_sincos_pos_embed(embed_dim, image_size):
"""
image_size: image_size or (image_height, image_width)
return:
pos_embed: [image_height, image_width, embed_dim]
"""
if isinstance(image_size, int):
grid_h_size, grid_w_size = image_size, image_size
else:
grid_h_size, grid_w_size = image_size[0], image_size[1]
grid_h = np.arange(grid_h_size, dtype=np.float32)
grid_w = np.arange(grid_w_size, dtype=np.float32)
grid = np.meshgrid(grid_w, grid_h) # here w goes first
grid = np.stack(grid, axis=0)
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
return pos_embed
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
assert embed_dim % 2 == 0
# use half of dimensions to encode grid_h
emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim // 2, grid[0]) # (H, W, D/2)
emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim // 2, grid[1]) # (H, W, D/2)
emb = np.concatenate([emb_h, emb_w], axis=-1) # (H, W, D)
return emb
def get_1d_sincos_pos_embed_from_grid_new(embed_dim, pos):
"""
embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (H, W)
out: (H, W, D)
"""
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=np.float32)
omega /= embed_dim / 2.0
omega = 1.0 / 10000**omega # (D/2,)
out = np.einsum("hw,d->hwd", pos, omega) # (H, W, D/2), outer product
emb_sin = np.sin(out) # (H, W, D/2)
emb_cos = np.cos(out) # (H, W, D/2)
emb = np.concatenate([emb_sin, emb_cos], axis=-1) # (H, W, D)
return emb
class Resampler(nn.Module):
"""
A 2D perceiver-resampler network with one cross attention layers by
given learnable queries and 2d sincos pos_emb
Outputs:
A tensor with the shape of (batch_size, num_queries, embed_dim)
"""
def __init__(
self,
num_queries,
embed_dim,
num_heads,
kv_dim=None,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
adaptive=False,
max_size=(70, 70),
):
super().__init__()
self.num_queries = num_queries
self.embed_dim = embed_dim
self.num_heads = num_heads
self.adaptive = adaptive
self.max_size = max_size
self.query = nn.Parameter(torch.zeros(self.num_queries, embed_dim))
if kv_dim is not None and kv_dim != embed_dim:
self.kv_proj = nn.Linear(kv_dim, embed_dim, bias=False)
else:
self.kv_proj = nn.Identity()
self.attn = MultiheadAttention(embed_dim, num_heads)
self.ln_q = norm_layer(embed_dim)
self.ln_kv = norm_layer(embed_dim)
self.ln_post = norm_layer(embed_dim)
self.proj = nn.Parameter((embed_dim**-0.5) * torch.randn(embed_dim, embed_dim))
self._set_2d_pos_cache(self.max_size)
def _set_2d_pos_cache(self, max_size, device="cpu"):
if is_deepspeed_zero3_enabled():
device = "cuda"
pos_embed = torch.from_numpy(get_2d_sincos_pos_embed(self.embed_dim, max_size)).float().to(device)
self.register_buffer("pos_embed", pos_embed, persistent=False)
def _adjust_pos_cache(self, tgt_sizes, device):
max_h = torch.max(tgt_sizes[:, 0])
max_w = torch.max(tgt_sizes[:, 1])
if max_h > self.max_size[0] or max_w > self.max_size[1]:
self.max_size = [max(max_h, self.max_size[0]), max(max_w, self.max_size[1])]
self._set_2d_pos_cache(self.max_size, device)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward(self, x, tgt_sizes=None):
assert x.shape[0] == tgt_sizes.shape[0]
bs = x.shape[0]
device = x.device
dtype = x.dtype
patch_len = tgt_sizes[:, 0] * tgt_sizes[:, 1]
self._adjust_pos_cache(tgt_sizes, device=device)
max_patch_len = torch.max(patch_len)
key_padding_mask = torch.zeros((bs, max_patch_len), dtype=torch.bool, device=device)
pos_embed = []
for i in range(bs):
tgt_h, tgt_w = tgt_sizes[i]
pos_embed.append(self.pos_embed[:tgt_h, :tgt_w, :].reshape((tgt_h * tgt_w, -1)).to(dtype)) # patches * D
key_padding_mask[i, patch_len[i] :] = True
pos_embed = torch.nn.utils.rnn.pad_sequence(pos_embed, batch_first=True, padding_value=0.0).permute(
1, 0, 2
) # BLD => L * B * D
x = self.kv_proj(x) # B * L * D
x = self.ln_kv(x).permute(1, 0, 2) # L * B * D
q = self.ln_q(self.query) # Q * D
out = self.attn(
self._repeat(q, bs), # Q * B * D
x + pos_embed, # L * B * D + L * B * D
x,
key_padding_mask=key_padding_mask,
)[0]
# out: Q * B * D
x = out.permute(1, 0, 2) # B * Q * D
x = self.ln_post(x)
x = x @ self.proj
return x
def _repeat(self, query, N: int):
return query.unsqueeze(1).repeat(1, N, 1)
class MultiheadAttention(nn.MultiheadAttention):
def __init__(
self,
embed_dim,
num_heads,
dropout=0.0,
bias=True,
add_bias_kv=False,
add_zero_attn=False,
kdim=None,
vdim=None,
batch_first=False,
device=None,
dtype=None,
):
super().__init__(
embed_dim, num_heads, dropout, bias, add_bias_kv, add_zero_attn, kdim, vdim, batch_first, device, dtype
)
# rewrite out_proj layerwith nn.Linear
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias, device=device, dtype=dtype)
def forward(
self,
query: Tensor,
key: Tensor,
value: Tensor,
key_padding_mask: Optional[Tensor] = None,
need_weights: bool = True,
attn_mask: Optional[Tensor] = None,
average_attn_weights: bool = True,
is_causal: bool = False,
) -> Tuple[Tensor, Optional[Tensor]]:
why_not_fast_path = ""
if (
(attn_mask is not None and torch.is_floating_point(attn_mask))
or (key_padding_mask is not None)
and torch.is_floating_point(key_padding_mask)
):
why_not_fast_path = "floating-point masks are not supported for fast path."
