MiniCPM-o-2_6/utils.py

204 lines
7.1 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# coding=utf-8
# Copyright 2025 The OpenBMB Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import re
import librosa
import numpy as np
logger = logging.getLogger(__name__)
def is_silent(data):
if np.abs(data).max() < 3e-3:
return True
else:
return False
def sentence_end(txt):
for c in [".", "", "!", "?", "", ""]:
if c in txt:
if c == ".": # check not number before it like 1.
idx = txt.find(c)
if idx > 0:
if txt[idx - 1].isdigit():
continue
return c
return ""
class NumberToTextConverter:
r"""
A helper class to ensure text-to-speech (TTS) systems read numeric digits
in the desired language (Chinese or English) digit-by-digit. It forcibly
replaces all numeric substrings in text with their language-specific
textual representations, thereby reducing the likelihood of TTS mistakes
on numbers.
Note: MiniCPM-o 2.6 only use this in streaming mode.
Attributes:
num_to_chinese (dict):
Mapping from digit (str) to its Chinese textual form (str).
num_to_english (dict):
Mapping from digit (str) to its English textual form (str).
Example:
>>> converter = NumberToTextConverter()
>>> converter.replace_numbers_with_text("我有2个苹果", language="chinese")
'我有两个苹果'
>>> converter.replace_numbers_with_text("I have 23 books", language="english")
'I have two three books'
"""
def __init__(self):
self.num_to_chinese = {
"0": "",
"1": "",
"2": "",
"3": "",
"4": "",
"5": "",
"6": "",
"7": "",
"8": "",
"9": "",
}
self.num_to_english = {
"0": "zero",
"1": "one",
"2": "two",
"3": "three",
"4": "four",
"5": "five",
"6": "six",
"7": "seven",
"8": "eight",
"9": "nine",
}
def number_to_chinese_digit_by_digit(self, num_str):
result = ""
for char in num_str:
if char in self.num_to_chinese:
result += self.num_to_chinese[char]
return result
def number_to_english_digit_by_digit(self, num_str):
result = []
for char in num_str:
if char in self.num_to_english:
result.append(self.num_to_english[char])
return " ".join(result)
def detect_language(self, text):
chinese_count = len(re.findall(r"[\u4e00-\u9fff]", text))
english_count = len(re.findall(r"[a-zA-Z]", text))
return "chinese" if chinese_count >= english_count else "english"
def replace_numbers_with_text(self, text, language=None):
if language is None:
language = self.detect_language(text)
numbers = re.findall(r"\d+", text)
for num in numbers:
if language == "chinese":
replacement = self.number_to_chinese_digit_by_digit(num)
else:
replacement = self.number_to_english_digit_by_digit(num)
text = text.replace(num, replacement, 1)
return text
class VoiceChecker:
r"""
A simple utility class to detect silence or low variation in consecutive audio chunks by comparing
the mel-spectrogram distances. It keeps track of consecutive zero-distance and low-distance chunks
to decide if the audio is considered "bad" (e.g., overly silent or not changing enough).
Attributes:
previous_mel (`np.ndarray` or `None`):
Holds the previously observed mel-spectrogram in decibel scale. Used to compute
the next distance; reset via :meth:`reset`.
consecutive_zeros (`int`):
The number of consecutive chunks that were detected as silent (distance = 0).
consecutive_low_distance (`int`):
The number of consecutive chunks whose distance was below the threshold.
Example:
>>> checker = VoiceChecker()
>>> # Suppose we have audio_wav (list or np.ndarray) and mel_spec (np.ndarray)
>>> # We split them into chunks and call checker.is_bad(...)
>>> is_audio_bad = checker.is_bad(audio_wav, mel_spec, chunk_size=2560, thresh=100.0)
>>> if is_audio_bad:
... print("Audio deemed bad!")
>>> # Reset states if needed
>>> checker.reset()
"""
def __init__(self):
self.previous_mel = None
self.consecutive_zeros = 0
self.consecutive_low_distance = 0
def compute_distance(self, audio_chunk, mel_spec):
if is_silent(audio_chunk):
return 0.0 # 检查是否为空白片段
mel_db = librosa.power_to_db(mel_spec)
if self.previous_mel is None:
self.previous_mel = mel_db
return -1.0
distance = np.linalg.norm(np.mean(mel_db, axis=1) - np.mean(self.previous_mel, axis=1))
self.previous_mel = mel_db
return distance
def is_bad(self, audio_wav, mel_spec, chunk_size=2560, thresh=100.0):
num_chunks = len(audio_wav) // chunk_size
mel_chunk_size = mel_spec.shape[-1] // num_chunks
for i in range(num_chunks):
audio_chunk = audio_wav[i * chunk_size : (i + 1) * chunk_size]
mel_spec_chunk = mel_spec[:, i * mel_chunk_size : (i + 1) * mel_chunk_size]
distance = self.compute_distance(audio_chunk, mel_spec_chunk)
logger.warning(
f"mel dist: {distance:.1f}, zero: {self.consecutive_zeros}, low: {self.consecutive_low_distance}"
)
if distance == 0:
self.consecutive_low_distance = 0 # reset
self.consecutive_zeros += 1
if self.consecutive_zeros >= 12:
logger.warning("VoiceChecker detected 1.2 s silent. Marking as failed.")
return True
elif distance < thresh:
self.consecutive_zeros = 0
self.consecutive_low_distance += 1
if self.consecutive_low_distance >= 5:
logger.warning("VoiceChecker detected 5 consecutive low distance chunks. Marking as failed.")
return True
else:
self.consecutive_low_distance = 0
self.consecutive_zeros = 0
return False
def reset(self):
self.previous_mel = None
self.consecutive_zeros = 0
self.consecutive_low_distance = 0