is_batched = query.dim() == 3
key_padding_mask = _canonical_mask(
mask=key_padding_mask,
mask_name="key_padding_mask",
other_type=F._none_or_dtype(attn_mask),
other_name="attn_mask",
target_type=query.dtype,
)
attn_mask = _canonical_mask(
mask=attn_mask,
mask_name="attn_mask",
other_type=None,
other_name="",
target_type=query.dtype,
check_other=False,
)
if not is_batched:
why_not_fast_path = f"input not batched; expected query.dim() of 3 but got {query.dim()}"
elif query is not key or key is not value:
# When lifting this restriction, don't forget to either
# enforce that the dtypes all match or test cases where
# they don't!
why_not_fast_path = "non-self attention was used (query, key, and value are not the same Tensor)"
elif self.in_proj_bias is not None and query.dtype != self.in_proj_bias.dtype:
why_not_fast_path = (
f"dtypes of query ({query.dtype}) and self.in_proj_bias ({self.in_proj_bias.dtype}) don't match"
)
elif self.in_proj_weight is None:
why_not_fast_path = "in_proj_weight was None"
elif query.dtype != self.in_proj_weight.dtype:
# this case will fail anyway, but at least they'll get a useful error message.
why_not_fast_path = (
f"dtypes of query ({query.dtype}) and self.in_proj_weight ({self.in_proj_weight.dtype}) don't match"
)
elif self.training:
why_not_fast_path = "training is enabled"
elif (self.num_heads % 2) != 0:
why_not_fast_path = "self.num_heads is not even"
elif not self.batch_first:
why_not_fast_path = "batch_first was not True"
elif self.bias_k is not None:
why_not_fast_path = "self.bias_k was not None"
elif self.bias_v is not None:
why_not_fast_path = "self.bias_v was not None"
elif self.add_zero_attn:
why_not_fast_path = "add_zero_attn was enabled"
elif not self._qkv_same_embed_dim:
why_not_fast_path = "_qkv_same_embed_dim was not True"
elif query.is_nested and (key_padding_mask is not None or attn_mask is not None):
why_not_fast_path = "supplying both src_key_padding_mask and src_mask at the same time \
is not supported with NestedTensor input"
elif torch.is_autocast_enabled():
why_not_fast_path = "autocast is enabled"
if not why_not_fast_path:
tensor_args = (
query,
key,
value,
self.in_proj_weight,
self.in_proj_bias,
self.out_proj.weight,
self.out_proj.bias,
)
# We have to use list comprehensions below because TorchScript does not support
# generator expressions.
if torch.overrides.has_torch_function(tensor_args):
why_not_fast_path = "some Tensor argument has_torch_function"
elif _is_make_fx_tracing():
why_not_fast_path = "we are running make_fx tracing"
elif not all(_check_arg_device(x) for x in tensor_args):
why_not_fast_path = (
"some Tensor argument's device is neither one of "
f"cpu, cuda or {torch.utils.backend_registration._privateuse1_backend_name}"
)
elif torch.is_grad_enabled() and any(_arg_requires_grad(x) for x in tensor_args):
why_not_fast_path = (
"grad is enabled and at least one of query or the "
"input/output projection weights or biases requires_grad"
)
if not why_not_fast_path:
merged_mask, mask_type = self.merge_masks(attn_mask, key_padding_mask, query)
if self.in_proj_bias is not None and self.in_proj_weight is not None:
return torch._native_multi_head_attention(
query,
key,
value,
self.embed_dim,
self.num_heads,
self.in_proj_weight,
self.in_proj_bias,
self.out_proj.weight,
self.out_proj.bias,
merged_mask,
need_weights,
average_attn_weights,
mask_type,
)
any_nested = query.is_nested or key.is_nested or value.is_nested
assert not any_nested, (
"MultiheadAttention does not support NestedTensor outside of its fast path. "
+ f"The fast path was not hit because {why_not_fast_path}"
)
if self.batch_first and is_batched:
# make sure that the transpose op does not affect the "is" property
if key is value:
if query is key:
query = key = value = query.transpose(1, 0)
else:
query, key = (x.transpose(1, 0) for x in (query, key))
value = key
else:
query, key, value = (x.transpose(1, 0) for x in (query, key, value))
if not self._qkv_same_embed_dim:
attn_output, attn_output_weights = self.multi_head_attention_forward(
query,
key,
value,
self.embed_dim,
self.num_heads,
self.in_proj_weight,
self.in_proj_bias,
self.bias_k,
self.bias_v,
self.add_zero_attn,
self.dropout,
self.out_proj.weight,
self.out_proj.bias,
training=self.training,
key_padding_mask=key_padding_mask,
need_weights=need_weights,
attn_mask=attn_mask,
use_separate_proj_weight=True,
q_proj_weight=self.q_proj_weight,
k_proj_weight=self.k_proj_weight,
v_proj_weight=self.v_proj_weight,
average_attn_weights=average_attn_weights,
is_causal=is_causal,
)
else:
attn_output, attn_output_weights = self.multi_head_attention_forward(
query,
key,
value,
self.embed_dim,
self.num_heads,
self.in_proj_weight,
self.in_proj_bias,
self.bias_k,
self.bias_v,
self.add_zero_attn,
self.dropout,
self.out_proj.weight,
self.out_proj.bias,
training=self.training,
key_padding_mask=key_padding_mask,
need_weights=need_weights,
attn_mask=attn_mask,
average_attn_weights=average_attn_weights,
is_causal=is_causal,
)
if self.batch_first and is_batched:
return attn_output.transpose(1, 0), attn_output_weights
else:
return attn_output, attn_output_weights
def multi_head_attention_forward(
self,
query: Tensor,
key: Tensor,
value: Tensor,
embed_dim_to_check: int,
num_heads: int,
in_proj_weight: Optional[Tensor],
in_proj_bias: Optional[Tensor],
bias_k: Optional[Tensor],
bias_v: Optional[Tensor],
add_zero_attn: bool,
dropout_p: float,
out_proj_weight: Tensor,
out_proj_bias: Optional[Tensor],
training: bool = True,
key_padding_mask: Optional[Tensor] = None,
need_weights: bool = True,
attn_mask: Optional[Tensor] = None,
use_separate_proj_weight: bool = False,
q_proj_weight: Optional[Tensor] = None,
k_proj_weight: Optional[Tensor] = None,
v_proj_weight: Optional[Tensor] = None,
static_k: Optional[Tensor] = None,
static_v: Optional[Tensor] = None,
average_attn_weights: bool = True,
is_causal: bool = False,
) -> Tuple[Tensor, Optional[Tensor]]:
tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, out_proj_weight, out_proj_bias)
is_batched = _mha_shape_check(query, key, value, key_padding_mask, attn_mask, num_heads)
# For unbatched input, we unsqueeze at the expected batch-dim to pretend that the input
# is batched, run the computation and before returning squeeze the
# batch dimension so that the output doesn't carry this temporary batch dimension.
if not is_batched:
# unsqueeze if the input is unbatched
query = query.unsqueeze(1)
key = key.unsqueeze(1)
value = value.unsqueeze(1)
if key_padding_mask is not None:
key_padding_mask = key_padding_mask.unsqueeze(0)
# set up shape vars
tgt_len, bsz, embed_dim = query.shape
src_len, _, _ = key.shape
key_padding_mask = _canonical_mask(
mask=key_padding_mask,
mask_name="key_padding_mask",
other_type=F._none_or_dtype(attn_mask),
other_name="attn_mask",
target_type=query.dtype,
)
if is_causal and attn_mask is None:
raise RuntimeError(
"Need attn_mask if specifying the is_causal hint. "
"You may use the Transformer module method "
"`generate_square_subsequent_mask` to create this mask."
)
if is_causal and key_padding_mask is None and not need_weights:
# when we have a kpm or need weights, we need attn_mask
# Otherwise, we use the is_causal hint go as is_causal
# indicator to SDPA.
attn_mask = None
else:
attn_mask = _canonical_mask(
mask=attn_mask,
mask_name="attn_mask",
other_type=None,
other_name="",
target_type=query.dtype,
check_other=False,
)
if key_padding_mask is not None:
# We have the attn_mask, and use that to merge kpm into it.
# Turn off use of is_causal hint, as the merged mask is no
# longer causal.
is_causal = False
assert (
embed_dim == embed_dim_to_check
), f"was expecting embedding dimension of {embed_dim_to_check}, but got {embed_dim}"
if isinstance(embed_dim, torch.Tensor):
# embed_dim can be a tensor when JIT tracing
head_dim = embed_dim.div(num_heads, rounding_mode="trunc")
else:
head_dim = embed_dim // num_heads
assert head_dim * num_heads == embed_dim, f"embed_dim {embed_dim} not divisible by num_heads {num_heads}"
if use_separate_proj_weight:
# allow MHA to have different embedding dimensions when separate projection weights are used
assert (
key.shape[:2] == value.shape[:2]
), f"key's sequence and batch dims {key.shape[:2]} do not match value's {value.shape[:2]}"
else:
assert key.shape == value.shape, f"key shape {key.shape} does not match value shape {value.shape}"
#
# compute in-projection
#
if not use_separate_proj_weight:
assert in_proj_weight is not None, "use_separate_proj_weight is False but in_proj_weight is None"
q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias)
else:
assert q_proj_weight is not None, "use_separate_proj_weight is True but q_proj_weight is None"
assert k_proj_weight is not None, "use_separate_proj_weight is True but k_proj_weight is None"
assert v_proj_weight is not None, "use_separate_proj_weight is True but v_proj_weight is None"
if in_proj_bias is None:
b_q = b_k = b_v = None
else:
b_q, b_k, b_v = in_proj_bias.chunk(3)
q, k, v = _in_projection(query, key, value, q_proj_weight, k_proj_weight, v_proj_weight, b_q, b_k, b_v)
# prep attention mask
if attn_mask is not None:
# ensure attn_mask's dim is 3
if attn_mask.dim() == 2:
correct_2d_size = (tgt_len, src_len)
if attn_mask.shape != correct_2d_size:
raise RuntimeError(
f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}."
)
attn_mask = attn_mask.unsqueeze(0)
elif attn_mask.dim() == 3:
correct_3d_size = (bsz * num_heads, tgt_len, src_len)
if attn_mask.shape != correct_3d_size:
raise RuntimeError(
f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}."
)
else:
raise RuntimeError(f"attn_mask's dimension {attn_mask.dim()} is not supported")
# add bias along batch dimension (currently second)
if bias_k is not None and bias_v is not None:
assert static_k is None, "bias cannot be added to static key."
assert static_v is None, "bias cannot be added to static value."
k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
if attn_mask is not None:
attn_mask = pad(attn_mask, (0, 1))
if key_padding_mask is not None:
key_padding_mask = pad(key_padding_mask, (0, 1))
else:
assert bias_k is None
assert bias_v is None
#
# reshape q, k, v for multihead attention and make em batch first
#
q = q.view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
if static_k is None:
k = k.view(k.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
else:
# TODO finish disentangling control flow so we don't do in-projections when statics are passed
assert (
static_k.size(0) == bsz * num_heads
), f"expecting static_k.size(0) of {bsz * num_heads}, but got {static_k.size(0)}"
assert static_k.size(2) == head_dim, f"expecting static_k.size(2) of {head_dim}, but got {static_k.size(2)}"
k = static_k
if static_v is None:
v = v.view(v.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
else:
# TODO finish disentangling control flow so we don't do in-projections when statics are passed
assert (
static_v.size(0) == bsz * num_heads
), f"expecting static_v.size(0) of {bsz * num_heads}, but got {static_v.size(0)}"
assert static_v.size(2) == head_dim, f"expecting static_v.size(2) of {head_dim}, but got {static_v.size(2)}"
v = static_v
# add zero attention along batch dimension (now first)
if add_zero_attn:
zero_attn_shape = (bsz * num_heads, 1, head_dim)
k = torch.cat([k, torch.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], dim=1)
v = torch.cat([v, torch.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], dim=1)
if attn_mask is not None:
attn_mask = pad(attn_mask, (0, 1))
if key_padding_mask is not None:
key_padding_mask = pad(key_padding_mask, (0, 1))
# update source sequence length after adjustments
src_len = k.size(1)
# merge key padding and attention masks
if key_padding_mask is not None:
assert key_padding_mask.shape == (
bsz,
src_len,
), f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}"
key_padding_mask = (
key_padding_mask.view(bsz, 1, 1, src_len)
.expand(-1, num_heads, -1, -1)
.reshape(bsz * num_heads, 1, src_len)
)
if attn_mask is None:
attn_mask = key_padding_mask
else:
attn_mask = attn_mask + key_padding_mask
# adjust dropout probability
if not training:
dropout_p = 0.0
#
# (deep breath) calculate attention and out projection
#
if need_weights:
B, Nt, E = q.shape
q_scaled = q / math.sqrt(E)
assert not (is_causal and attn_mask is None), "FIXME: is_causal not implemented for need_weights"
if attn_mask is not None:
attn_output_weights = torch.baddbmm(attn_mask, q_scaled, k.transpose(-2, -1))
else:
attn_output_weights = torch.bmm(q_scaled, k.transpose(-2, -1))
attn_output_weights = softmax(attn_output_weights, dim=-1)
if dropout_p > 0.0:
attn_output_weights = dropout(attn_output_weights, p=dropout_p)
attn_output = torch.bmm(attn_output_weights, v)
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len * bsz, embed_dim)
attn_output = self.out_proj(attn_output)
attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
# optionally average attention weights over heads
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
if average_attn_weights:
attn_output_weights = attn_output_weights.mean(dim=1)
if not is_batched:
# squeeze the output if input was unbatched
attn_output = attn_output.squeeze(1)
attn_output_weights = attn_output_weights.squeeze(0)
return attn_output, attn_output_weights
else:
# attn_mask can be either (L,S) or (N*num_heads, L, S)
# if attn_mask's shape is (1, L, S) we need to unsqueeze to (1, 1, L, S)
# in order to match the input for SDPA of (N, num_heads, L, S)
if attn_mask is not None:
if attn_mask.size(0) == 1 and attn_mask.dim() == 3:
attn_mask = attn_mask.unsqueeze(0)
else:
attn_mask = attn_mask.view(bsz, num_heads, -1, src_len)
q = q.view(bsz, num_heads, tgt_len, head_dim)
k = k.view(bsz, num_heads, src_len, head_dim)
v = v.view(bsz, num_heads, src_len, head_dim)
attn_output = F.scaled_dot_product_attention(q, k, v, attn_mask, dropout_p, is_causal)
attn_output = attn_output.permute(2, 0, 1, 3).contiguous().view(bsz * tgt_len, embed_dim)
attn_output = self.out_proj(attn_output)
attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
if not is_batched:
# squeeze the output if input was unbatched
attn_output = attn_output.squeeze(1)
return attn_output, None
def _mha_shape_check(
query: Tensor,
key: Tensor,
value: Tensor,
key_padding_mask: Optional[Tensor],
attn_mask: Optional[Tensor],
num_heads: int,
):
# Verifies the expected shape for `query, `key`, `value`, `key_padding_mask` and `attn_mask`
# and returns if the input is batched or not.
# Raises an error if `query` is not 2-D (unbatched) or 3-D (batched) tensor.
# Shape check.
if query.dim() == 3:
# Batched Inputs
is_batched = True
assert key.dim() == 3 and value.dim() == 3, (
"For batched (3-D) `query`, expected `key` and `value` to be 3-D"
f" but found {key.dim()}-D and {value.dim()}-D tensors respectively"
)
if key_padding_mask is not None:
assert key_padding_mask.dim() == 2, (
"For batched (3-D) `query`, expected `key_padding_mask` to be `None` or 2-D"
f" but found {key_padding_mask.dim()}-D tensor instead"
)
if attn_mask is not None:
assert attn_mask.dim() in (2, 3), (
"For batched (3-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D"
f" but found {attn_mask.dim()}-D tensor instead"
)
elif query.dim() == 2:
# Unbatched Inputs
is_batched = False
assert key.dim() == 2 and value.dim() == 2, (
"For unbatched (2-D) `query`, expected `key` and `value` to be 2-D"
f" but found {key.dim()}-D and {value.dim()}-D tensors respectively"
)
if key_padding_mask is not None:
assert key_padding_mask.dim() == 1, (
"For unbatched (2-D) `query`, expected `key_padding_mask` to be `None` or 1-D"
f" but found {key_padding_mask.dim()}-D tensor instead"
)
if attn_mask is not None:
assert attn_mask.dim() in (2, 3), (
"For unbatched (2-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D"
f" but found {attn_mask.dim()}-D tensor instead"
)
if attn_mask.dim() == 3:
expected_shape = (num_heads, query.shape[0], key.shape[0])
assert (
attn_mask.shape == expected_shape
), f"Expected `attn_mask` shape to be {expected_shape} but got {attn_mask.shape}"
else:
raise AssertionError(
f"query should be unbatched 2D or batched 3D tensor but received {query.dim()}-D query tensor"
)
return is_batched
def _canonical_mask(
mask: Optional[Tensor],
mask_name: str,
other_type: Optional[DType],
other_name: str,
target_type: DType,
check_other: bool = True,
) -> Optional[Tensor]:
if mask is not None:
_mask_dtype = mask.dtype
_mask_is_float = torch.is_floating_point(mask)
if _mask_dtype != torch.bool and not _mask_is_float:
raise AssertionError(f"only bool and floating types of {mask_name} are supported")
if check_other and other_type is not None:
if _mask_dtype != other_type:
warnings.warn(
f"Support for mismatched {mask_name} and {other_name} "
"is deprecated. Use same type for both instead."
)
if not _mask_is_float:
mask = torch.zeros_like(mask, dtype=target_type).masked_fill_(mask, float("-inf"))
return mask
def _in_projection_packed(
q: Tensor,
k: Tensor,
v: Tensor,
w: Tensor,
b: Optional[Tensor] = None,
) -> List[Tensor]:
r"""
Performs the in-projection step of the attention operation, using packed weights.
Output is a triple containing projection tensors for query, key and value.
Args:
q, k, v: query, key and value tensors to be projected. For self-attention,
these are typically the same tensor; for encoder-decoder attention,
k and v are typically the same tensor. (We take advantage of these
identities for performance if they are present.) Regardless, q, k and v
must share a common embedding dimension; otherwise their shapes may vary.
w: projection weights for q, k and v, packed into a single tensor. Weights
are packed along dimension 0, in q, k, v order.
b: optional projection biases for q, k and v, packed into a single tensor
in q, k, v order.
Shape:
Inputs:
- q: :math:`(..., E)` where E is the embedding dimension
- k: :math:`(..., E)` where E is the embedding dimension
- v: :math:`(..., E)` where E is the embedding dimension
- w: :math:`(E * 3, E)` where E is the embedding dimension
- b: :math:`E * 3` where E is the embedding dimension
Output:
- in output list :math:`[q', k', v']`, each output tensor will have the
same shape as the corresponding input tensor.
"""
E = q.size(-1)
if k is v:
if q is k:
# self-attention
proj = linear(q, w, b)
# reshape to 3, E and not E, 3 is deliberate for better memory coalescing and keeping same order as chunk()
proj = proj.unflatten(-1, (3, E)).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
return proj[0], proj[1], proj[2]
else:
# encoder-decoder attention
w_q, w_kv = w.split([E, E * 2])
if b is None:
b_q = b_kv = None
else:
b_q, b_kv = b.split([E, E * 2])
q_proj = linear(q, w_q, b_q)
kv_proj = linear(k, w_kv, b_kv)
# reshape to 2, E and not E, 2 is deliberate for better memory coalescing and keeping same order as chunk()
kv_proj = kv_proj.unflatten(-1, (2, E)).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
return (q_proj, kv_proj[0], kv_proj[1])
else:
w_q, w_k, w_v = w.chunk(3)
if b is None:
b_q = b_k = b_v = None
else:
b_q, b_k, b_v = b.chunk(3)
return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)
def _in_projection(
q: Tensor,
k: Tensor,
v: Tensor,
w_q: Tensor,
w_k: Tensor,
w_v: Tensor,
b_q: Optional[Tensor] = None,
b_k: Optional[Tensor] = None,
b_v: Optional[Tensor] = None,
) -> Tuple[Tensor, Tensor, Tensor]:
r"""
Performs the in-projection step of the attention operation. This is simply
a triple of linear projections, with shape constraints on the weights which
ensure embedding dimension uniformity in the projected outputs.
Output is a triple containing projection tensors for query, key and value.
Args:
q, k, v: query, key and value tensors to be projected.
w_q, w_k, w_v: weights for q, k and v, respectively.
b_q, b_k, b_v: optional biases for q, k and v, respectively.
Shape:
Inputs:
- q: :math:`(Qdims..., Eq)` where Eq is the query embedding dimension and Qdims are any
number of leading dimensions.
- k: :math:`(Kdims..., Ek)` where Ek is the key embedding dimension and Kdims are any
number of leading dimensions.
- v: :math:`(Vdims..., Ev)` where Ev is the value embedding dimension and Vdims are any
number of leading dimensions.
- w_q: :math:`(Eq, Eq)`
- w_k: :math:`(Eq, Ek)`
- w_v: :math:`(Eq, Ev)`
- b_q: :math:`(Eq)`
- b_k: :math:`(Eq)`
- b_v: :math:`(Eq)`
Output: in output triple :math:`(q', k', v')`,
- q': :math:`[Qdims..., Eq]`
- k': :math:`[Kdims..., Eq]`
- v': :math:`[Vdims..., Eq]`
"""
Eq, Ek, Ev = q.size(-1), k.size(-1), v.size(-1)
assert w_q.shape == (Eq, Eq), f"expecting query weights shape of {(Eq, Eq)}, but got {w_q.shape}"
assert w_k.shape == (Eq, Ek), f"expecting key weights shape of {(Eq, Ek)}, but got {w_k.shape}"
assert w_v.shape == (Eq, Ev), f"expecting value weights shape of {(Eq, Ev)}, but got {w_v.shape}"
assert b_q is None or b_q.shape == (Eq,), f"expecting query bias shape of {(Eq,)}, but got {b_q.shape}"
assert b_k is None or b_k.shape == (Eq,), f"expecting key bias shape of {(Eq,)}, but got {b_k.shape}"
assert b_v is None or b_v.shape == (Eq,), f"expecting value bias shape of {(Eq,)}, but got {b_v.shape}"
return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)

264
special_tokens_map.json Normal file
View File

@ -0,0 +1,264 @@
{
"additional_special_tokens": [
{
"content": "<image>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "</image>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "<ref>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "</ref>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "<box>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "</box>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "<quad>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "</quad>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "<point>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "</point>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "<slice>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "</slice>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "<image_id>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "</image_id>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "<unit>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "</unit>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "<asr>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "</asr>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "<query>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "</query>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "<|audio_start|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "<|audio|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "<|audio_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "<|spk_bos|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "<|spk|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "<|spk_eos|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "<|tts_bos|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "<|tts_eos|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "<|listen|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "<|speak|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "<|interrupt|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "<|vad_start|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "<|vad_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "<reserved_43>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
{
"content": "<reserved_53>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
}
],
"eos_token": {
"content": "<|im_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
"pad_token": {
"content": "<|endoftext|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
"unk_token": "<unk>"
}

View File

@ -0,0 +1,110 @@
# coding=utf-8
# Copyright 2025 The OpenBMB Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from transformers import Qwen2TokenizerFast
class MiniCPMOTokenizerFast(Qwen2TokenizerFast):
def __init__(self, **kwargs):
super().__init__(**kwargs)
# image
self.im_start = "<image>"
self.im_end = "</image>"
self.ref_start = "<ref>"
self.ref_end = "</ref>"
self.box_start = "<box>"
self.box_end = "</box>"
self.quad_start = "<quad>"
self.quad_end = "</quad>"
self.slice_start = "<slice>"
self.slice_end = "</slice>"
self.im_id_start = "<image_id>"
self.im_id_end = "</image_id>"
# audio
self.audio_start = "<|audio_start|>"
self.audio_end = "<|audio_end|>"
self.spk_start = "<|spk_bos|>"
self.spk_end = "<|spk_eos|>"
self.tts_start = "<|tts_bos|>"
self.tts_end = "<|tts_eos|>"
@property
def eos_id(self):
return self.eos_token_id
@property
def bos_id(self):
return self.bos_token_id
@property
def unk_id(self):
return self.unk_token_id
@property
def im_start_id(self):
return self.convert_tokens_to_ids(self.im_start)
@property
def im_end_id(self):
return self.convert_tokens_to_ids(self.im_end)
@property
def slice_start_id(self):
return self.convert_tokens_to_ids(self.slice_start)
@property
def slice_end_id(self):
return self.convert_tokens_to_ids(self.slice_end)
@property
def im_id_start_id(self):
return self.convert_tokens_to_ids(self.im_id_start)
@property
def im_id_end_id(self):
return self.convert_tokens_to_ids(self.im_id_end)
@property
def audio_start_id(self):
return self.convert_tokens_to_ids(self.audio_start)
@property
def audio_end_id(self):
return self.convert_tokens_to_ids(self.audio_end)
@property
def spk_start_id(self):
return self.convert_tokens_to_ids(self.spk_start)
@property
def spk_end_id(self):
return self.convert_tokens_to_ids(self.spk_end)
@property
def tts_start_id(self):
return self.convert_tokens_to_ids(self.tts_start)
@property
def tts_end_id(self):
return self.convert_tokens_to_ids(self.tts_end)
@staticmethod
def escape(text: str) -> str:
return text
@staticmethod
def unescape(text: str) -> str:
return text

303606
tokenizer.json Normal file

File diff suppressed because it is too large Load Diff

523
tokenizer_config.json Normal file
View File

@ -0,0 +1,523 @@
{
"add_bos_token": false,
"add_prefix_space": false,
"added_tokens_decoder": {
"128244": {
"content": "<unk>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151643": {
"content": "<|endoftext|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151644": {
"content": "<|im_start|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151645": {
"content": "<|im_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151646": {
"content": "<|object_ref_start|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151647": {
"content": "<|object_ref_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151648": {
"content": "<|box_start|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151649": {
"content": "<|box_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151650": {
"content": "<|quad_start|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151651": {
"content": "<|quad_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151652": {
"content": "<|vision_start|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151653": {
"content": "<|vision_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151654": {
"content": "<|vision_pad|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151655": {
"content": "<|image_pad|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151656": {
"content": "<|video_pad|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151657": {
"content": "<tool_call>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151658": {
"content": "</tool_call>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151659": {
"content": "<|fim_prefix|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151660": {
"content": "<|fim_middle|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151661": {
"content": "<|fim_suffix|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151662": {
"content": "<|fim_pad|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151663": {
"content": "<|repo_name|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151664": {
"content": "<|file_sep|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151665": {
"content": "<image>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151666": {
"content": "</image>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151667": {
"content": "<ref>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151668": {
"content": "</ref>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151669": {
"content": "<box>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151670": {
"content": "</box>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151671": {
"content": "<quad>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151672": {
"content": "</quad>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151673": {
"content": "<point>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151674": {
"content": "</point>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151675": {
"content": "<slice>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151676": {
"content": "</slice>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151677": {
"content": "<image_id>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151678": {
"content": "</image_id>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151679": {
"content": "<unit>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151680": {
"content": "</unit>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151681": {
"content": "<asr>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151682": {
"content": "</asr>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151683": {
"content": "<query>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151684": {
"content": "</query>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151685": {
"content": "<|audio_start|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151686": {
"content": "<|audio|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151687": {
"content": "<|audio_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151688": {
"content": "<|spk_bos|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151689": {
"content": "<|spk|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151690": {
"content": "<|spk_eos|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151691": {
"content": "<|tts_bos|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151692": {
"content": "<|tts_eos|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151693": {
"content": "<|listen|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151694": {
"content": "<|speak|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151695": {
"content": "<|interrupt|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151696": {
"content": "<|vad_start|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151697": {
"content": "<|vad_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151698": {
"content": "<reserved_43>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151699": {
"content": "<reserved_53>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
}
},
"additional_special_tokens": [
"<image>",
"</image>",
"<ref>",
"</ref>",
"<box>",
"</box>",
"<quad>",
"</quad>",
"<point>",
"</point>",
"<slice>",
"</slice>",
"<image_id>",
"</image_id>",
"<unit>",
"</unit>",
"<asr>",
"</asr>",
"<query>",
"</query>",
"<|audio_start|>",
"<|audio|>",
"<|audio_end|>",
"<|spk_bos|>",
"<|spk|>",
"<|spk_eos|>",
"<|tts_bos|>",
"<|tts_eos|>",
"<|listen|>",
"<|speak|>",
"<|interrupt|>",
"<|vad_start|>",
"<|vad_end|>",
"<reserved_43>",
"<reserved_53>"
],
"bos_token": "<|im_start|>",
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
"clean_up_tokenization_spaces": false,
"eos_token": "<|im_end|>",
"errors": "replace",
"model_max_length": 131072,
"pad_token": "<|endoftext|>",
"split_special_tokens": false,
"auto_map": {
"AutoTokenizer": [
"tokenization_minicpmo_fast.MiniCPMOTokenizerFast",
null
]
},
"tokenizer_class": "MiniCPMOTokenizerFast",
"unk_token": "<unk>"
}

203
utils.py Normal file
View File

@ -0,0 +1,203 @@
# coding=utf-8
# Copyright 2025 The OpenBMB Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import re
import librosa
import numpy as np
logger = logging.getLogger(__name__)
def is_silent(data):
if np.abs(data).max() < 3e-3:
return True
else:
return False
def sentence_end(txt):
for c in [".", "", "!", "?", "", ""]:
if c in txt:
if c == ".": # check not number before it like 1.
idx = txt.find(c)
if idx > 0:
if txt[idx - 1].isdigit():
continue
return c
return ""
class NumberToTextConverter:
r"""
A helper class to ensure text-to-speech (TTS) systems read numeric digits
in the desired language (Chinese or English) digit-by-digit. It forcibly
replaces all numeric substrings in text with their language-specific
textual representations, thereby reducing the likelihood of TTS mistakes
on numbers.
Note: MiniCPM-o 2.6 only use this in streaming mode.
Attributes:
num_to_chinese (dict):
Mapping from digit (str) to its Chinese textual form (str).
num_to_english (dict):
Mapping from digit (str) to its English textual form (str).
Example:
>>> converter = NumberToTextConverter()
>>> converter.replace_numbers_with_text("我有2个苹果", language="chinese")
'我有两个苹果'
>>> converter.replace_numbers_with_text("I have 23 books", language="english")
'I have two three books'
"""
def __init__(self):
self.num_to_chinese = {
"0": "",
"1": "",
"2": "",
"3": "",
"4": "",
"5": "",
"6": "",
"7": "",
"8": "",
"9": "",
}
self.num_to_english = {
"0": "zero",
"1": "one",
"2": "two",
"3": "three",
"4": "four",
"5": "five",
"6": "six",
"7": "seven",
"8": "eight",
"9": "nine",
}
def number_to_chinese_digit_by_digit(self, num_str):
result = ""
for char in num_str:
if char in self.num_to_chinese:
result += self.num_to_chinese[char]
return result
def number_to_english_digit_by_digit(self, num_str):
result = []
for char in num_str:
if char in self.num_to_english:
result.append(self.num_to_english[char])
return " ".join(result)
def detect_language(self, text):
chinese_count = len(re.findall(r"[\u4e00-\u9fff]", text))
english_count = len(re.findall(r"[a-zA-Z]", text))
return "chinese" if chinese_count >= english_count else "english"
def replace_numbers_with_text(self, text, language=None):
if language is None:
language = self.detect_language(text)
numbers = re.findall(r"\d+", text)
for num in numbers:
if language == "chinese":
replacement = self.number_to_chinese_digit_by_digit(num)
else:
replacement = self.number_to_english_digit_by_digit(num)
text = text.replace(num, replacement, 1)
return text
class VoiceChecker:
r"""
A simple utility class to detect silence or low variation in consecutive audio chunks by comparing
the mel-spectrogram distances. It keeps track of consecutive zero-distance and low-distance chunks
to decide if the audio is considered "bad" (e.g., overly silent or not changing enough).
Attributes:
previous_mel (`np.ndarray` or `None`):
Holds the previously observed mel-spectrogram in decibel scale. Used to compute
the next distance; reset via :meth:`reset`.
consecutive_zeros (`int`):
The number of consecutive chunks that were detected as silent (distance = 0).
consecutive_low_distance (`int`):
The number of consecutive chunks whose distance was below the threshold.
Example:
>>> checker = VoiceChecker()
>>> # Suppose we have audio_wav (list or np.ndarray) and mel_spec (np.ndarray)
>>> # We split them into chunks and call checker.is_bad(...)
>>> is_audio_bad = checker.is_bad(audio_wav, mel_spec, chunk_size=2560, thresh=100.0)
>>> if is_audio_bad:
... print("Audio deemed bad!")
>>> # Reset states if needed
>>> checker.reset()
"""
def __init__(self):
self.previous_mel = None
self.consecutive_zeros = 0
self.consecutive_low_distance = 0
def compute_distance(self, audio_chunk, mel_spec):
if is_silent(audio_chunk):
return 0.0 # 检查是否为空白片段
mel_db = librosa.power_to_db(mel_spec)
if self.previous_mel is None:
self.previous_mel = mel_db
return -1.0
distance = np.linalg.norm(np.mean(mel_db, axis=1) - np.mean(self.previous_mel, axis=1))
self.previous_mel = mel_db
return distance
def is_bad(self, audio_wav, mel_spec, chunk_size=2560, thresh=100.0):
num_chunks = len(audio_wav) // chunk_size
mel_chunk_size = mel_spec.shape[-1] // num_chunks
for i in range(num_chunks):
audio_chunk = audio_wav[i * chunk_size : (i + 1) * chunk_size]
mel_spec_chunk = mel_spec[:, i * mel_chunk_size : (i + 1) * mel_chunk_size]
distance = self.compute_distance(audio_chunk, mel_spec_chunk)
logger.warning(
f"mel dist: {distance:.1f}, zero: {self.consecutive_zeros}, low: {self.consecutive_low_distance}"
)
if distance == 0:
self.consecutive_low_distance = 0 # reset
self.consecutive_zeros += 1
if self.consecutive_zeros >= 12:
logger.warning("VoiceChecker detected 1.2 s silent. Marking as failed.")
return True
elif distance < thresh:
self.consecutive_zeros = 0
self.consecutive_low_distance += 1
if self.consecutive_low_distance >= 5:
logger.warning("VoiceChecker detected 5 consecutive low distance chunks. Marking as failed.")
return True
else:
self.consecutive_low_distance = 0
self.consecutive_zeros = 0
return False
def reset(self):
self.previous_mel = None
self.consecutive_zeros = 0
self.consecutive_low_distance = 0

1
vocab.json Normal file

File diff suppressed because one or more lines are too long